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Abstract. Complete Lyapunov functions (CLF) are scalar-valued functions, which
are non-increasing along solutions of a given autonomous ordinary differential
equation. They separate the phase-space into the chain-recurrent set, where the
CLF is constant along solutions, and the set where the flow is gradient-like and
the CLF is strictly decreases along solutions. Moreover, one can deduce the sta-
bility of connected components of the chain-recurrent set from the CLF.
While the existence of CLFs was shown about 50 years ago, in recent years al-
gorithms to construct CLFs have been designed to determine the chain-recurrent
set using the orbital derivative. These algorithms require iterative methods that
constructed better and better approximations to a CLF, based on previous itera-
tions. A drawback of these methods is the overestimation of the chain-recurrent
set, which has been addressed by different methods.
In this paper, we construct a CLF using the previous method, but in contrast to
previous work we will use the norm of the gradient of the computed CLF, rather
than its orbital derivative, to determine the chain-recurrent set. We will show in
this paper that this new approach determines the chain-recurrent set very well
without the need of iterations or further methods to reduce the overestimation.

Keywords: Complete Lyapunov functions · chain-recurrent set · dynamical sys-
tems

1 Introduction

In this paper we study the dynamics of a general time-autonomous system of differential
equations, given by (1),

ẋ = f(x), (1)

where x ∈ Rn and n ∈ N. We assume that f : Rn→ Rn is a continuously differentiable
vector field and ẋ denotes the derivative with respect to time.

A solution x(t) to (1) with initial value ξ is a continuously differentiable function
that satisfies the ODE (1) and such that x(0) = ξ; if the solution is defined for all t ∈R,
then this defines a dynamical system through Stξ = x(t).
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Since analytical solutions to initial value problems are usually not obtainable, one
could attempt to use numerical methods for a large collection of initial conditions for
(1). This is computationally demanding, would only represent particular solutions, and
might not reveal the general behaviour of the dynamical system over the whole phase
space.

Special solutions of (1) are equilibria, i.e. points x0 with f(x0) = 0, implying that the
solution starting at the equilibrium will not change in time, but is a constant solution.

An equilibrium point is called stable if solutions starting at all adjacent points re-
main close for all future times. It is called attractive if all adjacent solutions will con-
verge to it as time grows. That means that for an attractive equilibrium x0 one can find
an open ball Bδ(x0) centered at x0 and with radius δ > 0, such that ‖Stx− x0‖ → 0 as
t → ∞ for all x ∈ Bδ(x0). In this case, we can define the basin of attraction of x0 by
A(x0) = {x ∈ Rn | Stx→ x0 as t → ∞}. The attractivity and stability are two different
concepts and do not imply one another, however, when both occur, then we talk about
an asymptotically stable equilibrium.

An asymptotically stable equilibrium is the simplest example of an attractor. An
(local) attractor is a compact, invariant set, that attracts a neighborhood of itself. Further
examples include asymptotically stable periodic orbits.

One method to analyse dynamical systems is to find the boundaries of the attractors’
basins of attraction. A collection of methods exist to that aim. Among them, one can
point out computing the invariant manifolds which form the boundaries of the attractors’
basins of attraction [23]. Another well-known methodologies are set oriented methods
[16] or the cell mapping approach [19]. All these methods require large computational
effort.

An attractor and its basin of attraction can be characterised by a Lyapunov function,
[24], originally introduced by Aleksandr Mikhailovich Lyapunov in 1893. A Lyapunov
function is a scalar-valued function that attains its minimum on the attractor. Further-
more, its domain is the basin of attraction and it is strictly decreasing along all solutions
apart from those on the attractor, where it is constant. An example for a Lyapunov func-
tion is the energy in a dissipative physical system. The advantage of the Lyapunov
function is that it describes the behaviour of the system without computing its explicit
solutions. However, this function is only defined in the basin of attraction of one attrac-
tor and describes this subset of the phase space.

Even if the attractor is an equilibrium, it is hard to obtain a Lyapunov function. If
the system under analysis is linear, then it is possible to obtain a quadratic Lyapunov
function relatively easily. However, if the system is not linear then, in general, one
requires numerical algorithms to construct a Lyapunov function, see [18].

