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Abstract— When studying the behaviour of dynamical sys-
tems, one particular goal is to find and isolate the periodic
solutions and the equilibria. They are a subset of the chain-
recurrent set of the dynamical system. In recent work, many im-
provements have been achieved in computing an approximation
of a complete Lyapunov function of a given dynamical system
and thus to identify the chain-recurrent set. A weak point in this
approach, however, has been an over-estimation of the chain-
recurrent set. In this work, we introduce a heuristic algorithm
that reduces the overestimation in a simple and efficient way.
Furthermore, a new and improved grid to evaluate the complete
Lyapunov function is introduced to avoid unevaluated regions
in the domain of the function.

I. INTRODUCTION
Let us assume that we have a dynamical system expressed

by a general autonomous ordinary differential equation
(ODE),

ẋ = f(x), (1)

where x ∈ Rn, n ∈ N.
In general terms we are interested in describing the quali-

tative behaviour of system (1) and specially to find attractors
and repellers.

There are many methods to analyze the general behaviour
of dynamical systems: from direct simulations of solutions
with many different initial conditions, to computation of
invariant manifolds which form the boundaries of attractors’
basins of attraction [17]. Another group of techniques include
set oriented methods [9] or the cell mapping approach [13].
All these methods require large computational effort.

Aleksandr Lyapunov proposed [18] in 1893 a new way
to studying the stability of an equilibrium point, or more
generally an attractor, in which the solution to the differential
equation is not required. For this, he introduced an auxiliary
scalar-valued function whose domain is a subset of the state-
space, and which is strictly decreasing along all solution
trajectories in a neighbourhood of an attractor, such as an
asymptotically stable equilibrium point or periodic orbit.
Nowadays, such a function is known as a strict Lyapunov
function in his honor. Furthermore, a Lyapunov function
attains its minimum on the attractor. As a consequence,
solutions that start close to the latter converge to it. This is the
classical definition of a strict Lyapunov function. However,
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this function is only defined in the neighbourhood of one
attractor. A natural extension is a function defined on the
whole state space, a complete Lyapunov function, which was
introduced in [7], [8], [14], [15].

A complete Lyapunov function characterizes the complete
qualitative behaviour of the dynamical system on the whole
phase space and not just in a neighbourhood of one par-
ticular attractor. It allows dividing the state-space into two
disjoint areas: The gradient-like flow, where the system flows
through, and the chain-recurrent set, where infinitesimal
perturbations can make the system recurrent. On these two
areas, the system behaves in fundamentally different ways.

The first mathematical existence proof was given by
Conley, who proved the existence of complete Lyapunov
functions [7] for a dynamical system defined on a compact
metric space. Hurley [15] extended these results to separable
metric spaces. For some very recent results see also [10], [6].

In this paper we use an algorithm to compute a complete
Lyapunov function which was introduced and developed in
[1], [4], [5], [12], [3] and which has proven to be computa-
tionally efficient. It is a modification of a method to compute
classical Lyapunov functions for one stable equilibrium using
Radial Basis Functions [11].

The general idea is to approximate a “solution” to the ill-
posed problem V ′(x) =−1, where V ′(x) =∇V (x) ·f(x) is the
derivative along solutions of the ODE, i.e. the orbital deriva-
tive. A function v is computed using Radial Basis Functions,
a mesh-free collocation technique, such that v′(x) = −1 is
fulfilled at all points x in a finite set of collocation points X .

The discretized problem of computing v is well-posed
and possesses a unique solution. However, the computed
function v cannot fulfill the PDE at all points of the chain-
recurrent set, such as an equilibrium or a periodic orbit.
This is the key component of our general algorithms to
locate the chain-recurrent sets; we use the area where v
fails to fulfill the PDE to determine the chain-recurrent set.
Furthermore, our method has the advantage of not being
overly computationally demanding.

II. ALGORITHM
We base our method to compute complete Lyapunov

functions on the algorithms described in [1], [2], [4], [5],
[12], [3]. In this paper, however, we extend the methodology
to reduce the overestimation of the chain-recurrent set.

Like in the methodology introduced in [4], we also nor-
malize the right-hand side of the ODE. This means that the
original dynamical system (1) gets substituted by

ẋ = f̂(x), where f̂(x) =
f(x)√

δ 2 +‖f(x)‖2
, (2)
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with a small parameter δ > 0 and where ‖ · ‖ denotes the
Euclidean norm. The reason for this is explained in detail in
[4]. In short, the main motivation is that the systems (1) and
(2) have the same trajectories, but the speed of the solutions
to (2) is nearly uniform. This was shown to deliver superior
results.

