
Simplicial complex with approximate rotational symmetry:1

A general class of simplicial complexes2

Sigurdur Albertsson ∗

Sigurdur Hafstein†

The Science Institute

University of Iceland

Dunhagi 5

107 Reykjavik

Iceland

Peter Giesl‡

Department of Mathematics

University of Sussex

Falmer BN1 9QH

United Kingdom

Skuli Gudmundsson�

Svensk Exportkredit

Klarabergsviadukten 61-63

11164 Stockholm

Sweden

3

June 6, 20194

Abstract5

We study the transformation of the vertices of a certain simple simplicial complex in n-dimensional6

Euclidian space and prove that the resulting set of simplices is a simplicial complex with an approximate7

rotational symmetry. Such simplicial complexes have applications in computing Lyapunov function for8

nonlinear dynamical systems using linear optimization and are also of interest for other applications.9

1 Introduction10

Triangulations of Rn and its subsets have numerous applications in image processing [27, 1], mesh construc-11

tion in numerical analysis [4, 6, 26], and other �elds. The construction of a triangulation, often referred12

to as mesh generation or grid generation, is thus an important topic in various di�erent disciplines. In a13

shape-regular triangulation the triangles, or simplices in dimensions n ≥ 3, have to intersect in a certain way.14

Such sets of simplices are frequently referred to as simplicial complexes. The so-called standard triangula-15

tion is a simplicial complex with vertices in Zn and has a number of nice properties, cf. e.g. [10, Def. 4.8].16

However, when re�ning the mesh and adjusting it to a certain geometry, one would like to obtain other,17

more appropriate triangulations in a constructive and simple way.18

One speci�c application of simplicial complexes is in the computation of continuous and piecewise19

a�ne (CPA) Lyapunov functions for nonlinear dynamical systems given by an autonomous ordinary dif-20

ferential equation [20, 19, 23, 14, 9, 22] or an iteration [8, 21, 16]. Furthermore, they are used for CPA21

contraction metrics [7, 18]. On a given triangulation of a compact subset of Rn, the function is determined22

by its values at the vertices and is interpolated a�nely on the simplices. For a nonlinear system with a23

hyperbolic, asymptotically stable equilibrium, one can easily construct a quadratic Lyapunov function for24

the linearization around the equilibrium, and this function is locally also a Lyapunov function for the non-25

linear system. To extend the domain of this Lyapunov function in the framework of CPA functions, one is26

particularly interested in triangulations that can mimic the level sets of the quadratic Lyapunov functions,27

namely hyper-ellipsoids, with a reasonably small number of simplices. The main idea for such a construction28

is to generate a general class of triangulations by starting from the standard triangulation, a triangula-29

tion that is very simple to generate and such that its vertices are Zn. Then we map the vertices of the30

standard triangulation by the map F : Rn → Rn, where F(x) = ‖x‖∞
‖x‖2 x, and consider the set of simplices31
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co{F(x0),F(x1), . . . ,F(xn)}, where co{x0,x1, . . . ,xn} runs over the simplices of the standard triangulation.1

Note that F maps hyper-cubes to hyper-spheres. After that, one can map the vertices with a radial function,2

namely Φ(x) = ρ(‖x‖∞)·F(x) with a suitable function ρ, to reduce the size of the simplices and subsequently,3

using a nondegenerate symmetric matrix A = AT, map the hyper-spheres to hyper-ellipsoids Φ(x) 7→ AΦ(x),4

see Figures 1 and 2 below. The nontrivial question is: when mapping the vertices in this way, is the resulting5

set of simplices a triangulation? A positive answer to this question is the main result of this paper.6

The strategy to this aim is to characterize a shape-regular triangulation/simplicial complex by the7

property that each point is an inner point of a unique subsimplex of dimension 0 ≤ k ≤ n. An inner point8

is a point such that all coe�cients in the convex combination of the vertices are nonzero. Then we de�ne9

a continuous transformation, parameterized by t ∈ [0, 1], from the standard triangulation to the �nal one10

by moving the vertices continuously. We will prove that for each �xed t the resulting set of simplices is a11

triangulation. This result will be useful to construct a general class of triangulations in many applications.12

Note that although one can always use a Delaunay triangulation to triangulate a given set of points in13

general position in n-dimensions [2, 13, 5], a Delaunay triangulation is not necessary the optimal one for our14

[12] or other applications. In particular, our triangulation allows for e�cient algorithms to locate simplices15

containing a given point [15, 17], which is of great advantage or even essential when using CPA functions.16

After introducing notations in Section 1.1, we prove our main result, Theorem 2.17, through a series17

of lemmas in Section 2 before we conclude in Section 3.18

1.1 Prerequisites and notation19

We utilize a bold-face font for vectors x ∈ Rn and denote its components either by xi or [x]i. A vector20

x ∈ Rn is considered to be a column vector, i.e. x ∈ Rn×1, and xT ∈ R1×n is its transpose. For a vector21

x ∈ Rn and p ≥ 1 we de�ne the norm ‖x‖p = (
∑n
i=1 |xi|p)

1/p
. We also de�ne ‖x‖∞ = maxi∈{1:n} |xi|, where22

{1 : n} := {1, 2, . . . , n}.23

For a matrix A ∈ Rm×n we write AT for its transpose. A diagonal matrix with entries a =24

(a1, a2, . . . , an)T on its diagonal is denoted by diag(a). We denote by e1, e2, . . . , en the standard orthonormal25

basis of Rn and use the Kronecker delta symbol de�ned by δij = eT
i ej . Also, we denote by In the identity26

matrix in Rn×n.27

The convex combination of vectors x0,x1, . . . ,xm ∈ Rn is denoted by

co{x0,x1, . . . ,xm} :=

{
y ∈ Rn

∣∣ y =

m∑
i=0

λixi, 0 ≤ λi ≤ 1,

m∑
i=0

λi = 1

}
.

The vectors x0,x1, . . . ,xm ∈ Rn are said to be a�nely independent if

m∑
i=0

λixi = 0 and

m∑
i=0

λi = 0 implies λ0 = λ1 = · · · = λm = 0.