A complete Lyapunov function is an extension of the classical Lyapunov function
for one attractor. It is defined on the whole state space and was introduced in [14, 15, 20,
21]. A complete Lyapunov function characterises the complete qualitative behaviour of
the dynamical system on the whole phase space and not just in a neighbourhood of one
particular attractor. Therefore, it allows to describe the different basins of attraction for
all attractors of the dynamical system. Furthermore, it divides the state-space into two
disjoint areas: The gradient-like flow, where the system’s trajectories flow through, and



Title Suppressed Due to Excessive Length 3

the chain-recurrent set, where infinitesimal perturbations can make the system recur-
rent. These two areas describe fundamentally different behaviours.

The regions in which the system is recurrent or almost recurrent, in the sense that ε-
trajectories that are arbitrarily close to true system’s solutions are recurrent, are usually
referred to as the chain-recurrent set. This set can be shown to equal the intersection of
all attractors and all corresponding repellers; for a precise definition see, e.g. [14].

The dynamics outside of the chain-recurrent set are similar to a gradient system,
i.e. a system (1) where the right-hand side f(x) is given by the gradient ∇U(x) of a
function U : Rn→ R. This set includes the transient behaviour of the system.

The authors have developed an algorithm to construct CLFs (for further reading,
please refer to [2, 4–6, 3, 8, 10, 12, 11]). Thus, we are able to identify the chain-recurrent
set and the gradient-like flow. The algorithm constructs a CLF by approximating solu-
tions of a linear PDE, fixing values of the orbital derivative. It starts by fixing the values
of the orbital derivative to −1, however, this problem does not have a solution on the
chain-recurrent set, where the orbital derivative must be zero. Hence, we iteratively
adjust the values of the orbital derivative, using the information of the previous itera-
tion. The chain-recurrent set is then characterised as the set of points, where the orbital
derivative of the approximating function is zero or close to zero.

The algorithm often overestimates the chain-recurrent set, i.e. the area where the
approximating function has orbital derivative close to zero is larger than the actual
chain-recurrent set. We have recently proposed a general algorithm to reduce the over-
estimation using geometric properties [7, 9].

In this paper, however, we use a new method to determine the chain-recurrent set,
using the norm of the gradient of the computed CLF. It turns out that this gives a much
more accurate indication of the chain-recurrent set without the need of further iterations
or further algorithms to reduce the overestimation, and is thus preferable to the previous
method. However, it requires a dense evaluation grid, where the norm of the gradient
needs to be evaluated.

Let us give an idea of why the norm of the gradient is a good indicator of the chain-
recurrent set. Consider the simple ODE ẋ = −x. In this example, the chain-recurrent
set consists of the equilibrium at the origin, which is an attractor. When computing
the solution to the PDE V ′(x) = −1, where V ′(x) = ∇V (x) ḟ (x) denotes the orbital
derivative, we find the solution

V (x) =
{

lnx+ c+ if x > 0
ln |x|+ c− if x < 0

with arbitrary constants c+,c− ∈ R; note that V is not defined at the equilibrium. Its
gradient is given by

‖∇V (x)‖= 1
|x|

if x 6= 0.

The mesh-free collocation method, which we use to approximate V , however, produces
a smooth function v(x), which fulfills the PDE in all given collocation points (which
cannot includes the equilibrium) and minimises the norm in a certain Hilbert space.
Moreover, if the fill distance of the collocation points converges to 0, i.e. they become
denser and denser, then v converges to V , and the same holds for its gradient. This
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means that ‖∇v(x)‖ becomes very large for x is close to 0. However, since v is a smooth
function and ∇v(x) ≈ −1

−x = 1
x changes sign at x = 0, we expect that ‖∇v(0)‖ = 0.

Hence, the chain-recurrent set is characterised by the points x fulfilling the condition
‖∇v(x)‖ ≈ 0, while close to it we have ‖∇v(x)‖ � 1. Note that the same behaviour
occurs for a repeller; consider e.g. the system ẋ = x. The argument fails, however, for a
non-hyperbolic equilibrium.