A. MESH-FREE COLLOCATION

Mesh-free collocation methods are a powerful methodol-
ogy for solving generalized interpolation problems. Radial
Basis Functions (RBF) [11] can serve as basis functions
for such methods. They are particular real-valued functions,
whose evaluation depends only on the distance from the
origin; Gaussians, multiquadrics and Wendland functions are
examples of such functions.

Mesh-free collocation enables us to use locally a high res-
olution of collocation points to solve PDE’s. Scattered points
can be added or removed to improve the approximation and
no triangulation of the phase space is needed. In our work
we use Wendland functions as RBF. These are compactly
supported functions [19], that have been intensively used
for computing Lyapunov functions. Furthermore, they are
positive definite functions that are polynomials on their
compact support and the corresponding Reproducing Kernel
Hilbert Space is norm-equivalent to a Sobolev space[11].
Note that in the context of RBF positive definite refers
to the matrix (ψ(‖xi−x j‖))i, j being positive definite for
X = {x1,x2, . . . ,xN}, where xi 6= x j if i 6= j.

The Wendland functions have the general form ψ(x) :=
ψ`,k(c‖x‖), where c> 0 and k∈N is a smoothness parameter.
The parameter l is fixed as `= b n

2c+k+1. The Reproducing
Kernel Hilbert Space corresponding to ψ`,k contains the
same functions as the Sobolev space W k+(n+1)/2

2 (Rn) and
the spaces are norm equivalent. The Wendland functions are
defined by the following recursion:
For ` ∈ N and k ∈ N0, we define

ψ`,0(r) = (1− r)`+,

ψ`,k+1(r) =
∫ 1

r tψ`,k(t)dt
(3)

for r ∈ R+
0 , where x+ = x for x≥ 0 and x+ = 0 for x < 0.

The construction of X can be done in different ways. We
build our collocation points X = {x1, . . . ,xN} ⊂ Rn, as a
subset of a hexagonal grid with fineness-parameter αHexa-basis ∈
R+ which is constructed according to the next equation:{

αHexa-basis

n

∑
k=1

ikωk : ik ∈ Z

}
, where (4)

ω1 = (2ε1,0,0, . . . ,0)
ω2 = (ε1,3ε2,0, . . . ,0)

...
...

ωn = (ε1,ε2,ε3, . . . ,(n+1)εn) and

εk =

√
1

2k(k+1)
, k ∈ N.

This grid has been shown to optimally balance the opposing
aims of a small fill distance to give good error estimates
and a large separation distance of collocation points to keep
the condition numbers of the collocation matrices as small
as possible. As a consequence of this choice, the condition
numbers of the collocation matrices do not become overly
large [16].

Since at all equilibrium points x we have f(x)= 0, we need
to remove all such points from the set of the collocation
points X , since otherwise the collocation matrix would be
singular.

The approximated v is then given by the function that
satisfies the PDE v′(x) =−1 at all collocation points and it
is norm minimal in the corresponding Reproducing Kernel
Hilbert space. Practically, we find v by solving a system of
N linear equations, where N is the number of collocation
points.

To determine the chain-recurrent set, we need to establish
at which collocation points a function V fulfilling V ′(x)=−1
is properly approximated by v. However, all collocation
points satisfy the PDE by construction. Therefore, we need a
special evaluation grid Yx j around each collocation point x j.
Such an evaluation grid can be constructed in many different
ways, but keep in mind that it is important to be able to
correlate each evaluation point to a particular collocation
point.

Let us review the different approaches for the evaluation
grid so far. In [1], we used points distributed inhomoge-
neously along two circumferences around each collocation
point. In particular, in R2, for a collocation point x j ∈ R2,
we used the following points Yx j :

x j± rξ α(cos(θ),−sin(θ))
x j± rξ α(sin(θ),cos(θ)) (5)

where ξ = 1 for the outer circumference and ξ = 1/2 for the
inner one, r > 0, is a parameter to scale the circumferences
and θ = 0,11.25,22.5,45,56.25,67.5,75 and 105 in units
of sexagesimal degrees. In paper [4], we used an improved
version of this grid, in which the points were distributed
homogeneously.

Yx j = {x j + rαHexa-basis(cos(θ),sin(θ))}
∪{x j +

r
2 αHexa-basis(cos(θ),sin(θ))}

where θ ∈ {2π/32,4π/32,6π/32, . . . ,2π}
(6)

as before r > 0 is a parameter and αHexa-basis is the parameter
used to build the hexagonal grid defined above.