Equivalent characterizations for a�ne independence are that each x ∈ co{x0,x1, . . . ,xm} has a unique28

representation as a convex combination of the xi, that for any (and then all) j ∈ {0 : m} the vectors xi−xj ,29

i ∈ {0 : m} \ {j}, are linearly independent, or that the vectors xa0 ,x
a
1 , . . . ,x

a
m ∈ Rn+1, xai := [xT

i 1]T for30

i ∈ {0 : m}, are linearly independent. We call the set S := co{x0,x1, . . . ,xm} a simplex. If the vectors31

x0,x1, . . . ,xm ∈ Rn are a�nely independent, then we call the simplex S proper and we refer to the vectors32

in the set veS := {x0,x1, . . . ,xm} as its vertices. Otherwise we say that the simplex S is degenerate. If we33

want to emphasize that a proper simplex S has positive m-dimensional volume, or equivalently that it has34

m+ 1 vertices, we call it a proper m-simplex. Note that in the literature the term simplex is often reserved35

for proper simplices.36

A face of a proper m−simplex S = co{x0,x1, . . . ,xm} is the convex hull coA of a nonempty proper37

subset A of its vertices, i.e. ∅ 6= A ( veS. Clearly, a face F of S is a subset of the boundary of S, i.e. F ⊂ ∂S,38

and F is a proper k-simplex, 0 ≤ k < m, when veF has k + 1 elements. We use the term subsimplex of S,39

for a subset F ⊂ S that is either a face of S or F = S.40

We denote by Sym(n) the set of permutations of the set {1 : n} and by |A| the cardinality of a set41

A. Finally, for a,b ∈ Rn, a 6= b, we de�ne the line segment [a,b], the open line segment (a,b) and the ray42

[a,b〉 as the point set {x ∈ Rn |x = a + t(b− a)} with t ∈ [0, 1], t ∈ (0, 1) and t ∈ [0,∞) respectively.43
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2 Triangulations1

We start with a few de�nition before we state and prove a useful characterization of simplicial complexes in2

Lemma 2.5. Note that a triangulation is a set of n-simplices, while a simplicial complex is a set of k-simplices3

with 0 ≤ k ≤ n. Although we are essentially interested in triangulations, it is often more convenient to work4

with the associated simplicial complexes.5

De�nition 2.1 (Triangulation). A triangulation T is a set of proper n-simplices {Sν}ν∈I = {coCν}ν∈I ,6

with vertices Cν := veSν = {xν0 ,xν1 , . . . ,xνn} ⊂ Rn, where the pairwise intersection of simplices in T satis�es7

Sµ ∩ Sν = coCµ ∩ coCν = co(Cµ ∩ Cν). (2.1)

Note that the condition (2.1) means two di�erent simplices in T intersect in a common face or not at all.8

The domain and the complete set of vertices of a triangulation T are denoted by

DT :=
⋃
ν∈I

Sν and VT :=
⋃
ν∈I

Cν

respectively. We also write DS for the union of any set S of simplices. We say that T is a triangulation of9

Rn if DT = Rn.10

While we de�ned a triangulation to be a set of proper n-simplices that intersect in a certain way, a11

simplicial complex, see below, is a set of proper k-simplices, 0 ≤ k ≤ n.12

De�nition 2.2. A simplicial complex K is a set of proper k-simplices, 0 ≤ k ≤ n, having the property that:13

• If S is a simplex from K then each subsimplex of S is also in K.14

• If S1 and S2 are two simplices from K which intersect, then their intersection is a subsimplex of both15

of them.16

Thus, for a triangulation T = {Sν}ν∈I and with Cν := veSν for ν ∈ I, it follows easily from Lemma
2.5 below that we have the associated simplicial complex

KT := {coC | ∅ 6= C ⊂ Cν for ν ∈ I}.

On the other hand, we can start with a simplicial complex and de�ne a triangulation by throwing out all17

k-simplices with k < n. Note that in the framework of convex polytopes, a simplicial complex just the set of18

all face lattices of all included n-simplices, such that the nonempty intersection of two faces in the set is also19

a face in set [11]. In the following de�nition the sets Cν will later be the set of vertices of proper n-simplices20

that are mapped in a certain way. The question is then if the resulting set of simplices is a triangulation.21

De�nition 2.3. Let C := {Cν ⊂ Rn | ν ∈ I}, where each |Cν | = n+ 1. We de�ne the complex

C[C] := {coC | ∅ 6= C ⊂ Cν for ν ∈ I}.

Note that some or all of the simplices coC in the set C[C] might be degenerate. If, however, the22

simplices coCν are proper n-simplices, then all the elements in C[C] are proper simplices because subsets of23

a set of a�nely independent vectors are also sets of a�nely independent vectors. Further, the set of simplices24

{coCν}ν∈I is a triangulation, if and only if the complex C[C] is a simplicial complex.25

The following de�nition is needed for the characterization of a triangulation in the next lemma.26

De�nition 2.4. Let S = co{x0, x1, . . . , xk} be a proper k-simplex in Rn, 0 ≤ k ≤ n. We say that a point
p ∈ Rn is an inner point of S if the representation of p as the convex sum of the vertices of S has strictly
positive coe�cients, i.e. p has the representation

p =

k∑
i=0

λixi with

k∑
i=0

λi = 1 and λi > 0 for i = 0 : k.
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Note that for any point p ∈ S, where S = co{x0, x1, . . . , xk} is a proper k-simplex in Rn, p is an1

inner point of exactly one subsimplex S∗ of S. Namely2

S∗ = co{xij} where the λij 6= 0 in

k∑
i=0

λixi = p. (2.2)

In particular, a singleton simplex {x} = co{x} has exactly one inner point.3

Lemma 2.5. A set S = {Sν}ν∈I of proper n-simplices in Rn is a triangulation, if and only if for every4

p ∈ DS there exists a unique k-simplex S, 0 ≤ k ≤ n, with S ∈ C[{veSν}ν∈I ] such that p is an inner point5

of S.6

Proof: Assume S is a triangulation and let p ∈ DS be arbitrary. Clearly there exists an S ∈ S such that
p ∈ S and then a unique subsimplex T of S such that p is an inner point of T , corresponding to the non-zero
coe�cients λ. We must show that p ∈ S∗ ∈ S implies that T is the unique subsimplex of S∗ such that p is
an inner point of T . With C = veS and C∗ = veS∗ and because S is a triangulation, we have that

p ∈ S ∩ S∗ = coC ∩ coC∗ = co(C ∩ C∗)

and as in (2.2) we get the existence of a unique subsimplex of the simplex co(C ∩ C∗) with p as an inner7

point. Evidently this subsimplex must be T , which concludes the if part of the proof.8

