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Abstract— We study the stability of an equilibrium of ar-
bitrarily switched, autonomous, continuous-time systems
through the computation of a common Lyapunov function
(CLF). The switching occurs between a finite number of
individual subsystems, each of which is assumed to be lin-
ear. We present a linear programming (LP) based approach
to compute a continuous and piecewise affine (CPA) CLF
and compare this approach with different methods in the
literature. In particular we compare it with the prevalent
use of linear matrix inequalities (LMIs) and semidefinite op-
timization to parameterize a quadratic common Lyapunov
function (QCLF) for the linear subsystems.

Index Terms— Common Lyapunov function, Linear Ma-
trix Inequalities, Linear Programming, Linear systems,
Switched Systems.

I. INTRODUCTION

SWITCHED systems often arise in applications, e.g. in
hybrid systems where the switching is due to the inter-

action between continuous-time dynamics, i.e. the individual
subsystems, and discrete-time dynamics, i.e. the switching.
Another common source of switched systems is uncertainty
quantification in continuous-time systems and the associated
differential inclusions. Some general references for switched
systems and stability are [15], [27], [41], [43].

A linear system has an exponentially stable equilibrium at
the origin, if and only if there exists a quadratic Lyapunov
function for the system, and a Lyapunov function can be
efficiently computed [6] by solving the continuous-time Lya-
punov equation. This is discussed in essentially all textbooks
on stability theory, e.g. [24], [26], [40], [45]. Because of
this simple characterization for linear systems, a considerable
effort has been devoted to characterize when an arbitrarily
switched system, where each subsystem is linear, possesses
a quadratic common Lyapunov function (QCLF). For planar
systems with two subsystems, there is a characterization in
terms of the negativity of the real parts of the eigenvalues of
all pairwise convex combinations of the system matrices and
their inverses, see [14] and [27] for some generalizations. In
the literature several sufficient conditions have been derived
for the existence of a QCLF for more general systems, see
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e.g. [2], [27], and if such a Lyapunov function exists then
one can be computed by numerically solving a linear matrix
inequality (LMI) problem [10]; see also [28]. Note, however,
that it is possible that an arbitrarily switched system has an
exponentially stable equilibrium at the origin, but there does
not exist a QCLF for the system. For this reason several
methods computing norms (Minkowskii, weighted), that can
serve as Lyapunov functions, have been proposed. They usu-
ally use linear programming (LP) to parameterize or verify
the conditions of a Lyapunov function, see e.g. [7]–[9], [11],
[12], [35]–[38], [47], [48]; the converse theorems from [33],
[34] have been important for many of these approaches. For
more methods see, e.g., the review [20].

We will present a somewhat different approach to pa-
rameterize continuous and piecewise affine (CPA) Lyapunov
functions for arbitrarily switched systems. It is an adaptation of
the CPA method to compute Lyapunov functions, see e.g. [5],
[19], [23], [30], to the arbitrarily switched linear case. Note
that in the CPA method often an arbitrary small neighbourhood
of the equilibrium at the origin is left out of the domain of
the computed Lyapunov function, while in the linear case
any such neighbourhood defines the Lyapunov function on
the whole state-space. Suitable classes of Lyapunov functions
for linear switched systems have been thoroughly studied
in a recent preprint [32], see also [22], [31], where it is
shown that the class of piecewise linear functions is large
enough to contain Lyapunov functions whenever the origin is
exponentially stable. Note, however, that these results are not
directly applicable to our method, as we use an a priori fixed
triangulation. Nevertheless, considering our numerical results,
we are optimistic that the results from [32] can be adapted to
prove that our method is constructive.