Let us give an overview of the contents of the paper: Section 2 contains a descrip-
tion of the construction of the Complete Lyapunov function and the computation of its
gradient, as well as a description and pseudo-code on how the implementation is done.
In Section we apply the method to several examples and compare our results to the
previous method. In Section we discuss the results and give our conclusions.

2 Construction of Complete Lyapunov functions

2.1 Mesh-free collocation

Mesh-free collocation, in particular using Radial Basis Functions (RBFs), is a powerful
method to solve (generalised) interpolation problems, e.g. linear PDEs [26, 13]. In par-
ticular, they can be used to construct CLFs when posed as a generalized interpolation
problem.

RBFs are real-valued functions whose evaluation depends only on the norm of a
point in Rn. Common examples of RBFs are Gaussians and multiquadrics. In this pa-
per, we use Wendland functions as RBF, which are compactly supported and positive
definite functions [25]. They have the advantage of being expressed as algebraic polyno-
mials on their compact support. Further, the corresponding Reproducing Kernel Hilbert
Space H is norm-equivalent to a Sobolev space.

2.2 Wendland functions

The general form of a Wendland function [25] is ψ(x) := ψl,k(c‖x‖), where c > 0
determines the size of the compact support and k ∈ N is a smoothness parameter. For
our application the parameter l is fixed as l = b n

2c+ k + 1. The Reproducing Kernel
Hilbert Space corresponding to ψl,k contains the same functions as the Sobolev space
W k+(n+1)/2

2 (Rn) and the spaces are norm equivalent.
The functions ψl,k are defined by the recursion: For l ∈ N and k ∈ N0, we define

ψl,0(r) = (1− r)l
+,

ψl,k+1(r) =
∫ 1

r tψl,k(t)dt
(2)

for r ∈ R+
0 , where x+ = x for x≥ 0 and x+ = 0 for x < 0. Note that xl

+ := (x+)l .

2.3 Collocation points

To construct a CLF for system (1), we use mesh-free collocation with RBFs. The
method finds the norm-minimal function in the Reproducing Kernel Hilbert space, that
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satisfies the PDE V ′(x) =−1 at all collocation points x; this is a special type of a gener-
alised interpolation problem. It turns out that the solution is a linear combination of the
Riesz-representatives, which can easily be calculated in a Reproducing Kernel Hilbert
space. The coefficients of the linear combination are determined by solving a system of
linear equations, given by the so-called collocation matrix.

As collocation points, we use a subset, X = {x1, . . . ,xN} ⊂ Rn, of a hexagonal grid
with fineness-parameter αHexa-basis ∈ R+ constructed according to the equation:

{αHexa-basis ∑
n
k=1 ikωk : ik ∈ Z} ,

ωk = ∑
k−1
j=1 ε je j +(k+1)εkek

and εk =

√
1

2k(k+1)
.

(3)

Here e j is the usual jth unit vector. These basis vectors are shown in red colour in
Figure 1 in R2, while the canonical vectors are shown in black. The hexagonal grid has

Fig. 1. Black: Canonical basis. Red: Hexagonal basis set. Image taken from [7].

been shown to minimize the condition numbers of the collocation matrices for a fixed
fill distance, i.e. a measure of the density of the collocation grid [22]. The collocation
points must not include any equilibrium, i.e. any point x with f(x) = 0. In fact, including
an equilibrium in the set of collocation points X renders the collocation matrix singular.

Practically, we compute the solution v of the generalised interpolation problem
V ′(x) =−1 by solving a system of N linear equations, where N is the number of collo-
cation points.

v(x) = ∑
N
k=1 βk〈xk−x, f(xk)〉ψ1(‖x−xk‖),

v′(x) = ∑
N
k=1 βk

[
−ψ1(‖x−xk‖)〈f(x), f(xk)〉
+ψ2(‖x−xk‖)〈x−xk, f(x)〉

·〈xk−x, f(xk)〉
]
,

(4)
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where ψ1,ψ2 are given by ψ j(r) = 1
r

dψ j−1(r)
dr for r > 0 and j = 1,2 and ψ0(r) = ψl,k is

a Wendland function. Moreover, 〈·, ·〉 denotes the standard scalar product and ‖ · ‖ the
Euclidean norm in Rn, β ∈ RN is the solution to Aβ = r, rk = r(xk) and A is the N×N
matrix with entries

ai j = ψ2(‖xi−x j‖)〈xi−x j, f(xi)〉〈x j−xi, f(x j)〉 (5)
−ψ1(‖xi−x j‖)〈f(xi), f(x j)〉

for i 6= j and
aii =−ψ1(0)‖f(xi)‖2.