Now suppose that for any point p ∈ DS there exists a unique k-simplex S, 0 ≤ k ≤ n with S ∈9

C[{veSν}ν∈I ] which has p as an inner point. We show that S is necessarily a triangulation. Fix arbitrary10

S, S∗ ∈ S such that S ∩ S∗ 6= ∅ and set C = veS and C∗ = veS∗. Since clearly co (C ∩ C∗) ⊂ coC ∩ coC∗,11

it su�ces to show that coC ∩ coC∗ ⊂ co(C ∩ C∗) to prove coC ∩ coC∗ = co(C ∩ C∗). To show this, let12

p ∈ coC ∩ coC∗ be arbitrary. Then p is an inner point of subsimplices T and T ∗ of S and S∗ respectively.13

From the hypothesis, we have T = T ∗ and hence p ∈ T ⊂ co (C ∩ C∗), which �nishes the proof. �14

The basis for our construction of a general class of triangulations is the standard triangulation, see15

the following de�nition.16

De�nition 2.6 (The standard triangulation of Rn). The standard triangulation is the triangulation17

Tstd = {Sν}ν∈I with indices ν = (z, σ,J) ∈ Zn≥0 × Sym(n) × {−1,+1}n =: I and vertices veSν = Cν =18

{xν0 ,xν1 , . . . ,xνn} given by:19

xνk = RJ

(
z +

k∑
l=1

eσ(l)

)
= RJz +RJ u

σ
k . (2.3)

Here, RJ = diag(J1, J2, . . . , Jn) ∈ Rn×n with Ji ∈ {−1,+1} for i ∈ {1 : n} and uσk =
∑k
l=1 eσ(l). We20

abbreviate the associated simplicial complex KTstd
by Kstd.21

Notice that for the standard triangulation Tstd we have VTstd
= Zn, i.e. the vertex-set is just the22

integer lattice of Rn, and DTstd
= Rn.23

Remark 2.7. We can also de�ne the permutation matrix Pσ =
(
eσ(1), eσ(2), . . . , eσ(n)

)
∈ Rn×n correspond-

ing to the permutation speci�ed by σ ∈ Sym(n) and then write:

xνk = RJz +RJu
σ
k = RJz +RJ Pσvk

where vk =
∑k
l=1 el ∈ Rn has the �rst k components equal to 1 and the remaining n− k equal to 0.24

The vectors uσk depend on both k and σ. However, for k = n it is clear that uσn = (1, 1, . . . , 1)T
25

for all σ ∈ Sym(n). In fact, with k �xed, the vector uσk takes on exactly
(
n
k

)
distinct values while σ runs26

over Sym(n). This matches exactly because
∑n
k=0

(
n
k

)
= 2n, the number of integer coordinates for the cube27

RJ(z + [0, 1]n) which are the vertices of the simplices in that cube. There is a more detailed account of the28

construction and the various properties of the standard triangulation in [24].29
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2.1 Mapping the standard triangulation1

We will now generate new triangulations by rearranging the vertices of Tstd but retaining the triangulation2

structure through the speci�cation of the vertex-sets {Cν}ν∈I . To be more precise, with Tstd = {coCν}ν∈I3

we will consider the set of simplices given by Tψ := {coψ(Cν)}ν∈I where the mapping ψ : Rn → Rn performs4

the rearrangement of the vertices. For a linear ψ : Rn → Rn, ψ(x) = Ax with a nonsingular matrix5

A ∈ Rn×n, the set Tψ is clearly a triangulation because A coCν = co(ACν) and ACν = {Ax0, Ax1, . . . , Axn}6

is a set of a�nely independent vectors because the vectors Cν = {x0,x1, . . . ,xn} are a�nely independent.7

For nonlinear ψ in general coψ(Cν) 6= ψ(coCν) and then the interesting question arises: when is the set of8

simplices Tψ = {coψ(Cν)}ν∈I in fact a triangulation?9

We will study a general class of transformations Φ in the next de�nition. The key element is the10

map F mapping hyper-cubes to hyper-spheres, and then Φ is constructed by multiplication with a rescaling11

function ρ.12

De�nition 2.8. Consider the mapping

f : Rn → R, f(0) = 1 and f(x) =
‖x‖∞
‖x‖2

for x 6= 0,

and the following transformations :13

F,Φ : Rn → Rn, F(x) = f(x)x and Φ(x) = ρ(‖x‖∞) · F(x), (2.4)

with ρ : R≥0 → R≥0 continuous and non-decreasing with ρ(x) > 0 if x > 0. We refer to ρ as a rescaling-
function. With Tstd = {coCν}ν∈I and Cν = {xν0 ,xν1 , . . . ,xνn} as before, de�ne the following set of simplices :

TΦ = {co Φ(Cν)}ν∈I = {co{Φ(xν0),Φ(xν1), . . . ,Φ(xνn)}}ν∈I .

If ∅ 6= A ⊂ Cν we refer to co Φ(A) as the (sub)simplex in TΦ corresponding to the (sub)simplex coA in Tstd.14

Remark 2.9. Note that F and Φ are radial transformations, i.e. Φ(x) = c(x)x where c(x) = ρ(‖x‖∞) ·15

‖x‖∞/‖x‖2 ∈ R for x 6= 0. F maps level sets of ‖·‖∞ (hyper-cubes) to ‖·‖2 level sets (hyper-spheres). Because16

of ‖Φ(x)‖2 = ρ(‖x‖∞)‖x‖∞ the e�ect of the transformation Φ is to map the n-cube: {x ∈ Rn
∣∣ ‖x‖∞ = M}17

to the n-sphere: {x ∈ Rn
∣∣ ‖x‖2 = ρ(M)M}. Hence, if Φ acts on the set of vertices of the standard18

triangulation VTstd
, then VTΦ

is a vertex distribution which is approximately rotationally symmetric and is19

radially scaled by ρ, cf. Figure 1.20

In the reminder of this paper we will prove that TΦ is a triangulation, a fact that seems quite evident,21

but is surprisingly di�cult to prove. We achieve this through a series of lemmas, before we come to the main22

theorem of this paper, Theorem 2.17, and its corollary.23

For the proof we create a continuously parameterized set of transformations which starts from the24

identity mapping IdRn and ends with Φ. This parameterized set of transformations corresponds to the25

intuitive notion of rearranging the vertices in a continuous or gradual fashion. For some x ∈ Rn consider the26

line segment between x and Φ(x). Because Φ is a radial transformation, this line lies on the straight line27

from 0 to x, and our set of transformed vertices will be on that straight line, too. Let us be more precise:28

