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Abstract. Differential equations describe many interesting phenomena
arising from various disciplines. This includes many important models,
e.g. predator-prey in population biology or the Van der Pol oscillator in
electrical engineering. Complete Lyapunov functions allow for the sys-
tematic study of the qualitative behaviour of complicated systems. In
this paper, we extend the analysis of the algorithm presented in [1]. We
study the efficiency of our algorithm and discuss important sections of
the code.
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1 INTRODUCTION

Studying systems that change in time often requires the semantics of differential
equations. Autonomous differential equations define dynamical systems which
describe the evolution of a given system.

The study of dynamical systems is a mathematical discipline originated by
Newtonian mechanics. It is in fact a consequence of Henri Poincaré’s work on
celestial mechanics; hence, he is often regarded as the founder of dynamical
systems. Poincaré studied the problem of three bodies motion describing in detail
several concepts commonly studied in dynamical systems such as stability.

Let us consider a general autonomous ordinary differential equation (ODE)
of the form,

ẋ = f(x), (1)

where x ∈ Rn.
To solve the differential equation (1) we consider an initial condition. Then,

by time-integration, we would obtain a specific solution, however, in general this
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is not possible analytically, but only numerically. Moreover, this procedure needs
to be repeated for each new initial condition and is thus inefficient.

In recent years, the increase of computational power and more efficient al-
gorithms, provided by numerical methods, allowed to speed up such procedures
and to increase the collection of problems that can be analysed and studied.
The initial condition dependence, however, restricts the understanding of com-
plicated systems that cannot be described by a small sample of orbits and known
trajectories.

The correct description of such systems may find application in physics, en-
gineering, biology and other disciplines. For that reason, several techniques to
expand the understanding and the analysis of such systems have been developed
during the years. Many famous techniques differ in approach, difficulty and effi-
ciency. To summarize some, we can point out the direct simulations of solutions
with many different initial conditions, as discussed previously and computing
invariant manifolds, which form the boundaries of attractors’ basin of attraction
[33]. Other techniques to analyse dynamical systems are the set oriented meth-
ods [16] and the cell mapping approach [24]. These methods are supposed to
work provided enough computational resources are available.

While there have been many advances introduced by different brilliant minds,
the approach provided by Aleksandr Lyapunov is of particular relevance. His
work is based on defining stability of sets in the phase space ordinary differential
equations and provides another approach to study dynamical systems by their
qualitative behaviour. In particular, it turns out to be useful to characterize the
flow by studying attractors and repellers of the dynamics.

Lyapunov proposed to construct an auxiliary scalar-valued function whose
domain is a subset of the state-space. This function is strictly decreasing along
all solution trajectories in a neighbourhood of an attractor, e.g. an equilibrium
point or a periodic orbit. The function’s minimum is attained on the attractor,
hence, all solutions starting on a decreasing trajectory are bound to converge to
the attractor. Today this function is known as a strict Lyapunov function in his
honor. Here its classical definition [34].

Definition 1 (Classical (strict) Lyapunov function). A classical (strict)
Lyapunov function V (x) for the system (1) is a scalar-valued C1 function defined
on a neighbourhood of an attractor of the system. It attains its minimum at the
attractor, and is otherwise strictly decreasing along solutions of the ODE.

Note that the function in the last definition is limited to the neighbourhood
of one single attractor. A redefinition of this function was later given to the
whole phase space and it is called a complete Lyapunov function [13,14,26,27],
see Definition 2.

Definition 2 (Complete Lyapunov function). A complete Lyapunov func-
tion for the system (1) is a scalar-valued continuous function V : Rn → R,
defined on the whole phase space of the ODE. It is non-increasing along solu-
tions of the ODE; it is strictly decreasing where the flow is gradient-like and
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constant along solution trajectories on each transitive component of the chain-
recurrent set, such as local attractors and repellers. Furthermore, the level sets
of V provide information about the stability and attraction properties: minima
of V correspond to attractors, while maxima represent repellers.