More detailed explanations on this construction are given in [17, Chapter 3]. If no col-
location point x j is an equilibrium for the system, i.e. f(x j) 6= 0 for all j, then the matrix
A is positive definite and the system of equations Aβ = r has a unique solution.

The last assertion will hold true independently of whether the underlying discretized
PDE has a solution or not, while error estimates are obviously only available if the PDE
has a solution.

As it can be seen in equations (4), we use two set of points: x j that represent the
collocation points and x that represent the evaluation points. If we evaluate the approx-
imation v at a collocation point x j we have v′(x j) = −1 by construction. If the PDE
has a solution, then error estimates ensure that V ′(x) and v′(x) are close if the colloca-
tion points are sufficiently dense. However, as the PDE has no solution at points of the
chain-recurrent set, these error estimates are not applicable. In previous work the val-
ues of v′(x) were used for subsequent iterations of the method and thus each evaluation
point was associated with an appropriate collocation point [2, 4, 8, 5]. In particular, the
first approximation v to a CLF is given by a function which satisfies the PDE v′(x) =−1
at all collocation points and is norm minimal in the corresponding Reproducing Kernel
Hilbert space H. In later iterations we solve v′(x) = r j for different r j ≤ 0, determined
by previous approximations.

However, in this paper we do not need to reiterate on previous approximations.
It will be shown that to have a good approximation to the chain-recurrent set, it is
sufficient to find the function that satisfies the PDE v′(x) =−1 at all collocation points.
In this paper, we use a dense Cartesian evaluation grid, namely a finite subset of hZn

with small h > 0. The cardinality of the evaluation grid is denoted by Ξ.
As introduced and explained in [4] it is advantageous to use an “almost” normalized

approach, i.e., replace the original dynamical system (1) by

ẋ = f̂(x), where f̂(x) =
f(x)√

δ2 +‖f(x)‖2
(6)

with a small parameter δ > 0. This new system has the same trajectories as the original
one, but the speed with which trajectories are passed through is more uniform, i.e.
‖f̂(x)‖ ≈ 1 if x is not an equilibrium. This normalization already reduces significantly
the overestimation of the chain-recurrent set.

2.4 Gradient of v

The gradient of a function v(x1, . . . ,xn), is the vector field defined as
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∇v(x1, . . . ,xn) =

(
∂v
∂x1

(x1, . . . ,xn), . . . ,
∂v
∂xn

(x1, . . . ,xn)

)
.

As explained in the introduction, in this paper we will use the criterion ∇v(x1, . . . ,xn)≈
0 to determine the points in the chain-recurrent set. In practice, we will choose a small
parameter γ2 and determine the points x = (x1, . . . ,xn) with ‖∇v(x)‖ ≤ γ2.

Therefore, we calculate the first derivative of the function v, see (4), as:

∂v
∂xi

(x) =
N

∑
k=1

βk
∂

∂xi
((xk−x)T f(xk)ψ1(‖x−xk‖))

=
N

∑
k=1

βk
[
− fi(xk)ψ1(‖x−xk‖)+(x−xk)i(xk−x)T f(xk)ψ2(‖x−xk‖)

]

Code In this section, we explain the algorithm used to compute the gradient. Our code
is a continuation of the published, free-distributed code, LyapXool [11].

for j=1:Ξ
for k=1:N

for i=1:n
∇v( j, i)+ = β(k)∗ (− f̂i(xk)∗ψ1(‖y j−xk‖)

+(y j−xk)i ∗ (xk−y j)
T f̂(xk)∗ψ2(‖y j−xk‖)

end
end

end

Here ∇v( j, i) is the ith component of the gradient of v at the evaluation point y j and we
use the collocation points xk, k = 1,2, . . . ,N. As it can be seen, the computation of the
gradient vector is a factor n more workload than just computing the CLF and its orbital
derivative, which previously was analysed in [8].