De�nition 2.10. For each t ∈ [0, 1] and for any rescaling function ρ we de�ne hρt : Rn → R>0 and29

Hρ
t : Rn → Rn as follows : hρt (0) = 1 and for x 6= 0 we set30

hρt (x) :=
ρ(‖x‖∞)‖x‖∞

t‖x‖2 + (1− t)ρ(‖x‖∞)‖x‖∞
and Hρ

t (x) := hρt (x)x. (2.5)

We emphasize that Hρ
0 = IdRn and Hρ

1 = Φ with Φ from (2.4). For a �xed x ∈ Rn the path
[0, 1] → Rn; t 7→ Hρ

t (x) continuously parameterizes the straight radial line segment connecting x and Φ(x).
In terms of the functions f, hρt : Rn → R>0 this means hρt (0) = 1 for all t ∈ [0, 1] and for x 6= 0 we have:

hρ0(x) = 1

hρ1(x) = ρ(‖x‖∞) · f(x)

1

hρt (x)
=

t

ρ(‖x‖∞)

1

f(x)
+ 1− t. (2.6)

5



Figure 1: The images of the standard triangulation in R2 (upper row) and R3 (lower row) restricted to
[−5, 5]2 and [−5, 5]3 and the same restrictions under the mappings H1

0 = IdRn , H
1
1/2, and H1

1 = Φ from left

to right (ρ(x) = 1), see De�nition 2.10 for H1
t .

The following lemma shows that an n-simplex of the original triangulation is mapped to a proper1

n-simplex for each t.2

Lemma 2.11. For an arbitrary n-simplex S = coC = co{x0, x1, . . . ,xn} ∈ Tstd and for any choice of �xed
t ∈ [0, 1] and rescaling function ρ, the transformed vertices

Hρ
t (C) = {Hρ

t (x0),Hρ
t (x1), . . . ,Hρ

t (xn)}

are a�nely-independent. As a result, the convex combination

coHρ
t (C) = co{Hρ

t (x0),Hρ
t (x1), . . . ,Hρ

t (xn)}

is a proper n-simplex.3

Proof: Let S = coC = co{x0, x1, . . . ,xn} ∈ Tstd be an arbitrary simplex of the original triangulation
determined by some value of (z, σ,J) ∈ Zn≥0 × Sym(n) × {−1,+1}n. The form (2.3) of a general vertex
of S ∈ Tstd reveals that we can write xk = RJx

∗
k with x∗k ∈ Rn≥0 for all k ∈ {0 : n} and so with C∗ =

{x∗0, x∗1, . . . ,x∗n} ⊂ Nn0 we can apply the linearity of RJ and write:

S = coC = coRJC
∗ = RJ coC∗ = RJS

∗.

6



Figure 2: Left: The image of the restriction of the standard triangulation in R3 to [−5, 10]3 under the
mapping H1

1 = Φ. Right: The image of the restriction of the standard triangulation in R3 to [−5, 5]3 under
the mapping x 7→ AΦ(x) with the matrix A = ((1,−1, 0)T, (−1, 2, 1)T, (0, 1, 5)T).

Therefore we can focus our proof on S∗ = coC∗ ⊂ Rn≥0 rather than S without loss of generality. We drop
the asterisk and continue with (2.3) replaced by :

xk = z + uσk .

To prove that the vectors Hρ
t (x0), Hρ

t (x1), . . . ,Hρ
t (xn) are a�nely independent in Rn is equivalent to

proving that the vectors H0,H1, . . . ,Hn are linearly independent in Rn+1, where

Hk :=


↑

Hρ
t (xk)
↓
1

 =


↑

hρt (xk)xk
↓
1

 ∈ Rn+1.

We abbreviate ck = hρt (xk) and write c = (c0, c1, . . . , cn)T. We will show that the matrix1

XH =


↑ ↑ ↑ · · · ↑

c0x0 c1x1 c2x2 · · · cnxn
↓ ↓ ↓ · · · ↓
1 1 1 · · · 1

 ∈ R(n+1)×(n+1) (2.7)

is invertible, and thereby prove our lemma. Prior to the action of Hρ
t we have:

X =


↑ ↑ ↑ · · · ↑
x0 x1 x2 · · · xn
↓ ↓ ↓ · · · ↓
1 1 1 · · · 1

 ∈ R(n+1)×(n+1).

7



Because S is a proper n-simplex, it follows that the columns of X are linearly independent and therefore
X is invertible. In fact, we will see that detX = ±1. With C = diag(c) ∈ R(n+1)×(n+1) the product X C
di�ers from XH only in that it has cT in the last row rather than 1s. We write:

XH = X C +

n+1∑
k=1

(1− ck−1)ēn+1ē
T
k

where ēk denotes the k-th unit vector in Rn+1 (ek is reserved for the k-th unit vector of Rn). Recall that
the rank 1 product of unit vectors ēiē

T
j ∈ R(n+1)×(n+1) is an all-zero matrix with 1 in row i and column

j and hence the second term represents the correction in the last row of X C. Expressing XH as a rank 1
correction of X C allows us to use the following identity from [3], related to the Sherman-Morrison lemma
[25]: det(A + uvT) = (1 + vTA−1 u) det(A) for an invertible square matrix A ∈ R(n+1)×(n+1) and vectors
u,v ∈ Rn+1. Hence

detXH =

1 +

(
n+1∑
k=1

(1− ck−1)ēk

)T (
X C

)−1
ēn+1

det(XC)

=

(
1 +

n+1∑
k=1

(
1− ck−1

ck−1

)
ēT
k X

−1 ēn+1

)
det(XC)