This general case provides tools to describe the complete qualitative be-
haviour of the dynamical system on the whole phase space and divides the
state-space into two disjoint areas, in which the system behaves fundamentally
differently. The first one, referred to as the gradient-like flow, is an area where
the systems flows through and has the property of having negative orbital deriva-
tive, if smooth enough (the orbital derivative is the derivative along solutions).
The second, referred to as the chain-recurrent set, is an area where infinitesi-
mal perturbations can make the system recurrent, see Definition 3; the points in
this set have vanishing orbital derivative. In this work we will refer to these two
conditions (negative orbital derivative for the gradient-like flow and zero orbital
derivative to the chain-recurrent set) as the Lyapunov condition.

Definition 3 (Chain-recurrent set). A point is said to be in the chain-
recurrent set, if for any ε > 0 and any given time, an ε-trajectory exists that
starts at the point and returns to it after the given time.

An ε-trajectory is arbitrarily close to a true system’s solution and a point in
the chain-recurrent set is recurrent or almost recurrent; for a precise definition
see, e.g. [13]. The dynamics outside of the chain-recurrent set are similar to a
gradient system, i.e. a system (1) where the right-hand side f(x) is given by the
gradient ∇U(x) of a function U : Rn → R.

Conley [13] gave the first mathematical proof of existence of complete Lya-
punov functions for flows in compact metric spaces. Hurley [27] extended these
results to flows in separable metric spaces.

In general, this work is a continuation of the algorithms described in [3,4,1,6,7].
It is a modification of a general method to compute classical Lyapunov functions
for one stable equilibrium using Radial Basis Functions [19]. Nonetheless, along
this work we describe an algorithm to construct complete Lyapunov functions
considering that the l#-norm, with # = 1, 2, for the Lyapunov condition at a
given set of points must be kept constant. Previously, we described the ben-
efits of keeping the Lyapunov condition constant in the l1-norm [1]. However,
selecting the right norm turns out to be a non-trivial task.

In Sec. 3.2, we discuss this question in more detail.

Furthermore, when developing algorithms to study and to describe dynamical
systems, an important question on the efficiency arises and we address this issue
in Sec. 4.

The general idea to construct a complete Lyapunov function under this ap-
proach, is to approximate a “solution” to the ill-posed problem V ′(x) = −1,
where V ′(x) = ∇V (x) · f(x) is the derivative along solutions of the ODE, i.e. the
orbital derivative.
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A function v is computed using Radial Basis Functions, a mesh-free colloca-
tion technique, such that v′(x) = −1 is fulfilled at all points x in a finite set of
collocation points X.

The discretized problem of computing v is well-posed and has a unique solu-
tion. However, the computed function v will fail to fulfil the PDE at some points
of the chain-recurrent set, such as an equilibrium or a periodic orbit. For some x
in the chain-recurrent set we must have v′(x) ≥ 0 and this is the key component
of our general algorithm to localize the chain-recurrent set; we determine the
chain-recurrent through the area where v′(x) 6≈ −1.

2 PRELIMINARIES

2.1 MESH-FREE COLLOCATION

Radial Basis Functions (RBFs) are a powerful methodology [19] for general in-
terpolation problems based on mesh-free collocation methods. The construction
of complete Lyapunov functions can be posed as a generalized interpolation
problem.

RBFs are real-valued functions whose value depends only on the distance of
its argument from the origin. Many examples of RBFs can be given, however,
the most common ones are Gaussians, multiquadrics and Wendland functions.

Our algorithm uses Wendland functions, which are compactly supported and
positive definite functions introduced in [38]. Their form is that of a polynomial
on their compact support defined by a recurrent formula. The corresponding
Reproducing Kernel Hilbert Space is norm-equivalent to a Sobolev space.

Note that in the context of RBF, positive definite function ψ refers to the
matrix (ψ(‖xi − xj‖))i,j being positive definite for X = {x1,x2, . . . ,xN}, where
xi 6= xj if i 6= j.

We assume that the target function belongs to a Hilbert space H of continu-
ous functions (often a Sobolev space). We assume that the Hilbert space H has
a reproducing kernel ϕ : Rn × Rn → R, given by a convenient positive definite
Radial Basis Function Φ through ϕ(x,y) := Φ(x− y), where Φ(x) = ψ0(‖x‖) is
a radial function.