3 Results

We approximate the solution of V ′(x) = −1 by v, using the collocation points X . Pre-
viously, when we analysed the orbital derivative, we defined a tolerance parameter
−1 < γ1 ≤ 0, and marked a collocation point x j to be poorly approximated, i.e., an
element of our approximation of the chain-recurrent set (x j ∈ X0), if there is at least
one point x associated to the point x j, i.e. near to x j, such that v(x) > γ. The well ap-
proximated points, i.e., for which the condition v′(x)< γ holds for all x near x j belong
to our approximation of the area of the gradient-like flow (x ∈ X−).

Now we look for points in the evaluation grid such that ‖∇v(x)‖ ≈ 0, so we define
0 < γ2 and a collocation point x j such that ‖∇v(x)‖ ≤ γ for some evaluation point x
associated to x j is considered to belong to X0. In the following, we compare the results
of our new method with those of the previous one for several examples.
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3.1 Two orbits

Consider the system (1) with

f(x,y) =
(
−x(x2 + y2−1/4)(x2 + y2−1)− y
−y(x2 + y2−1/4)(x2 + y2−1)+ x

)
. (7)

This system has an asymptotically stable equilibrium at the origin and two periodic
circular orbits: an asymptotically stable periodic orbit at Ω1 = {(x,y)∈R2 | x2+y2 = 1}
and a repelling periodic orbit at Ω2 = {(x,y) ∈ R2 | x2 + y2 = 1/4}.

To compute the CLF we used the Wendland function ψ4,2. The collocation points
were set in a region [−1.5,1.5]× [−1.5,1.5]⊂R2 and we used a hexagonal grid (3) with
αHexa−basis = 0.0131. We computed this example with the almost-normalized method
ẋ = f̂(x) with δ2 = 10−8. Figure 2 shows the function v, displaying a maximum at
the repelling periodic orbit and minima at the attractive periodic orbit as well as the
asymptotically stable equilibrium at the origin. Figure 3 shows the orbital derivative v′,
which is −1 by construction apart from the points in the chain-recurrent set.

Using the previous method, namely the orbital derivative, the chain-recurrent set is
obtained by choosing the points satisfying v′(x) ≥ γ1 with the critical parameter γ1 =
−0.25, see Figure 4 where the failing points of the evaluation grid are plotted.

Using our new method, we determine the chain-recurrent set as points satisfying
‖∇v(x)‖ ≤ γ2 with γ2 = 0.9. Figures 5 and 6 display the norm of the gradient and
Figure 7 shows the points satisfying ‖∇v(x)‖ ≤ γ2 with γ2 = 0.9. The evaluation grid
was computed with the Cartesian grid with a distance parameter h = 0.0007. For this
example, N = 60,456 and Ξ = 18,369,796.

Fig. 2. Complete Lyapunov function for system (7). It clearly shows two orbits and one attractor
at the origin.
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Fig. 3. Orbital derivative for system (7). As it is seen, all points in the gradient-like flow satisfy
the condition −1.

The CLF, Figure 2, approximated by our method for system (4) shows a system
whose behaviour has two circular period orbits with r1 = 1/2 and r2 = 1. Furthermore,
the presence of an attractor at the origin is clear. Figure 3 shows that the condition−1 is
satisfied for all points in the gradient-like flow while the values of the orbital derivative
over the chain-recurrent set are clearly different. Points with an orbital derivative larger
than γ =−0.25 give us our first approximation to the chain-recurrent set, Figure 4. All
components of the chain-recurrent set, the equilibrium and the two periodic orbit, are
present, but the periodic orbits are over-estimated. That overestimation was reduced
using geometrical properties in [7].

Fig. 4. Chain-recurrent set for system (7) constructed by filtering the orbital derivative. Two orbits
are seen at r = 1 and r = 1/2. The attractive origin is also found. The critical value to filter the
orbital derivative was γ1 =−0.25.
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Let us now discuss the norm of the gradient of the CLF, see Figure 5. As discussed
in the introduction, the norm is very large close to the chain-recurrent set, and close to
0 directly on the chain-recurrent set, cf. Figure 6

Fig. 5. Norm of the gradient of v for system (7).

