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In a recent publication, the authors developed an algorithm for the computation of 
upper bounds on the restoration entropy for nonlinear systems. In a computational 
example for the Lorenz system, there was an error in the code that resulted in too 
low upper bounds. Indeed, we computed an upper bound lower than the theoretical 
value, published contemporaneous with our paper. We corrected the error and 
performed the computations again. Furthermore, we additionally used our method 
to compute an optimal Lyapunov-like function for the matrix from the theoretical 
derivation and present the results.

© 2019 Elsevier Inc. All rights reserved.

1. Correction

The numerical example considered in [2] is the Lorenz system

d
dt

(
x
y
z

)
=

( −σx + σy
rx− y − xz
−bz + xy

)
=: g(x, y, z), (1)

with parameters σ = 10, r = 28, and b = 8/3. To simplify the computations, the system is scaled such that 
its attractors are contained in a smaller set. For this purpose, the matrix S := diag(sx, sy, sz), for constants 
sx, sy, sz > 0, is defined and the system ẋ = f(x) with f(x) = S−1g(Sx) is considered (x := [x, y, z]�). The 
formulas for the scaled system are
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d
dt

(
x
y
z

)
=

⎛⎜⎝ −σx + σ
sy
sx
y

r sx
sy
x− y − sxsz

sy
xz

−bz + sxsy
sz

xy

⎞⎟⎠ . (2)

Unfortunately, there was an error in the code used in the computations in [2] for an upper bound on 
the restoration entropy of the scaled Lorenz system. More precisely, in the implementation of Optimization 
Problem 4.2 in [2], the Constraints 4, i.e.

For each simplex Sξ = co(x0, . . . , xn) ∈ T ∗ and each vertex xk of Sξ:

∇Vξ · f(xk) + h2
ξ · nB∗

ξD
V
ξ + m̃μ(xk) ≤ Q

were not added to the linear programming problem whenever xk = 0. This is very unfortunate, because 
the maximum value for Q, that is being minimized, is obtained exactly at x = 0. It was later shown in [4, 
Thm. 15] that

R := 1
2 ln(2)

(√
(σ − 1)2 + 4rσ − (σ + 1)

)
(3)

from [5] for an upper bound on the restoration entropy, actually delivers the exact value for the restora-
tion entropy for most interesting parameter values. In particular, for the parameter values we used in our 
computations, R ≈ 17.0638 is the restoration entropy.

An explanation for this programming error, but not an excuse, is that the implementation of Optimization 
Problem 4.2 was done by adapting code for the computation of CPA Lyapunov functions for nonlinear 
systems; see, e.g., [1] or [3]. There, the corresponding constraint is

∇Vξ · f(xk) + h2
ξ · nB∗

ξD
V
ξ ≤ −‖xk‖2,

which is automatically fulfilled for xk = 0 when the upper bound h2
ξ ·nB∗

ξ is replaced by a closer bound that 
depends on x0 and xk in Sξ. This closer bound is chosen, such that the bound is zero for xk = 0. However, 
for our computation it is simply wrong and leads to incorrect results to drop these constraints for xk = 0. 
In [2], these closer bounds were also used, cf.

Because we are using such a simple axially parallel triangulation, one can use somewhat less conservative 
bounds in the LP problems. That is, the term nh2

ξB
∗
ξ in Constraints 4 in Optimization Problem 4.2 can 

be replaced with a smaller number and Theorem 4.12 still holds true. For these less conservative bounds 
we refer to [3, Lem. 4.16].

The updated results of the computations are shown in Table 1 (corresponds to Table 1 in [2]). We 
performed the computations on AMD Threadripper 3990X (64 cores, 256 GB RAM) using Gurobi 9.01 for 
solving the linear programming problems.

2. Addendum

It is revealing to perform the computations from [2] with the optimal matrix computed in [4, Thm. 15].
In the computations presented in Table 1, first the metric

Pc :=
( 0.1008469737786 −0.01415360101927 0
−0.01415360101927 0.3361537095909 0

)

0 0 0.3139832543019
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Table 1
The results of our computations. Nx, Ny, Nz are the parameters for the com-
putational grid as explained in the original paper, ‘time’ is the total time in 
seconds needed to write and solve the problem, ‘impr. bounds’ states whether 
the improved bounds discussed in the text are used (Yes) or not (No), Q is the 
objective that is minimized in Optimization Problem 4.2, and ‘u.b.’ is the as-
sociated upper bound Q/(2 ln(2)) on the topological/restoration entropy. For 
reference, the value of the restoration entropy is 17.0638 [4, Thm. 15].

Nx Ny Nz time [s] impr. bounds Q u.b.
30 14 28 53 No 25.7566 18.5795
30 14 28 44 Yes 24.8473 17.9236
42 14 28 88 No 25.7567 18.5795
42 14 28 81 Yes 24.8473 17.9236
50 18 32 140 Yes 24.8473 17.9236
70 22 40 342 Yes 24.8473 17.9236

Table 2
The results of our computations using the analytically computed metric M . 
The optimal value is obtained if the triangulation T ∗ consists of sufficiently 
small simplices. The parameters are as in Table 1.