Generally speaking, we can resume the idea of this algorithm as follows. We
seek to reconstruct the target function V ∈ H from the information r1, . . . , rN ∈
R generated byN linearly independent functionals λj ∈ H∗, i.e. λj(V ) = rj holds
for j = 1, . . . , N . The optimal (norm-minimal) reconstruction of the function V
is the solution to the problem

min{‖v‖H : λj(v) = rj , 1 ≤ j ≤ N}.

It is well-known [39] that the solution can be written as

v(x) =

N∑
j=1

βjλ
y
j ϕ(x,y),
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where the coefficients βj are determined by the interpolation conditions λj(v) =
rj , 1 ≤ j ≤ N and the superscript y denotes the application of the operator λj
with respect to the variable y.

In our case, we consider the PDE V ′(x) = r(x), where r(x) is a given function
and V ′(x) is the orbital derivative. We choose N pairwise distinct collocation
points x1, . . . ,xN ∈ Rn of the phase space and define functionals

λj(v) := (δxj
◦ L)v = v′(xj) = ∇v(xj) · f(xj),

where L denotes the linear operator of the orbital derivative LV (x) = V ′(x) and
δ is Dirac’s delta distribution. The information is given by the right-hand side
rj = r(xj) for all 1 ≤ j ≤ N . The approximation is then

v(x) =

N∑
j=1

βj(δxj
◦ L)yΦ(x− y),

where Φ is a positive definite Radial Basis Function, and the coefficients βj ∈ R
can be calculated by solving a system of N linear equations. The superscript y
denotes that the operator is applied to the function y 7→ Φ(x − y) for a fixed
x. A crucial ingredient is the knowledge of the behaviour of the error function
|V ′(x)− v′(x)| in terms of the so-called fill distance, which measures how dense
the points {x1, . . . ,xN} are, since it gives information when the approximate so-
lution indeed becomes a Lyapunov function, i.e. has a negative orbital derivative.
Such error estimates were derived, for example, in [19,21], see also [36,39].

The advantage of mesh-free collocation for solving PDEs is that scattered
points can be added to improve the approximation, no triangulation of the phase
space is necessary, the approximating function is smooth and the method works
in any dimension.

Wendland functions The Wendland functions are expressed by the general
form: ψ(x) := ψl,k(c‖x‖), where c > 0 and k ∈ N is a smoothness parameter.
Along this work, the parameter l is fixed as l = bn2 c + k + 1. The Reproducing
Kernel Hilbert Space corresponding to ψl,k contains the same functions as the

Sobolev space W
k+(n+1)/2
2 (Rn) and the spaces are norm equivalent.

The Wendland functions ψl,k are defined by the recursion: For l ∈ N and
k ∈ N0, we define

ψl,0(r) = (1− r)l+,

ψl,k+1(r) =
∫ 1

r
tψl,k(t)dt

(2)

for r ∈ R+
0 , where x+ = max(0, x) and has higher precedence than taking power,

i.e. (1− r)l+ = [(1− r)+]l.

Collocation points Our algorithm is based on the idea of solving the ill-
posed problem V ′(x) = ∇V (x) · f(x) = −1 on a collocation of points X =
{x1, . . . ,xN} ⊂ Rn.
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Our set X of collocation points, is a subset of a hexagonal grid with fineness-
parameter αHexa-basis ∈ R+ constructed according to the next equation:

{
αHexa-basis

n∑
k=1

ikωk : ik ∈ Z

}
, where (3)

ω1 = (2ε1, 0, 0, . . . , 0)

ω2 = (ε1, 3ε2, 0, . . . , 0)

...
...

ωn = (ε1, ε2, ε3, . . . , (n+ 1)εn) and

εk =

√
1

2k(k + 1)
, k ∈ N.

The hexagonal grid is optimal to balance the opposing aims of a dense grid
and a low condition number of the collocation matrix. It delivers the matrix with
the minimal condition number for a fixed fill distance [28].