II. PRELIMINARIES

In this paper we consider an arbitrarily switched system of
the following type: Let Ai ∈ Rn×n, i = 1, 2, . . . , N , and
consider the system

ẋ = Aσx (1)

for all σ ∈ P . Here, P denotes the set of all switching
signals σ : [0,∞) → {1, 2, . . . , N} such that σ is right-
continuous and has only a finite number of discontinuity
points on any finite interval. A solution to the system (1)
with fixed σ ∈ P and with initial value ξ ∈ Rn at time
t = 0, is an absolutely continuous function t 7→ ϕσ(t, ξ)
that fulfills ϕσ(0, ξ) = ξ and ϕ̇σ(t, ξ) = Aσ(t)ϕσ(t, ξ)



at every t ≥ 0 that is not a discontinuity point of σ. In
essence, the solution trajectory of (1) is obtained by gluing
together solution trajectory segments of the systems ẋ = Aix,
i = 1, 2, . . . , N , using i = σ([tj , tj+1)), where t0 = 0 and
t1 < t2 < . . . are the discontinuity-points of σ. Arbitrary
switching refers to the fact that we are interested in the family
of all solutions as σ varies over all possible switching signals.

The exponential stability of the origin is equivalent to the
existence of a common Lyapunov function (CLF) for the
system (1) [41], i.e. a locally Lipschitz continuous function
V : Rn → R that is a Lyapunov function for all the individual
subsystems of (1). This means that there exist α1, α2, α3 ∈
K∞, where K∞ is the set of all strictly increasing continuous
functions α : [0,∞) → [0,∞) fulfilling α(0) = 0 and
limx→∞ α(x) = ∞, such that for all x ∈ Rn and all σ ∈ P
the inequalities

α1(∥x∥2) ≤ V (x) ≤ α2(∥x∥2) and (2)

D+
σ V (x) := lim sup

h→0+

V (ϕσ(h,x))− V (x)

h
≤ −α3(∥x∥2)

hold true. The Dini-derivative D+
σ V (x) is a generalization of

the orbital derivative; for a differentiable V we have

D+
σ V (x) = ∇V (x) • Aσ(0)x.

Further, since V is locally Lipschitz, we have

D+
σ V (x) = lim sup

h→0+

V (x+ hAσ(0)x)− V (x)

h
,

see e.g. [17, Lem. 3.3]; note that σ(h) = σ(0) for all small
enough h > 0. The second inequality in the condition (2) is
equivalent to

D+V (x) := max
σ∈P

D+
σ V (x) ≤ −α3(∥x∥2),

or
lim sup
h→0+

V (x+ hAix)− V (x)

h
≤ −α3(∥x∥2)

for i = 1, 2, . . . , N .
Denote by Sn the set of all symmetric Rn×n matrices and

denote the positive (semi)definiteness of P by (P ⪰ 0) P ≻ 0.
Negative (semi)definiteness is analogously denoted (P ⪯ 0)
P ≺ 0. It is well known that the existence of a QCLF for (1)
is equivalent to the existence of a matrix P ∈ Sn, such that

P ≻ 0 and AT
i P + PAi ≺ 0 for i = 1, 2, . . . , N . (3)

III. CPA LYAPUNOV FUNCTIONS FOR ARBITRARILY
SWITCHED LINEAR SYSTEMS

THE CPA method to compute Lyapunov functions at-
tempts to parameterize a Lyapunov function using LP on

a compact domain D ⊂ Rn of the state-space of the system
in question. Thus, first a triangulation T of the domain D is
needed, i.e. a subdivision of D into simplices

Sν = co{xν
0 ,x1, . . . ,x

ν
n}

:=

{
n∑

i=0

λix
ν
i :

n∑
i=0

λi = 1 and all λi ≥ 0

}
.