Nx Ny Nz time [s] impr. bounds Q u.b.
15 7 7 5 No 26.1038 18.8299
15 7 7 16 Yes 23.9644 17.2867
30 14 28 53 No 24.8447 17.9217
30 14 28 44 Yes 23.6554 17.0638

was computed using semidefinite optimization. As stated in [2], if we only use Pc in the formula in [5, 
Thm. 3.2] for the upper bound on the topological/restoration entropy, i.e. if we set V (x) = const., we 
obtain the upper bound 27/(2 ln(2)) ≈ 19.4764 on the positively invariant set K := [−1, 1] × [−0.29, 0.29] ×
[0, 0.57], which contains all attractors of the system. However, by using Optimization Problem 4.2 to compute 
subsequently an optimal Lyapunov-like function V , we can improve these upper bounds to 17.9236, using 
Pc and V , as shown in Table 1. Note that we compute V on a slightly larger set than K in order to have 
K◦ ∩ {z = 0} �= ∅, because we want the equilibrium at the origin to be in the interior of K.

In the proof of [5, Thm. 4.3], the symmetric matrix

P =

⎛⎜⎝
rσ+(b−1)(σ−1)

σ2 − b−1
σ 0

− b−1
σ 1 0

0 0 1

⎞⎟⎠ , (4)

that is positive definite if rσ + (b − 1)(σ − 1) > 0, is used to obtain the upper bound (3) on the restoration 
entropy of the Lorenz system (1). It turns out that the upper bound (3) is the exact value of the restoration 
entropy [4, Thm. 15]. In Remark 2.1, we show that the matrix M = S�PS is the corresponding matrix 
for the scaled Lorenz system (2). If we use M in the formula in [5, Thm. 3.2] for the upper bound on the 
restoration entropy, we obtain the value 20.6977 on K, i.e. a worse estimate than by using the numerically 
computed metric Pc. However, when we subsequently compute a Lyapunov-like function using Optimization 
Problem 4.2, we obtain the results in Table 2. As can be seen, the theoretical value for the restoration entropy 
is obtained with the matrix M and the corresponding Lyapunov-like function computed with Optimization 
Problem 4.2 in [2]. Note that these results are not a priori obvious, because the Lyapunov-like function 
computed by the optimization problem is a continuous, piecewise affine function, but the Lyapunov-like 
function computed analytically in [5] is not.

Remark 2.1. Let us show that for the scaled Lorenz system (2) the matrix M = S�PS corresponds to the 
optimal matrix P from (4) for the unscaled Lorenz system (1). Recall that S := diag(sx, sy, sz) is the scaling 
matrix and for v : Rn → R, the gradient ∇v is a row vector.
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In the proof of [5, Thm. 4.3], one first factorizes P = B�B (B is denoted S in [5]) and observes that for 
the Jacobian matrix J := J(x, y, z) of g in (1) and λ ∈ C we have

PJ + J�P − λP = B� [
BJB−1 + (BJB−1)� − λI

]
B. (5)

Note that the matrix function J is also denoted by A in the proof of [5, Thm. 4.3].
The Lorenz system (1) is given by ẋ = g(x) and the scaled Lorenz system (2) by ẋ = f(x) with 

f(x) = S−1g(Sx), see above. Hence, the Jacobian matrix of f is A := Df = S−1JS.
Since for λ ∈ C we have

MA + A�M − λM = S�B�BS · S−1JS + S�J�(S−1)� · S�B�BS − λS�B�BS

= S�B� [
BJB−1 + (B�)−1J�B� − λI

]
BS

= (BS)�
[
BJB−1 + (BJB−1)� − λI

]
BS,

similarly to (5), we have

det(MA + A�M − λM) = 0, if and only if det(PJ + J�P − λP ) = 0. (6)

Hence, the proof of [5, Thm. 4.3] for the unscaled Lorenz system (1) can be used, with modest modifications, 
for the scaled Lorenz system (2) as well. In detail, the function v(x) in [5] with orbital derivative v̇(x) =
[∇v(x)]g(x) along solution trajectories of (1), is replaced by ṽ(x) := v(Sx) with orbital derivative

˙̃v(x) = [∇v(Sx)]SS−1g(Sx) = [∇v(Sx)]g(Sx) = v̇(Sx)

along the solution trajectories of (2). It then follows from v̇(x) + w(x) ≤ 0, i.e. (19) in [5], that with 
w̃(x) := w(Sx) we have ˙̃v(x) + w̃(x) ≤ 0 and the propositions of [5, Thm. 4.3] for the unscaled Lorenz 
system (1) apply to the scaled Lorenz system (2) as well.
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