Since f(x) = 0 for an equilibrium x, an equilibrium cannot be used as a
collocation point, because otherwise the collocation matrix is singular.

The approximation v is then given by the function that satisfies the PDE
v′(x) = −1 at all collocation points and it is norm minimal in the corresponding
Reproducing Kernel Hilbert space. Practically, we compute v by solving a system
of N linear equations, where N is the number of collocation points.

We set ψ0(r) := ψl,k(cr) with a positive constant c and define recursively

ψi(r) = 1
r
dψi−1

dr (r) for i = 1, 2 and r > 0. Note that limr→0 ψi(r) exists if
the smoothness parameter k of the Wendland function is sufficiently large. The
explicit formulas for v and its orbital derivative are

v(x) =

N∑
j=1

βj〈xj − x, f(xj)〉ψ1(‖x− xj‖), (4)

v′(x) =

N∑
j=1

βj

[
− ψ1(‖x− xj‖)〈f(x), f(xj)〉 (5)

+ ψ2(‖x− xj‖)〈x− xj , f(x)〉 · 〈xj − x, f(xj)〉
]

where 〈·, ·〉 denotes the standard scalar product and ‖ · ‖ the Euclidean norm in
Rn, β is the solution to Aβ = r, rj = r(xj) and A is the N × N matrix with
entries

aij = ψ2(‖xi − xj‖)〈xi − xj , f(xi)〉〈xj − xi, f(xj)〉 (6)

− ψ1(‖xi − xj‖)〈f(xi), f(xj)〉

for i 6= j and
aii = −ψ1(0)‖f(xi)‖2.
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More detailed explanations on this construction are given in [19, Chapter 3].
If no collocation point xj is an equilibrium for the system, i.e. f(xj) 6= 0 for

all j, then the matrix A is positive definite and the system of equations Aβ = r
has a unique solution. Note that this holds true independent of whether the
underlying discretized PDE has a solution or not, while the error estimates are
only available if the PDE has a solution.

Evaluation grid Once we have solved the PDE on the collocation points, we
use a different evaluation grid Yxj

, around each collocation point xj . This grid
can be constructed in many different ways. Important is, however, to always
associate each evaluation point to a unique collocation point.

2.2 PREVIOUS ALGORITHMS

To obtain a classical Lyapunov function for a nonlinear system already is a hard
task. However, thanks to mathematical research, efficient algorithms to compute
Lyapunov functions have been proposed, cf. [20] for a recent review of such
methods. One of these algorithms to compute classical Lyapunov functions for
an equilibrium approximates the solution of the PDE V ′(x) = ∇V (x)·f(x) = −1
[19] using mesh-free collocation with Radial Basis Functions. It constructs an
approximate solution to this linear partial differential PDE, which satisfies the
equation in a given finite set of collocation points X.

This method has been extended to the construction of complete Lyapunov
functions. However, as discussed before, a complete Lyapunov function cannot
have a negative derivative on the chain-recurrent set, hence, the equation is
ill-posed. However, turning the argument around, the area where the approxi-
mation is poor, i.e. where the approximation v to the Lyapunov function V does
not satisfy v′(x) ≈ −1, gives an indication of where the chain-recurrent set is
located. In previous work, the authors of this paper have developed and con-
tinuously improved such algorithms. Firstly, the algorithm was implemented to
identify both the chain-recurrent set and the gradient-like flow region, see [3]. We
determine the chain-recurrent set as the area, in which the condition v′(x) ≈ −1
is not satisfied and the approximation fails. In the next step, we then split the
collocation points X into two different sets: X0 where the approximation fails,
and X−, where it works well.

This classification allows us to reconstruct the complete Lyapunov function
considering that it should be constant on X0. However, such methodology re-
quires certain considerations. The speed of the flow of the dynamical system can
vary considerably. Therefore, the orbital derivative of the complete Lyapunov
function can vary as well. These speed variations render it difficult to classify
the chain-recurrent set under a fixed criterion.