=
(
1 + bTX−1 ēn+1

)
det(XC), (2.8)

where b =
(

1−c0
c0

, 1−c1
c1

, . . . , 1−cn
cn

)T

. We will now obtain an expression for X−1. Let us de�ne the following

(n+ 1)× (n+ 1) matrices:

Pσ =


↑ ↑ · · · ↑ 0

eσ(1) eσ(2) · · · eσ(n)

...
↓ ↓ · · · ↓ 0
0 0 · · · 0 1

 (2.9)

Pz =


0 · · · 0 1

In

0
...
0

 (2.10)

∆ =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 · · · 1 −1
0 0 · · · 0 1

 (2.11)

Notice that these matrices are Gauss-Jordan style manipulation matrices, which we will apply to X in a
particular way. First, we multiply X by ∆ from the right, which subtracts from each column the previous
column as follows:

X ·∆ =


↑ ↑ ↑ · · · ↑
x0 x1 x2 · · · xn
↓ ↓ ↓ · · · ↓
1 1 1 · · · 1

 ·


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 · · · 1 −1
0 0 · · · 0 1

 =


↑ ↑ ↑ · · · ↑
z eσ(1) eσ(2) · · · eσ(n)

↓ ↓ ↓ · · · ↓
1 0 0 · · · 0


using xk − xk−1 = eσ(k) in the last identity. Pσ and Pz are permutation matrices and by multiplying with
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Pz from the right, we put the �rst column last:

X ·∆ · Pz =


↑ ↑ ↑ · · · ↑
z eσ(1) eσ(2) · · · eσ(n)

↓ ↓ ↓ · · · ↓
1 0 0 · · · 0

 ·


0 · · · 0 1

In

0
...
0



=


↑ ↑ · · · ↑ ↑

eσ(1) eσ(2) · · · eσ(n) z
↓ ↓ · · · ↓ ↓
0 0 · · · 0 1


Finally, we multiply with PT

σ from the left, which is a row rearrangement corresponding to σ−1:

PT
σ ·X ·∆ · Pz =


← eσ(1) → 0
← eσ(2) → 0
...

...
...

...
← eσ(n) → 0
0 · · · 0 1



↑ ↑ · · · ↑ ↑

eσ(1) eσ(2) · · · eσ(n) z
↓ ↓ · · · ↓ ↓
0 0 · · · 0 1



=

 In
↑
zσ
↓

0 · · · 0 1

 =: I(zσ)

where zσ = (zσ(1), zσ(2), . . . , zσ(n))
T, i.e. zσ ∈ Rn is the vector z with rearranged components according to

the permutation σ. The last reduced matrix I(zσ) has a simple inverse, namely:

(
PT
σ ·X ·∆ · Pz

)−1

=
(
I(zσ)

)−1

= I(−zσ) :=

 In
↑
−zσ
↓

0 · · · 0 1


and therefore

X−1 = ∆ · Pz · I(−zσ) · PT
σ ,

from which it easy to see that detX = ±1. With the following simpli�cations:

bTX−1 ēn+1 = bT ∆Pz I(−zσ)PT
σ ēn+1

=
[
PT
z ∆T b

]T · [I(−zσ)PT
σ ēn+1

]

=


b1 − b0
b2 − b1

...
bn − bn−1

b0


T

·


↑
−zσ
↓
1


we can rewrite expression (2.8) as follows:

detXH =
(
1 + bTX−1 ēn+1

)
det(X C)

=

(
1 + b0 −

n∑
k=1

(bk − bk−1) zσ(k)

)
det(X C)

=

(
1

c0
−

n∑
k=1

(
1

ck
− 1

ck−1

)
zσ(k)

)
det(X C). (2.12)
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We have |det(XC)| = |detX| · | detC| = |detC| = detC =
∏n
k=0 ck > 01

At this juncture, let us make the following observations: With ‖z‖∞ =: M and xk = z+uσk it is clear
that there exists a k0 ∈ {1 : n} such that:

‖xk‖∞ = Mk =

{
M if k < k0

M + 1 if k ≥ k0.

In fact, consider
(
zσ(1), zσ(2), . . . , zσ(n)

)
and let the k0-th term be the �rst one which is M or equivalently,

de�ne k0 through zσ(k0) = M and 0 ≤ zσ(k) < M for all k < k0. With k0 determined in this way, we further
let:

ρ (‖xk‖∞) = ρk =

{
ρ(M) =: r if k < k0

ρ(M + 1) =: R if k ≥ k0.

Let us �rst consider the case z = 0. Then

|detXH| =
1

c0
|det(X C)| = det(C) > 0

Let us now consider the case z 6= 0, so M ∈ N. Using the above notation and expression (2.6), we can
write:

1

ck
= t
‖xk‖2
ρkMk

+ 1− t.

Since xk − xk−1 = eσ(k) we know that xk matches xk−1 in all components except for σ(k), where [xk]σ(k) =2

zσ(k) + 1 and [xk−1]σ(k) = zσ(k). We therefore have3

‖xk‖22 − ‖xk−1‖22 =

n∑
i=1

([xk]i)
2 −

n∑
i=1

([xk−1]i)
2 = (zσ(k) + 1)2 − (zσ(k))

2 = 2 zσ(k) + 1. (2.13)

This means that for k 6= k0 we have4

1

ck
− 1

ck−1
=

t

ρkMk
(‖xk‖2 − ‖xk−1‖2) =

t

ρkMk

2zσ(k) + 1

‖xk‖2 + ‖xk−1‖2
(2.14)

For k = k0 however, we have:

1

ck0

− 1

ck0−1
= t

(
‖xk0
‖2

R(M + 1)
− ‖xk0−1‖2

rM

)
= t

(
‖xk0‖2

R(M + 1)
− ‖xk0−1‖2

rM

)
− t ‖xk0−1‖2

R(M + 1)
+ t
‖xk0−1‖2
R(M + 1)

=
t

ρk0
Mk0

(‖xk0
‖2 − ‖xk0−1‖2)− t‖xk0−1‖2

(
1

rM
− 1

R(M + 1)

)
=

t

ρk0Mk0

2zσ(k0) + 1

‖xk0‖2 + ‖xk0−1‖2
− t‖xk0−1‖2

(
1

rM
− 1

R(M + 1)

)
by (2.13). Consider the sum in expression (2.12): since 1

rM −
1

R(M+1) > 0 we have

n∑
k=1

(
1

ck
− 1

ck−1

)
zσ(k)