The grid (6) can be generalized to higher dimension.
However, the growth of the number of evaluation points is
exponential. To avoid this we resorted to a different version
of the evaluation grid in [5], [3], where we used evaluation
points that were aligned along the flow of the ODE system.

Yx j (7)

=

{
x j±

r · k ·αHexa-basis · f̂(x j)

m
: k ∈ {1, . . . ,m}

}
Like before, αHexa-basis is the parameter used to build the
hexagonal grid defined above, r ∈ (0,1) is the ratio up to
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which the evaluation points will be placed and m∈N denotes
the number of points in the evaluation grid that will be placed
on both sides of the collocation points aligned to the flow.

These grids are shown in Fig. 1.

Fig. 1. Upper figure shows the circular grid points (blue) around each
collocation points (red) according to 6. Lower figure shows the directional
grid points (blue) around each collocation point according to 7.

It can be clearly seen in Fig. 1 that there are several
empty regions that will not be evaluated, i.e. in between
the circumferences or between the direction of the flow.
Even if we increase the amount of evaluation points in the
circumferences or in the direction of the flow, that does not
solve the problem, for we would be placing more points
in the same regions of the phase space. In order to reduce
the error in the computation of the approximation to the
complete Lyapunov function, it is necessary to increase the
amount of points in the collocation grid. That will increase,
consequently, the amount of evaluation points.

We propose a new evaluation grid that is built using a
reduced (in area) sized version of (4) around each collocation
point of (4). The way of building such grid is explained as
follows:
• First, we need to build a set of coordinates in the

canonical basis. The amount of pairs in such a set
is defined by the maximum value to be taken Z. For
example, if we chose imax = 5 for a two-dimensional
system, then the elements of such a grid would be:
Gc = {(−5,−5) ,(−5,−4) , . . . ,(0,0) , . . . ,(5,4) ,(5,5)}
and we have 120 points in the new canonical grid to be
transformed. The total amount of points in this grid for
an n-dimensional system is given by: (2imax + 1)n− 1,
where n is the dimension of the problem given in (1)
and imax ∈ Z+ is the maximum value used to construct
the grid.

• The Cartesian or canonical grid is now transformed into
(4) in which now the element (0,0) is substituted by
the coordinate of the collocation point around which
we will adjust this new evaluation grid. This will trans-
port Gc to the coordinate of the colocation point. The
transformation of the new grid to be adjusted around
the collocation point is:

{
αHexa-basis

2imax +1

n

∑
k=1

ikωk : ik ∈Gc

}
(8)

where 2ikmax+1 is the factor that allows us to guarantee
that all points are distributed homogeneously in the
whole phase-space regardless of to which collocation
point they belong. αHexa-basis, as before, is the parameter
used to build the collocation grid defined above.

Note that by equation (8) the evaluation points correspond-
ing to the collocations points are aligned with the direction
of the hexagonal grid.

The new evaluation grid will, however, grow exponentially.
It can be seen around one collocation point in Fig. 2.

Fig. 2. Homogenization of the evaluation grids (blue) around all collocation
points (red).

As before, we start by approximating the solution of
V ′(x) =−1 by v, using the collocation points X . We define
a tolerance parameter −1 < γ ≤ 0, and mark a collocation
point x j to be poorly approximated, i.e., an element of our
approximation of the chain-recurrent set (x j ∈ X0), if there
is at least one point y ∈ Yx j such that v(y) > γ . The well-
approximated points, i.e., for which the condition v′(y)≤ γ

holds for all y∈Yx j , belong to our approximation of the area
of the gradient-like flow (x j ∈ X−).

We compute the next approximation vi+1 by solving the
PDE

V ′(x j) = r̃ j :=

 1
|Yx j |

∑
y∈Yx j

v′i(y)


−

, (9)

where χ− = χ if χ ≤ 0 and χ− = 0 otherwise. Note that the
method only requires us to know the right-hand side of the
PDE at the collocation points. Summarizing, in subsequent
iterations, the new right-hand side value is obtained by
averaging the values around each collocation point and
bounding by 0.

B. Reducing the over-estimation of the chain-recurrent sets

To reduce the overestimation of the chain-recurrent set,
we firstly analyze the behaviour of our benchmark systems.
For example, we do notice [1], [4], [5], [12], [3] that the
size of the chain-recurrent set increases over iterations. So,
in practice, the only stopping criterion is defined by the
predefined maximum amount of iterations because the chain-
recurrent set does not converge since more points are added
to it at each cycle.
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However, it is also noticed in [1], [4], [5], [12], [3]
that a reasonable approximation to the chain-recurrent set is
obtained within few iterations. A large amount of iterations
smooth out the complete Lyapunov function though it also
increases and over-estimates the chain-recurrent set.