Therefore, we introduced in [4] an “almost” normalized approach, i.e., the
original dynamical system (1) was substituted by

ẋ = f̂(x), where f̂(x) =
f(x)√

δ2 + ‖f(x)‖2
(7)
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with a small parameter δ > 0. This allowed us to reduce the over-estimation,
i.e. the “noise”, of the chain-recurrent set.

2.3 RECONSTRUCTION OF A COMPLETE LYAPUNOV
FUNCTION

Once the chain-recurrent set is classified, enough information is obtained to
reconstruct the complete Lyapunov using different Lyapunov conditions for X0

and X−. That is, we solve the PDE for V again, but now using different values
on the right-hand side. We have considered three different ways of reconstructing
the complete Lyapunov function. Next, we give a review of these three cases.

Reconstruction with binary parameters The two sets X0 and X− pro-
vide important information about the ODE under consideration: the first one
X0, where v′(x) ≈ 0 approximates the chain-recurrent set, including equilibria,
periodic and homoclinic orbits, while the second set X−, where v′(x) ≈ −1,
approximates the area where the flow is gradient-like, i.e. where solutions pass
through.

Our first approach was to reconstruct the complete Lyapunov function with
the Lyapunov conditions 0 and −1 respectively for the two different sets, i.e.,

V ′(x) =

{
0 if x ∈ X0,
−1 if x 6∈ X0

This approximation, however, can lead to convergence to a trivial (constant)
solution, i.e. V ′(x) = 0. The right-hand side of V ′(x) has a jump, so that the
constructed function does not have a “smooth” orbital derivative. Illustrative
examples can be found in Figures 6 and 7 in [1].

Reconstruction with exponential decay This approach was based on the
idea that smoothing the right-hand side would replace the jump with a smoother
transition. To do that, we replaced the original binary right-hand side by a
smooth exponential decay,

V ′(x) = r(x) :=

{
0 if x ∈ X0,

− exp
(
− 1
ξ·d2(x)

)
if x 6∈ X0,

(8)

where d denotes the distance to the set X0 and ξ > 0 is a parameter. This im-
proved the method to construct complete Lyapunov functions and to determine
the chain-recurrent set.

However, there is a problem with this methodology. If iterated in an attempt
to improve the reconstruction of the Lyapunov function, the area where v′(x) ≈ 0
holds (or X0) could grow in size and the functions v could converge towards a
trivial, constant solution, although slower that when using binary parameters.
More details are found in paper [4].
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Reconstruction by averaging the orbital derivative This methodology is
based on using the average of v′(y) for points y ∈ Yxj

(or 0 if the average is
positive), i.e. the points in the evaluation grid for each point xj ∈ X, where v
denotes the result of the last iteration and regardless of xj lying in X− or X0.

Additionally, we scale the right-hand side r̃j by 1/‖r̃(xi)‖l1 = 1/(
∑N
i=1 |r̃(xi)|),

such that the new sum
∑N
i=1 r(xi) of the values in right-hand side over all

collocation points is constant in each iteration, see the algorithm in the next
section. This prevents the iterations from converging to the trivial solution. We
will show the improvement of the performance of the algorithm in an example.
This method was introduced in [1].

For the evaluation points y ∈ Yxj around each collocation point xj we use a
directional evaluation grid, which was first proposed for the higher-dimensional
case, i.e., ẋ = f(x) with x ∈ Rn and n ≥ 3 [6], since the set of evaluation points
remains 1-dimensional. For the directional evaluation grid, we use points in the
direction of the flow f(xj) at each collocation point xj . Previously, in [3,4] and
dimension 2, we used a circular evaluation grid around each collocation point
consisting of two concentric circumferences whose centre was the collocation
point. In the n-dimensional case, this circumference would become an (n − 1)-
dimensional set, requiring a large amount of points to evaluate. More details on
the evaluation grid are given in Sec. 3.1.

3 ALGORITHM

Our algorithm is based on the algorithms described in [3] and where the speed
of the system has been normalized as in (7); explained in detail in [4]. The
Wendland functions for the numerical computations are constructed with the
software from [5]. In this paper, as in [1], we add the next improvement: we
scale the right-hand side of the linear system Aβ = r in each iteration to avoid
convergence to the trivial solution β = 0 corresponding to V (x) = 0. Let us
explain the method and the improvements in more detail.