=

n∑
k=1

t

ρkMk

2zσ(k) + 1

‖xk‖2 + ‖xk−1‖2
zσ(k) − t‖xk0−1‖2

(
1

rM
− 1

R(M + 1)

)
zσ(k0)

<
t

rM‖z‖2

n∑
k=1

(
(zσ(k))

2 +
1

2

∣∣zσ(k)

∣∣)− t‖z‖2
rM

(
1− rM

R(M + 1)

)
M

≤ t‖z‖2
rM

+
t‖z‖1

2rM‖z‖2
− t‖z‖2
r(M + 1)

(
1 +

R− r
R

M

)
.
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Further,

|detXH| =

∣∣∣∣∣ 1

c0
−

n∑
k=1

(
1

ck
− 1

ck−1

)
zσ(k)

∣∣∣∣∣ |det(X C)|

=

∣∣∣∣∣ 1

c0
−

n∑
k=1

(
1

ck
− 1

ck−1

)
zσ(k)

∣∣∣∣∣ det(C).

Let us consider the �rst term:

1

c0
−

n∑
k=1

(
1

ck
− 1

ck−1

)
zσ(k) >

t‖z‖2
rM

+ (1− t)− t‖z‖2
rM

− t‖z‖1
2rM‖z‖2

+
t‖z‖2

r(M + 1)

(
1 +

R− r
R

M

)
≥ 1− t− t‖z‖1

2rM‖z‖2
+

t‖z‖2
r(M + 1)

≥ t

r

(
‖z‖2
M + 1

− ‖z‖1
2M‖z‖2

)
≥ 0

because

‖z‖1 ≤
2M

M + 1
‖z‖22, i.e.

‖z‖2
M + 1

− ‖z‖1
2M‖z‖2

≥ 0,

holds true for any z ∈ Nn0 with ‖z‖∞ = M ∈ N as 2M/(M+1) ≥ 1 and ‖z‖1 =
∑n
i=1 |zi| ≤

∑n
i=1 |zi|2 = ‖z‖22.1

Hence, |detXH| > 0, see (2.12), which concludes our proof. �2

After having established that the simplices in THρt = {co(Hρ
t (veSν)})Sν∈Tstd

are proper for all t ∈ [0, 1],3

in particular TΦ = THρ1 , we now proceed to prove that they intersect in the correct way for TΦ to be a4

triangulation. We start with a few lemmas that simplify the proof of the main theorem.5

Lemma 2.12. Let a,p1,p2, . . . ,pk,q1,q2, . . . ,qk ∈ Rn \ {0} and assume that qi ∈ [0,pi〉 for i = 1 : k. Set6

P = {p1,p2, . . . ,pk} and Q = {q1,q2, . . . ,qk}. Then7

[0,a〉 ∩ coP = ∅, if and only if [0,a〉 ∩ coQ = ∅. (2.15)

If the vectors in P and the vectors in Q are a�nely independent, then additionally8

|[0,a〉 ∩ coP | = 1, if and only if |[0,a〉 ∩ coQ| = 1. (2.16)

In this case, denoting [0,a〉 ∩ coP =: {b} and [0,a〉 ∩ coQ =: {c}, b is an inner point of coP , if and only9

if c is an inner point of coQ.10

Proof: First note that there exist constants si > 0 such that qi = sipi for i = 1 : k. To prove claim (2.15)11

assume that c ∈ [0,a〉 ∩ coQ. Then we can write12

c =

k∑
i=1

λiqi, λi ≥ 0,

k∑
i=1

λi = 1. (2.17)

Set

c :=

k∑
i=1

λisi > 0 and µi :=
λisi
c

for i = 1 : k.

Then13

b := c−1c =

k∑
i=1

λi
c
qi =

k∑
i=1

µipi, µi ≥ 0, and

k∑
i=1

µi =
1

c

k∑
i=1

λisi = 1. (2.18)

Thus, for every representation of c ∈ coQ as in (2.17) there is a corresponding b = c−1c ∈ coP as in (2.18).14

As b ∈ [0, c〉 = [0,a〉 it follows that [0,a〉 and coP intersect. The �only if� part of claim (2.15) follows by15

symmetry.16
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For proving claim (2.16) assume that the vectors in P are a�nely independent and suppose c, c∗ ∈
[0,a〉 ∩ coQ, c 6= c∗. We can write

c =

k∑
i=1

λiqi, c∗ =

k∑
i=1

λ∗iqi, λi, λ
∗
i ≥ 0,

k∑
i=1

λi =

k∑
i=1

λ∗i = 1.

Set

c :=

k∑
i=1

λisi > 0, c∗ :=

k∑
i=1

λ∗i si > 0, and µi :=
λisi
c

and µ∗i :=
λ∗i si
c∗

for i = 1 : k,

and consider the vectors b,b∗ ∈ coP :

b := c−1c =

k∑
i=1

µipi and b∗ := (c∗)−1c∗ =

k∑
i=1

µ∗ipi.

We show that b 6= b∗. Assume for contradiction that b = b∗. Then

b =

k∑
i=1

µipi =

k∑
i=1

µ∗ipi = b∗

and because the vectors in P are a�nely independent we have

µi =
λisi
c

=
λ∗i si
c∗

= µ∗i , i.e.
λi
c

=
λ∗i
c∗
, for i = 1 : k.