We base our algorithm on the assumption that the com-
ponents of the chain-recurrent set are subsets of (n −
1)−dimensional manifolds in an n-dimensional system. An
assumption that is appropriate for many interesting systems.
In our particular benchmark problems, we are exploring the
symmetry of the systems to assume that the chain-recurrent
set is formed by concentric circumferences.

The new algorithm works as follows using the collocation
points X = {x1,x2, . . . ,xN}:

1) Compute the approximate Lyapunov function vi(y) and
the orbital derivative v′i(y) for i= 0 by solving V ′(x j)=
−1 at the collocation points.

2) Approximate the chain-recurrent set by X0 by comput-
ing v′i(y) for all y ∈ Yx j for each collocation point x j,
see (5). If v′i(y)> γ for any y ∈Yx j , then x j ∈ X0, else
x j ∈ X−, where γ ≤ 0 is a predefined critical value.

3) Measure all radii (distances) from the origin to the
different failing points.

4) Classify all different radii and define the different
intervals of the failing points, separated by a large
interval of radii with no failing points.

5) For each interval [rmin,rmax] of failing points we only
keep the failing points in [r1,r2] in X0, defined below
and reject the other ones (move them to X−)..

r1 = rmin +0.52∗ (rmax− rmin)

r2 = rmax−0.52∗ (rmax− rmin)

In Fig. 4, we show an overview of these radii in an
example.

6) For the points close to the origin: If the distance of
the failing points to the origin is smaller than 3αHexa-basis,
then we consider those points to be an overestimation
of the equilibrium at the origin. All those points are
then removed; remember we have also removed the
origin from the collocation points. Then, the origin is
considered to be in the chain-recurrent set.

7) Define r j =

(
1
|Yx j |

∑y∈Yx j
v′i(y)

)
−

8) Compute the approximate solution vi+1 of V ′(x j) = r j
for j = 1, . . . ,N.

9) Set i→ i+ 1 and repeat steps 2) to 8) until no more
points are added to the reduced X0.

III. RESULTS

Figure 2 shows the homogenization of the grid. When
compared with Figure 1, we can see the strong disadvantage
of to many blanks spaces left out of analysis in contrast with
Figure 2, in which the evaluation points are distributed nicely
in all the phase-space.

Next, we apply our algorithm to two benchmark problems
in which the periodic orbits are circles.

Fig. 3. First step of the algorithm. Upper figure: Complete Lyapunov
function for system (10). Lower figure: The orbital derivative.

A. Two circular periodic orbits

We consider system (1) with right-hand side

f(x,y) =
(
−x(x2 + y2−1/4)(x2 + y2−1)− y
−y(x2 + y2−1/4)(x2 + y2−1)+ x

)
. (10)

This system has an asymptotically stable equilibrium at the
origin, Ω0 = {(0,0)} since the Jacobian at the origin has
eigenvalues: λ1,2 =−0.25± i.

Moreover, the system has two periodic circular orbits: an
asymptotically stable periodic orbit at Ω1 = {(x,y) ∈ R2 |
x2 + y2 = 1} and a repelling periodic orbit at Ω2 = {(x,y) ∈
R2 | x2 + y2 = 1/4}.

To compute the Lyapunov function with our method we
used the Wendland function ψ5,3.

The collocation points were set in a region (−1.5,1.5)×
(−1.5,1.5) ⊂ R2, with imax = 11 and we used a hexagonal
grid (4) with αHexa−basis = 0.03. This setting gives a total
amount of 11,600 collocation points and 6,124,800 eval-
uation points. We computed this example with the almost-
normalized method ẋ = f̂(x) with δ 2 = 10−8 and γ =−0.25.
The Complete Lyapunov function the orbital derivative are
shown in 3.

Figure 3 is given by the first iteration. It could also be
given by the last one or any other. What it is important here,
it is to have a closed orbit identified.

We obtain the chain-recurrent set and we show the over-
estimation of the chain-recurrent set after 100 iterations in
Fig. 4.

After applying our algorithm for only two iterations, we
obtain the results shown in Figure 5.
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Fig. 4. Lower: Overview of the cut off radii defined in Eq. (10). This is a
pedagogical example to show what the algorithm would in general consider
to be in the chain-recurrent set and what should be removed from it. System
(10).

Fig. 5. Superposition of the reduced chain-recurrent set (black) over the not
reduced one for system (10). Both cases correspond to the second iteration.