We fix a set of pairwise distinct collocation points X, none of which is an
equilibrium for the system. We use an evaluation grid to determine for each
collocation point whether the approximation was poor or good, and thus whether
the collocation point is part of the chain-recurrent set (X0) or the gradient-like
flow (X−). The evaluation grid at the collocation point xj is given by

Yxj
=

{
xj ±

r · k · αHexa-basis · f̂(xj)

m · ‖f̂(xj)‖
: k ∈ {1, . . . ,m}

}

where αHexa-basis is the parameter used to build the hexagonal grid defined above,
r ∈ (0, 1) is the ratio up to which the evaluation points will be placed and m ∈ N
denotes the number of points in the evaluation grid that will be placed on both
sides of the collocation points aligned to the flow. Altogether, will have 2m points
for each collocation point, so 2mN points in the evaluation grid overall. We note
that we have chosen r < 1 to avoid overlap of evaluation grids [1,7].
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This means that there will not be any evaluated points to provide information
about the dynamical system apart from the ones aligned with the flow. On the
other hand, this evaluation grid avoids exponential growth in size as the system’s
dimension increases.

We start by computing the approximate solution v0 of V ′(x) = −1 with
collocation points X. As we have previously done in [3,4], we define a tolerance
parameter −1 < γ ≤ 0. In each step i of the iteration we mark a collocation point
xj as being in the chain-recurrent set (xj ∈ X0) if there is at least one point
y ∈ Yxj such that v′i(y) > γ. The points for which the condition v′i(y) ≤ γ holds
for all y ∈ Yxj

are considered to belong to the gradient-like flow (xj ∈ X−).
In this paper, we follow the same idea as [1] and replace the right-hand side

−1 by the average of the values v′i(y) over the evaluation grid y ∈ Yxj
at each

collocation point xj or, if this average is positive, by 0. In formulas, we calculate
the approximate solution vi+1 of V ′(xj) = r̃j with

r̃j =

 1

2m

∑
y∈Yxj

v′i(y)


−

,

where x− = min(0, x). We will refer to this as the “non-scaled” version.
While in [4] we have used the distance to the set X0 to ensure that the right-

hand side is a continuous function, this new approach also allows us to obtain a
complete Lyapunov function with a smoothed out orbital derivative. However,
this approach can lead to a decrease of “energy” from the original Lyapunov
function. Recall that the original value of the orbital derivative condition in the
first iteration is −1, but the new value is obtained by averaging and bounding
by 0, so it could tend to zero and thus force the total energy of the Lyapunov
function to decrease. To avoid this, we scale the condition of the orbital derivative
after the first iteration onwards so that the sum of all rj over all collocation points
is constant for all iterations; we will refer to this as the “scaled” method.

Our new algorithm to compute complete Lyapunov functions and classify the
chain-recurrent set can be summarized as follows:

1. Create the set of collocation points X and compute the approximate solution
v0 of V ′(x) = −1; set i = 0

2. For each collocation point xj , compute v′i(y) for all y ∈ Yxj : if v′i(y) > γ for
a point y ∈ Yxj

, then xj ∈ X0, otherwise xj ∈ X−, where γ ≤ 0 is a chosen
critical value

3. Define r̃j =
(

1
2m

∑
y∈Yxj

v′i(y)
)
−

4. Define rj = N∑N
l=1 |r̃l|

r̃j ,

5. Compute the approximate solution vi+1 of V ′(xj) = rj for j = 1, . . . , N ; this
is the scaled version, while approximating the solution of V ′(xj) = r̃j would
be the non-scaled version

6. Set i→ i+ 1 and repeat steps 2 to 5 until no more points are added to X0.

Note that the sets X0 and X− change in each step of the algorithm.
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3.1 RESULTS

The system we use to benchmark our methodology is the following:(
ẋ
ẏ

)
= f(x, y) =

(
1− x2
−xy

)
, (9)

This system has two equilibria (±1, 0) where (−1, 0) is unstable and (1, 0) is
asymptotically stable.