Because c−1 =
∑k
i=1

λi
c =

∑k
i=1

λ∗i
c∗ = (c∗)−1 we have c = c∗ and from c−1c = b = b∗ = (c∗)−1c∗ we get1

c = c∗ contradictory to assumption. The claim (2.16) now follows by symmetry. The last statement follows2

from the proof above by observing that, since µi = λisi
c , we have λi > 0 for all i, if and only if µi > 0 for all3

i. �4

Remark 2.13. Consider P = {e1, e1 + e2, e2}, Q = {e1, (e1 + e2)/2, e2}, a = e1 + e2, and note that the5

vectors in P are a�nely independent and the vectors in Q are not. Now [0,a〉∩coP = {t(e1+e2) | t ∈ [1/2, 1]}6

but [0,a〉 ∩ coQ = {(e1 + e2)/2}. We thus need to assume that both the vectors in P and the vectors in Q7

are a�nely independent for claim (2.16).8

The following lemma is a simple consequence of the last lemma and its proof.9

Lemma 2.14. Let P = {p1,p2, . . . ,pk} ⊂ Rn \{0} be a set of a�nely independent vectors and a ∈ Rn \{0}
be such that [0,a〉∩ coP = {b}. Let qi(t) = si(t)pi for i = 1 : k, where for an interval J ⊂ R the si : J → R
are continuous functions and si(t) > 0 for all t ∈ J . Assume that Q(t) = {q1(t),q2(t), . . . ,qk(t)} is a set
of a�nely independent vectors for all t ∈ J . Then there is a continuous function c : J → R such that
c : J → Rn de�ned through

{c(t)} := [0,a〉 ∩ coQ(t)

can be written as c(t) = c(t)b for all t ∈ J .10

Proof: That c : J → Rn is a properly de�ned function follows by the fact shown in the proof of Lemma
2.12, that (2.17) and (2.18) de�ne a bijection between the elements of coP and coQ(t) for every t ∈ J .

Further, with b =
∑k
i=1 µipi we have as in (2.17) and (2.18) with

c(t) =

k∑
i=1

λi(t)qi(t),

k∑
i=1

λi(t) = 1, c(t) :=

k∑
i=1

λi(t)si(t) > 0 and µi :=
λi(t)si(t)

c(t)
,

that
k∑
i=1

µi
si(t)

=

k∑
i=1

λi(t)

c(t)
=

1

c(t)
, i.e. c(t) =

(
k∑
i=1

µi
si(t)

)−1

is continuous
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and c(t) = c(t)b since1

b =

k∑
i=1

µipi =
1

c(t)

k∑
i=1

λisi(t)pi =
1

c(t)

k∑
i=1

λiqi(t) =
c(t)

c(t)

�2

We prove two more lemmas before we state and prove the main theorem.3

Lemma 2.15. Let S = co{x0, x1, . . . , xk} be a proper k-simplex in Rn and [a,b〉 be a ray in Rn, a 6= b,4

such that a is not an inner point of S. Assume [a,b〉 ∩ S ⊃ {c,d}, c 6= d and c is an inner point of S.5

Then there is an open line segment (e, f) 3 c with e, f ∈ [a,b) such that all points q ∈ (e, f) are inner6

points of S.7

Furthermore, there are two di�erent subsimplices T and T ∗ of S, which [a,b〉 intersects in unique8

inner points of T and T ∗, respectively and veS = veT ∪ veT ∗.9

Proof: Note that the line parameterized by p(t) = ta+(1− t)b, t ∈ R, lies in the a�ne space {x ∈ Rn |x =∑k
i=0 λixi,

∑k
i=0 λi = 1}. Thus

p(t) =

k∑
i=0

λi(t)xi, where

k∑
i=0

λi(t) = 1 for all t ∈ R,

and it is easily seen that the λi : R → R are a�ne functions of t, i.e. λi(t) = ai + bit for some constants10

ai, bi ∈ R. Indeed, the line can also be parameterized by p(s) = sc + (1− s)d, s ∈ R, since {c,d} ⊂ [a,b〉,11

and c 6= d and c =
∑k
i=1 λixi and d =

∑k
i=1 µixi with

∑k
i=1 λi =

∑k
i=1 µi = 1, since c,d ∈ S. Hence,12

p(s) =
∑k
i=1(sλi + (1− s)µi)xi with

∑k
i=1(sλi + (1− s)µi) = 1.13

Let tc ∈ R be such that p(tc) = c. Since c is an inner point of S we have λl(tc) > 0 for l ∈ {0 : k}
and, since S is compact and [a,b〉 is unbounded and a is not an inner point of S, there are te < tc < tf and
indices i, j ∈ {0 : k} such that

λl(t) > 0 for all l ∈ {0 : k} and t ∈ (te, tf ), λi(te) = 0 and λj(tf ) = 0.

Clearly i 6= j and e := p(te) and f := p(tf ) are on the ray [a,b〉, noting again that a is not an inner point14

of S. This shows that all points on (e, f) are inner points of S.15

Now denote by T and T ∗ the sub-simplices of S having e and f as inner points, respectively. In16

particular, xi /∈ veT and xj /∈ veT ∗.17

We �nish the proof by showing that T ∩ [a,b〉 = {e}, T ∗ ∩ [a,b〉 = {f}, and veS = veT ∪ veT ∗.18

Note that λi(t) < 0 for t < te and λi(t) > 0 for t > te and therefore p(t) /∈ T for t 6= te as xi /∈ veT ,19

i.e. T ∩ [a,b〉 = {e}. Similarly T ∗ ∩ [a,b〉 = {f}. To show that veS = veT ∪ veT ∗, let us assume in20

contradiction to the statement that xl ∈ veS and xl 6∈ veT ∪ veT ∗ for l ∈ {0 : k}. The latter statement21

implies that λl(te) = 0 and λl(tf ) = 0, and thus λl(t) = 0 for all t ∈ R since λl is an a�ne function of t.22

This is a contradiction to λl(tc) > 0, since c is an inner point of S, which shows veS = veT ∪ veT ∗. �23

Lemma 2.16. Assume the ray [0,p〉, p ∈ Rn, intersects two di�erent subsimplices T and T ∗ of a simplex24

S ∈ Kstd in unique inner points a = sp ∈ T and b = s∗p ∈ T ∗, s < s∗. Then for every t ∈ [0, 1] the25

ray intersects the subsimplices coHρ
t (veT ) and coHρ

t (veT ∗) of St := coHρ
t (veS) in unique inner points26

at = stp and bt = s∗tp, respectively, where st < s∗t .27

Proof: By Lemma 2.12 the ray [0,p〉 intersects the simplices coHρ
t (veT ) and coHρ

t (veT ∗) in unique points28

for every t ∈ [0, 1]. Assume for a contradiction that there exists a t ∈ [0, 1] such that st ≥ s∗t . By Lemma29

2.14 the functions t 7→ st and t 7→ s∗t are continuous and thus there exists an r ∈ [0, 1] such that sr = s∗r . It30

follows that Sr is not a proper simplex, because ar = srp = s∗rp = br is an inner point of both coHρ
r(veT )31

and coHρ
r(veT ∗) and thus can be written in two di�erent ways as a convex combination of the vectors in32