B. Homoclinic orbit

As in [1], we also consider here the following example
with right-hand side

f(x,y) =
(

x(1− x2− y2)− y((x−1)2 +(x2 + y2−1)2)
y(1− x2− y2)+ x((x−1)2 +(x2 + y2−1)2)

)
.

(11)
The origin is an unstable focus, which can be seen from

the eigenvalues of its Jacobian at the origin, which are λ1,2 =
1±2i.

Furthermore, the system has an asymptotically stable
homoclinic orbit at a circle centred at the origin and with
radius 1, connecting the equilibrium (1,0) with itself.

We used the Wendland function ψ4,2 for our computations.
We set our collocation points in the region (−1.5,1.5)×

(−1.5,1.5)⊂R2 with a hexagonal grid (4) with αHexa−basis =
0.02. In this example, we have used the normalized method,
i.e. we replaced f by f̂ as in (2) with δ 2 = 10−8, and we
used γ =−0.75. This setting gives a total amount of 26,100
collocation points and evaluation points 13,780,800 using
imax = 11. The Lyapunov function is shown in Fig. 6 and
the superposition of the reduced chain-recurrent set over the
over-estimated one is seen in Fig. 7.

IV. DISCUSSION AND FURTHER IMPROVEMENTS

Taking measures as discussed in this paper to reduce the
overestimation delivered better approximations of the chain-
recurrent set for our benchmark-problems than in earlier
attempts. Our new grid has the benefit of allowing us to
evaluate the whole space phase. Unfortunately, the amount
of points grows considerably. For example, for a colloca-
tion grid built with αHexa−basis = 0.03, the total amount

Fig. 6. First step of the algorithm. Upper figure: Complete Lyapunov
function. Lower figure: Orbital derivative. System (11).

Fig. 7. Superposition of the reduced approximation of the chain-recurrent
set (black) drawn over the unreduced one (red) for system (11).

of collocation-points is only 11,600, but the number of
evaluation points is 6,124,800 with imax = 11.

However, since the evaluations are perfectly parallelizable
they are not overly time consuming on a state of the art
computer using multithreading. For example, the computa-
tion of system (10) with 6,124,800 points to evaluate and
11,600 points in the collocation lasted only 8 minutes on a
PC an i7-4790K CPU (4 cores@4.00GHz, hyper-threading)
using 8 threads. For the system (11), with 13,780,800 points
to evaluate and 26,100 in the collocation, the computation
lasted 45 minutes.

A. The stopping criterion

So far we have explained an algorithm that works only for
cases in which the components of the chain-recurrent set are
circular and, unlike the previous cases [1], [4], [5], [12], [3],
we have managed to obtain a working stopping criterion. For
system (10) the algorithm stopped at the iteration 91, while
for system (11) the algorithm stopped at the iteration 4. In
both cases the stopping criterion was set to be an unchanged
or a decreasing amount of points in the chain-recurrent set
for three consecutive iterations. This means that it is worth
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the effort to further develop this algorithm to use clustering
to reduce the over-estimation of the chain-recurrent set.

Figure 8 shows the variation of the amount of elements in
the reduced chain-recurrent set for the system (10) for 1000
iterations. It also shows the amount of points in a close region
to the iteration where it stops.

Fig. 8. System (10). Upper figure: Amount of elements in the chain-
recurrent set as a function of iterations. Lower figure: Amount of points of
the chain-recurrent set at the moment the algorithm stopped.

In Fig. 8 can be seen that the amount of elements varies
considerably. At iteration 500, before the amount of numbers
in the chain-recurrent set decays, the graph in Fig. 8 attains
a local maximum. That could also be used as a stopping
criterion.

The over-estimation comes from the function’s smoothing
throughout the iterations, because near to the chain-recurrent
set the value of v′(x) is close to zero. Now, however, we
have been capable of isolating the periodic behaviour in our
examples and to reduce the over-estimation.

V. CONCLUSIONS

In this work a simple but important improvement to the
algorithms presented in [1], [4], [5], [12], [3] was suggested.
First, we constructed an evaluation grid homogeneously
distributed in the whole phase-space.

Furthermore, we have improved the effort required to ob-
tain the chain-recurrent sets by reducing its over-estimation.
In contrast with our previous work, this is now used as a
stopping criterion. A usable stopping criterion is to stop when
no more points are added to the approximation of the chain-
recurrent set for two or three iterations.

We have shown that there is a considerable variability on
the amount of points in the approximation to chain-recurrent
set as a function of iterations.

Future work includes the development of an optimised
stopping criterion as well as to generalize algorithm for more
general chain-recurrent sets.
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