We now apply the method proposed in this paper. The parameters we defined
to compute the complete Lyapunov function for the system (9) are: we replace

f by f̂ according to (7) with δ2 = 10−8, and we choose αHexa-basis = 0.1 and used
all points in the hexagonal grid that are in the area [−2, 2]2 ∈ R2. This gave us a
total amount of 2, 016 collocation points. The critical value to define the failing
points is γ = −0.5 and the Wendland function parameters are l = 4, k = 2 and
c = 1. The number of evaluation points around each collocation point is 20, i.e.,
m = 10, and we choose r = 0.5; the total amount of points in our evaluation
grid is thus 40, 320.

Evaluation grid for our system In Figure 1 we plot the evaluation grid (9)
for the system (9) Notice that we use colour to indicate the value of the complete
Lyapunov function computed.

Fig. 1. Evaluation grid for (9). All points of the evaluation grid are aligned with the
direction of the flow of the dynamical system. The flow is marked with colours to
indicate the value of the computed complete Lyapunov functions.

Complete Lyapunov function, orbital derivative and iterations Now,
we present the results obtained with our algorithm using the l1-norm for the
scaling and using 10,000 iterations.
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Fig. 2. Complete Lyapunov function v0 for system (9), obtained by solving V ′(x) = −1,
iteration 0, [1].

Fig. 3. Complete Lyapunov function derivative v′0 for system (9), iteration 0, [1].

The complete Lyapunov function approximation for system (9) is given in
Figure 2 and its orbital derivative in Figure 3. We start by approximating the
solution of V ′(x) = −1 by v0.

The complete Lyapunov function at this iteration (ite=0) poorly approxi-
mates the orbital derivative fixe to −1 in some areas. Indeed, Figure 3 shows
that the orbital derivative can be positive with values between 0 and 2. From
this, we obtain information on the values over the evaluation grid that failed as
v′0(y) > γ. These points are an approximation of the chain-recurrent set under
the scaled method.

The function v0 and its orbital derivative v′0 are shown in Figures 2 and 3,
respectively. Figure 2 already shows that the unstable equilibrium at (−1, 0) is a
maximum of v0 and the asymptotically stable equilibrium at (1, 0) is a minimum;
the orbital derivative v′0 approximates −1 quite well apart from the equilibria
and an ellipse covering the heteroclinic orbits, connecting the two equilibria,
which touch the boundary of the considered area.

However, a different perspective of Figure 2, see Figure 1 with the direc-
tional grid, shows that there are many heteroclinic connections between the two
equilibria. These connections have different lengths. In particular, even if v is
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constant in a neighbourhood of each of the two equilibria, there is no solution
such that v′(x) = −1 holds in the rest of the gradient-like flow part since the or-
bital derivative reflects the length of the route. Hence, this is an example where
the previous method [3] must fail.

We used the previous non-scaled method and solved V ′(xj) = r̃j iteratively
and the scaled-method V ′(xj) = rj = N∑N

l=1 |r̃l|
r̃j (l1-scaled method), see algo-

rithm Sec. 3.1. In the first case (non-scaled method) the solution converges to the
constant solution, while in the second case (scaled-method) we obtain a smooth
complete Lyapunov function and a smooth orbital derivative, see Figure 4.

3.2 l1- and l2-NORM SCALING

In this section we analyse the difference between using the l1- and l2-norms for
scaling in our method. In [1], we originally considered scaling using the l1 norm.
However, when we replace step 4 in the algorithm with

rj =

(
r̃j
‖r̃j‖l2

)
‖r̃0‖l2 ,

then we obtain a method that keeps the l2 norm of the vector (rj)j=1,...,N con-
stant in every step. Similarly, we can define

rj =

(
r̃j
‖r̃j‖lp

)
‖r̃0‖lp

for any p ≥ 1, which scales by the lp-norm.
When comparing the results using the l2-norm instead of the l1-norm, one

notices that there are considerable differences, see Figures 5 and 6. Indeed, it
look like scaling using the l2-norm gives a smoother and better behaved complete
Lyapunov function.