We write DT for the set-theoretic union of the simplices in T
and say that T triangulates DT = D ⊂ Rn. The triangulation
must be shape-regular in the sense that two different simplices

Sγ := co{xγ
0 ,x

γ
1 , . . . ,x

γ
n}, γ ∈ {ν, µ},

of the triangulation intersect in a common face

Sν ∩Sµ = co{y0,y1, . . . ,yk}, yj = xν
ℓνj

= xµ
ℓµj
,

where j = 0, 1, . . . , k < n, ℓνj , ℓ
µ
j ∈ {0, 1, . . . , n}, and

ℓγj ̸= ℓγm if j ̸= m, γ ∈ {ν, µ}. We are only interested in
non-degenerated simplices, i.e. Sν ∈ T has an n-dimensional
volume strictly larger than zero or equivalently, the vertices
xν
0 ,x

ν
1 , . . . ,x

ν
n are affinely independent; see [18] for details.

Particular to our problem of parameterizing CPA Lyapunov
functions for (1), where each subsystem is linear, is that we
want a triangulation T , such that DT is a neighbourhood of
the origin and each simplex Sν ∈ T has the origin as a vertex.
The advantage is that for linear systems a CPA Lyapunov
function, defined on a neighbourhood of the origin, can easily
be extended to a Lyapunov function on the entire Rn. Concrete
instances of such triangulations will be constructed in the next
section.

A. The Triangulation T F
K

A suitable concrete triangulation for our aim of param-
eterizing common Lyapunov functions for the system (1)
is the triangular-fan of the triangulation in [18], where its
efficient implementation is also discussed. In its definition
we use the functions RJ : Rn → Rn, defined for every
J ⊂ {1, 2, . . . , n} by

RJ (x) :=

n∑
i=1

(−1)χJ (i)xiei, χJ (i) :=

{
1, if i ∈ J ,
0, if i /∈ J .

where ei is the standard ith unit vector in Rn. Thus, RJ (x)
is the vector x, except for a minus has been put in front of
the coordinate xi whenever i ∈ J .

We first define the triangulation T std and use it to construct
the intermediate triangulation TK , which in turn is used to
define our desired triangulation T F

K .
The standard triangulation T std consists of the simplices

SzJσ := co
{
xzJσ
0 ,xzJσ

1 , . . . ,xzJσ
n

}
,

where

xzJσ
j := RJ

(
z+

j∑
i=1

eσ(i)

)
, (4)

for all z ∈ Nn
0 = {0, 1, . . .}, all J ⊂ {1, 2, . . . , n}, all σ ∈ Sn,

and j = 0, 1, . . . , n; Sn denotes the set of all permutations of
{1, 2, . . . , n} and eσ(i), j = σ(i), the standard jth unit vector.

Now fix a K ∈ N+ = {1, 2, . . .} and define the hypercube
HK := [−K,K]n. Consider the simplices SzJσ ⊂ HK in
T std, that intersect the boundary of HK . We are only interested
in those intersections that are (n − 1)-simplices, i.e. we take
every simplex with vertices xj := RJ

(
z+

∑j
i=1 eσ(i)

)
,

j ∈ {0, 1, . . . , n}, where exactly one vertex xj∗ satisfies
∥xj∗∥∞ < K and the other n of the n + 1 vertices satisfy



-0.15 -0.1 -0.05 0 0.05 0.1 0.15

X

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y

Fig. 1. The triangulation T F
8 in two dimensions, where the vertices of

the triangulation have additionally been mapped with a matrix R ∈ S2,
R ≻ 0 (above), and T F

5 in three dimension (below); note that the origin
is a vertex of all the triangles in T F

8 and all the tetrahedra in T F
5 .

∥xj∥∞ = K, i.e. for j ∈ {0, 1, . . . , n} \ {j∗}. Then we
replace the vertex xj∗ by 0; it is not difficult to see that
j∗ is necessarily equal to 0. The collection of such vertices
triangulates HK and this new triangulation of HK is our
desired triangulation TK .

It has been shown [3] that it is often advantageous in the
CPA method to map the vertices of the triangulation by the
mapping F : Rn → Rn, F(0) = 0 and

F(x) :=
∥x∥2
∥x∥∞

x, if x ̸= 0. (5)

Note that F maps the hypercubes {x ∈ Rn : ∥x∥∞ = r} to
the spheres {x ∈ Rn : ∥x∥2 = r}.