Fig. 6. Norm of ‖∇v‖ for system (7). As it can be see, the figure has been cut to show the be-
haviour close the chain-recurrent set.
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Fig. 7. Chain-recurrent set for system (7) constructed by filtering the norm of the gradient of the
Lyapunov Function. Two orbits are seen at r = 1 and r = 1/2. The attractive origin is also found.
The critical value to filter the orbital derivative was γ2 = 0.9.

Figure 7 shows the points with norm ‖∇v(x)‖ ≤ γ2 and displays precisely the same
two orbits and the critical point. In this case, however, the norm of the gradient vector
of v was used instead of the orbital derivative. Compared to the previous method, see
Figure 4, the new method shows the chain-recurrent set much sharper and with hardly
any overestimation. A direct comparison between the two sets is shown in Figure 8.

Fig. 8. Chain-recurrent set for system (7). Black: using the orbital derivative (previous method).
Red: using the gradient of the complete Lyapunov function (new method).

Figure 8 reveals how much the old method overestimates the chain-recurrent set in
comparison to the new method.
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3.2 Van der Pol oscillator

The Van der Pol oscillator is a classical example in dynamical systems. It is represented
by equation (8).

(
ẋ
ẏ

)
= f(x,y) =

(
y

(1− x2)y− x

)
. (8)

For computing the CLF associated to system (8), we set αHexa-basis = 0.027 over the
area defined by [−3,3]2 ⊂ R2. As before we use the almost normalized method with
δ2 = 10−8. The Wendland function used is ψ4,2 and we have used the critical values
γ1 = −0.25 for the orbital derivative and γ2 = 0.9 for the norm of the gradient. The
evaluation grid was computed with the Cartesian grid with a distance parameter h =
0.0015. For this example, N = 61,446 and Ξ = 16,008,001.

Fig. 9. Complete Lyapunov function for system (8). The repeller at the origin and the attractive
periodic orbit are clearly seen.
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Fig. 10. Orbital derivative for system (8).

Figures 9 and 10 show the computed CLF and its orbital derivative associated to the
system (8). Again, we can see that the behaviour of this system is represented clearly
by the CLF – it has a minimum at the periodic orbit and a maximum at the unstable
equilibrium at the origin. As well, the orbital derivative is−1 at all point in the gradient-
like flow, while being larger on the chain-recurrent set.

The chain-recurrent set obtained by plotting the points where the orbital derivative
satisfies v′(x) ≥ γ1 is shown in Figure 11.Again the periodic orbit for this system is
clearly overestimated.

Fig. 11. Chain-recurrent set for system (8) obtained by the orbital derivative.

Figure 12 displays the norm of the gradient of the CLF. Near the periodic orbit
the norm is again very large, while it is close to zero on the periodic orbit. The chain-
recurrent set obtained by plotting the points with ‖∇v(x)‖ ≤ γ2 is shown in Figure 13.
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Fig. 12. Norm of the gradient of v for system (8).

Fig. 13. Chain-recurrent set for system (8) obtained by the norm of the gradient.

As is clearly seen in Figure 13, the chain-recurrent set obtained with the norm of
the gradient of v is sharper around the periodic orbit; it is not fully closed, but the shape
is clearly visible. However, there is overestimation around the equilibrium, which will
be addressed in Section 4.
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3.3 Homoclinic orbit

In dynamical systems, a homoclinic orbit is a trajectory which connects an equilibrium
to itself. In this paper, we consider the following system with a homoclinic orbit,

(
ẋ
ẏ

)
= f(x,y) =

(
x(1− x2− y2)− y((x−1)2 +(x2 + y2−1)2)
y(1− x2− y2)+ x((x−1)2 +(x2 + y2−1)2)

)
. (9)

For this system, the origin is an unstable focus. The system has an asymptotically
stable homoclinic orbit at a circle centred at the origin and with radius 1, connecting the
equilibrium (1,0) with itself. We used the Wendland function ψ4,2 for our computations.