Figure 9 gives the evolution of the l1- and l2-norms of the Lyapunov condition
vector at each iteration for the non-scaled method. It shows how the norms tend
to zero and after 3000 iterations both deliver nearly constant approximations
with orbital derivative close to zero. Clearly scaling is necessary for this problem
and additionally improves previous results be smoothing the orbital derivative.
Understanding the different results for the l1- and l2-norm scalings requires
further analysis, which is a subject of future work.

4 COMPLEXITY ANALYSIS OF THE ALGORITHM

In this section we analyze the computational complexity of our algorithm. As
before n stands for the dimension of the system and N for the number of col-
location points. Each collocation points has 2m evaluation points associated to
it. We assume that the evaluation of f(x) is O(n) because it has n coordinates.
Our algorithm has the following structure:
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Fig. 4. Evolution of the complete Lyapunov function for system (9) and its orbital
derivative. The two-upper figures are obtained with the non-scaled method while the
lower-two figures are obtained with the scaled method. ite=10000, [1].

Algorithm 1 The different parts of the algorithm are the following:

(i) Generate the collocation points We construct N collocation points, each
of dimension n. For this we need O(Nn) operations.
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Fig. 5. Complete Lyapunov function v for system (9), iteration 10000 with the scaled
method (l1 blue, l2 red). Plane Z −X.

Fig. 6. Complete Lyapunov function v for system (9), iteration 10000 with the scaled
method (l1 blue, l2 red). Plane Z − Y .

(ii) Interpolation matrix and Cholesky decomposition The interpolation
matrix A is built using the formula (6). Each of the N2-elements aij can be
computed in O(n) so the complexity is O(N2n). Since A is positive definite
we Cholesky decompose it, which is O(N3). Note that the matrix A and
its Cholesky decomposition must only be computed once, regardless of the
number of iterations!

(iii) Construction of the evaluation grid For each of the N collocation points
we construct 2m evaluation points, each of dimension n. This is O(Nnm)
operations.

(iv) Compute the Lyapunov function

To compute the coefficients βj in formulas (4) and (5) we need to solve the
equation Aβ = r, where A is Cholesky decomposed. This is well known to
be O(N2) (back substitution).

(v) Classification of the failing points in the chain-recurrent set We
have to evaluate v′ at 2m evaluation points for each collocation point, of
which there are N . From formula (5) we see that each evaluation is O(Nn).
Together we need O(N2nm) operations for the evaluation.
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Fig. 7. Complete Lyapunov function derivative v′ for system (9), iteration 10000 with
the scaled method (l1 blue, l2 red). Plane Z −X.

Fig. 8. Complete Lyapunov function derivative v′ for system (9), iteration 10000 with
the scaled method (l1 blue, l2 red). Plane Z − Y .

Fig. 9. Evolution of the l1-and l2-norms along iterations.

(vi) Lyapunov condition First we need to compute the average value of v′

at the evaluation points for each collocation point. Since we already have
evaluated v′ at all evaluation points in the last step, this is O(Nm). Then
we have to compute the average value (l1-norm) or the root-means-square
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value (l2-norm) over all the collocation points, which is O(N). Together we
have complexity of O(Nm).

Altogether this proves the following result, noting that we only once have to
generate and Cholesky decompose the collocation matrix A and that the most
expensive operation in each iteration is computing the average of v′ at the eval-
uation points for each collocation point.

Lemma 1. To compute an approximation to a complete Lyapunov function with
our method using I iterations, we need O(N3 + IN2nm) operations.

5 CONCLUSIONS

We have introduced a methodology to construct approximations to smooth
complete Lyapunov function. In particular, we have addressed three main ques-
tions in this paper: First, by introducing a scaling factor on the Lyapunov condi-
tion, we introduced a fundamental change in the iterative construction. Second,
we compared scaling using the l1-norm and the l2-norm. The l2-norm scaling
seems to be superior, but we do not have a convincing reason for this. This
should definitely be addressed in future work. Third, we analysed the numerical
complexity of our algorithm.
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