Hρ
r(veS). This is a contradiction to Lemma 2.11 and we conclude st < s∗t for all t ∈ [0, 1]. �33
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Theorem 2.17. For every t ∈ [0, 1] the set of simplices St := {co(Hρ
t (veSν))}Sν∈Tstd

is a triangulation of1

Rn.2

Proof: Let p ∈ Rn \ {0} be arbitrary but �xed throughout the proof. Consider the ray [0,p〉, namely {sp}3

with s ≥ 0. The ray intersects in�nitely many proper n-simplices of the standard triangulation. For each4

point sp, s ≥ 0, there exists a unique k-simplex Ss ∈ Kstd, k ∈ {0 : n} such that sp is an inner point of Ss.5

For di�erent s, these simplices Ss may or may not be equal. We are interested in boundaries of intervals6

(si, si+1) such that the simplices are equal for all s ∈ (si, si+1)7

In particular, we can de�ne numbers 0 = s0 < s1 < s2 < . . . with si → ∞ as i → ∞ such that8

Ss = St =: Si,i+1 for all s, t ∈ (si, si+1) and the interval (si, si+1) is maximal with this property. Moreover,9

we de�ne Si := Ssi ∈ Kstd. We have that {sip} is an inner point of Si and {sip} = Si ∩ [0,p〉 for10

i = 0, 1, 2, . . ., since if Si ∩ [0,p〉 consisted of the inner point c = sip and at least one further point d 6= c,11

then Lemma 2.15 shows that there is an interval (t1, t2) 3 si such that tp are inner points of Si for all12

t ∈ (t1, t2) in contradiction to the de�nition of Si.13

For si < s < si+1 we have {sp} 6= S ∩ [0,p〉 for any S ∈ Kstd; we have, however {sp} ( Si,i+1.14

Lemma 2.15 shows the existence of two di�erent sub-simplices T, T ∗ of Si,i+1 that the ray [0,p〉 intersects15

in unique inner points. Further, veSi,i+1 = veT ∪ veT ∗. Clearly we can assume Si = T and Si+1 = T ∗.16

Now �x a t ∈ [0, 1] and de�ne in a similar way, using Lemma 2.12 and 2.11, the numbers 0 = st0 <17

st1 < st2 < . . . and Sti ∈ C[St], such that {stip} = Sti ∩ [0,p〉 for i = 0, 1, 2, . . ., and if sti < st < sti+1 then18

{stp} 6= St ∩ [0,p〉 for any St ∈ C[St]. Moreover, stip are inner points of Sti . By Lemma 2.16 we have that19

veSti = veHρ
t (Si) for i = 0, 1, 2, . . .. De�ne Sti,i+1 := co(veSti ∪ veSti+1) = co(Hρ

t (veSi) ∪Hρ
t (veSi)) and20

note that we have [sti, s
t
i+1]p ⊂ Sti,i+1 because stip, s

t
i+1p ∈ Sti,i+1. Further and with identical arguments, if21

for some st > 0 the point stp is an inner point of an St∗ ∈ C[St] and {stp} 6= St∗ ∩ [0,p〉, then necessarily22

with i such that sti < st < sti+1 we have St∗ = Sti,i+1. If st = 0 then St = {0} is the unique simplex in C[St],23

of which 0p = 0 is an inner point and if {stp} = St∗ ∩ [0,p〉 then st = sti for some i = 1, 2, . . . and St∗ = Sti24

by Lemma 2.12. Since p ∈ Rn \ {0} was arbitrary and St is a set of proper n-simplices by Lemma 2.11, the25

fact that stp is the inner point of a unique St ∈ C[St] concludes our proof of that St is a triangulation by26

Lemma 2.5.27

It remains to be shown that DSt = Rn. Choose a point p ∈ Rn. We will show that sti →∞ as i→∞,
from which the statement follows. Let M > 1 be arbitrary and let N ∈ N be such that sN‖p‖∞ > M + 1;
note that si → ∞ as i → ∞. We have sNp ∈ SN for a simplex SN = co{x0,x1, . . . ,xk} ∈ Kstd. Thus,
‖xi‖∞ = bM + 1c or ‖xi‖∞ = bM + 1c+ 1 for all i ∈ {0 : k}, in particular ‖x‖∞ ≥M > 1. It follows with
‖x‖2 ≤

√
n‖x‖∞ that

hρt (xi) =
ρ(‖xi‖∞)‖xi‖∞

t‖xi‖2 + (1− t)ρ(‖xi‖∞)‖xi‖∞
≥ ρ(‖xi‖∞)

t
√
n+ (1− t)ρ(‖xi‖∞)

≥ ρ(1)

t
√
n+ (1− t)ρ(1)

=: ρ∗ > 0,

and thus, since stN ∈ co(Hρ
t veSN ) and ρ(‖xi‖∞) ≥ ρ(1)

stN‖p‖∞ ≥ min
i∈{0:k}

hρt (xi)‖xi‖∞ ≥ ρ∗M,

which concludes our proof. �28

An obvious corollary is:29

Corollary 2.18. TΦ = {co(Φ(veSν))}Sν∈Tstd
is a triangulation of Rn.30

It is worth noting that a subset T ⊂ Tstd is a triangulation and so is the set T ∗ :=31

{co(Hρ
t (veSν))}Sν∈T . Further, DT is connected, if and only if DT ∗ is connected. This is easily seen from32

De�nition 2.1 and the proof of Theorem 2.17. However, the convexity of DT does not imply the convexity33

of DT ∗ , as can be seen in Figure 2 (left).34

3 Conclusions35

We presented a method to generate a set of simplices in Rn from a very simple simplicial complex (standard36

triangulation) and proved that the resulting set is also a simplicial complex. This new simplicial complex37

14



has an approximate rotational symmetry, cf. Figure 1, and has applications when computing continuous1

and piecewise a�ne Lyapunov functions and contraction metrics for nonlinear systems [14, 9, 8, 7]. In2

particular, it can be easily transformed to a simplicial complex that matches the level sets of quadratic3

Lyapunov functions, that is, hyper-ellipsoids, cf. Figure 2 (right), and allows for e�cient algorithms to4

locate simplices [15, 17].5

6
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