The collocation points were set in a region [−1.5,1.5]× [−1.5,1.5] ⊂ R2 and we
used a hexagonal grid (3) with αHexa−basis = 0.0131. We computed this example with
the almost-normalized method ẋ = f̂(x) with δ2 = 10−8. We used the following critical
values: γ1 =−0.25 for the orbital derivative and γ2 = 0.9 for the norm of the gradient.
The evaluation grid was computed with the Cartesian grid with a distance parameter
h = 0.0007. For this example, N = 60,456 and Ξ = 18,369,796.

Fig. 14. Complete Lyapunov function for system (9).
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Fig. 15. Orbital derivative of the complete Lyapunov function for system (9). It clearly shows
how the approximation to −1 succeeds over the gradient-like flow while it fails over the chain-
recurrent set.

Figures 14 and 15 show a CLF and its orbital derivative associated to system (9).
Again, the system’s behaviour is represented clearly by the CLF. The function satisfies
the condition v′(x) ≈ −1 at all point in the gradient-like flow, while this fails over the
chain-recurrent set.

The chain-recurrent set obtained by the orbital derivative is shown in Figure 16 for
failing points of the evaluation grid.

Fig. 16. Chain-recurrent set for system (9) obtained by the orbital derivative.

Unlike the previous examples, this system is rather complicated. Plotting the points
with orbital derivative v′(x)≤ γ1 =−0.25 does not sufficiently classify the orbit; some
parts are overestimated and some are missing. Using a γ1 closer to −1, as done in [2, 4,
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5, 8], helps to fully determine the homoclinic orbit. However, that will also bring more
overestimation.

Fig. 17. Norm of the gradient of v for system (9).

Figure 17 displays norm of the gradient of the CLF, while Figure 18 shows the
chain-recurrent set obtained through the gradient of the CLF.

Fig. 18. Chain-recurrent set for system (9) obtained by the gradient.

As for the system (8), this orbit is not closed either. However, it is sufficiently well-
defined. The overestimation is minor on the orbit and even if it is considerable around
the equilibrium, that is not an issue as discussed in Section 4.
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4 Discussion

The new method, using the norm of the gradient to classify the chain-recurrent set,
gives sharper image of the chain-recurrent set, i.e. it has less overestimation. Further, it
misses less parts of it. These results have been obtained without iterations. The determi-
nation of equilibria and higher-dimensional sets in the chain-recurrent set requires two
different critical values; this was observed for the previous method in [12], where we
have discussed the problem of finding appropriate critical values for the chain-recurrent
set when using the orbital derivative. As is explained in [12], we should consider two
different critical values, one for orbits and another for equilibrium points. Indeed, for a
system (1) the equilibrium points can be computed by solving f(x) = 0, often analyti-
cally. For these reasons, in this paper we have focused on classifying the orbits.

The new method requires higher computational effort when compared to one iter-
ation of the previous one: first, we require a dense evaluating – this is related to the
fact that the norm of the gradient is only close to zero on a very small set. Indeed, the
norm of the gradient becomes large close to the area where it is small! However, this
also delivers a sharp resolution of the chain-recurrent set. In future work we intend to
first use a course evaluation grid and then refine it locally in areas of interest. Second,
the computation of the gradient, as explained in Section 2.4, is computationally more
costly by factor n.

5 Conclusions

We have introduced a new method to determine the chain-recurrent set of dynamical
systems using approximations to complete Lyapunov functions. While previous meth-
ods determined the chain-recurrent set by finding points where the orbital derivative of
the complete Lyapunov functions is close to zero, i.e. v′(x) ≈ 0, the new method uses
the norm of its gradient and determines points where ‖∇v(x)‖ ≈ 0. The new method
is able to determine the chain-recurrent set better, both by detecting all areas and by
reducing its overestimation. The method will be extended in the future in order to auto-
matically determine stable and unstable components of the chain-recurrent set, as well
as stable and unstable directions by determining minima and maxima of the function v.
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9. Argáez, C., Giesl, P. and Hafstein, S. (2019c) Clustering Algorithm for Generalized Re-
currences using Complete Lyapunov Functions. In: Proceedings of the 16th International
Conference on Informatics in Control, Automation and Robotics (ICINCO), Prague, Czech
Republic, 2019, pp. 138-146.
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