Finally, we define the triangulation T F
K we will use in the

LP problem to parameterize CPA Lyapunov functions. Let T F
K

to be the triangulation consisting of the simplices

Sν := co{0,xν
1 ,x

ν
2 , . . . ,x

ν
n}, xν

i = F(xzJσ
i ),

where
co
{
0,xzJσ

1 ,xzJσ
2 , . . . ,xzJσ

n

}
∈ TK .

Subsequently the vertices of the simplices in the new trian-
gulation T F

K can be mapped x 7→ Rx, where R ∈ Rn×n

is a nonsingular matrix; in practice usually R ≻ 0. This is
studied in some detail in [21]. Figure 1 depicts two exemplary
triangulations of the type T F

K for two and three dimension. In
our approach for the switched system (1), however, we will
not use such a mapping x 7→ Rx, R ≻ 0, of the vertices to

better adapt the triangulation to the problem, but instead use
a coordinate transform for the system to adapt the problem
better to the triangulation, see Section III-D below.

B. LP Problem to Parameterize CPA Lyapunov functions

We are now ready to state our LP problem to parameterize
a CPA common Lyapunov function for system (1). Note that it
is a feasibility problem, i.e. any feasible solution can be used
to parameterize a CPA Lyapunov functions.

We use two constants ε1, ε2 > 0 in the LP problem. In
theory both can w.l.o.g. be set equal to one, as explained below.
In practice different values can be useful.

The variables of the LP problem are Vx ∈ R for every vertex
of a simplex in T F

K .
The constraints of the LP problem are:

C1) The first set of constraints are V0 = 0 and for every
vertex x of a simplex in T F

K :

Vx ≥ ε1∥x∥2 (6)

C2) The second set of constraints is more involved. For every
simplex Sν := co{0,xν

1 ,x
ν
2 . . . ,x

ν
n} ∈ T F

K we define
the matrix Xν = (xν

1 xν
2 · · ·xν

n), i.e. xν
k is the kth

column of Xν . Further, we define the vector of variables
vν =

(
Vxν

1
Vxν

2
· · · Vxν

n

)T
.

The constraints are: for every simplex Sν ∈ T F
K , for all

j = 0, 1, . . . , n and all i = 1, 2, . . . , N :

vT
ν X

−1
ν Aix

ν
j ≤ −ε2∥xν

j ∥2. (7)

Note that by multiplying the variables Vx of a feasible solution
by (min{ε1, ε2})−1 the inequalities (6) and (7) are fulfilled
with ε1 = ε2 = 1 on the right-hand-side. Further, there
either exists a feasible solution for all pairs of constants
ε1, ε2 > 0 or for none; i.e. their numerical values are only
an implementation issue.

C. Feasible Solution delivers a CPA Lyapunov functions

Assume the LP problem in Section III-B has a feasible
solution. We then define the CPA function V : DT F

K
→ R

in the following way: For every x ∈ DT F
K

there exists a
simplex Sν = co{0,xν

1 ,x
ν
2 . . . ,x

ν
n} ∈ T F

K such that x ∈ Sν

and there exist a unique λ ∈ [0, 1]n,
∑n

j=1 λj ≤ 1, such
that x =

∑n
j=1 λjx

ν
j . We define V (x) =

∑n
j=1 λjVxν

j
. It

is not difficult to see that V is a continuous function that
is linear on each simplex Sν ∈ T F

K , in particular it has the
constant gradient ∇Vν := vT

ν X
−1
ν (row vector) on the interior

of Sν , see e.g. [19, Rem. 9]. Hence, for any x ∈ Sν ∈ T F
K ,

x =
∑n

j=1 λjx
ν
j , we have for any i = 1, 2, . . . , N by C2 and

the convexity of the norm that

∇Vν • Aix = vT
ν X

−1
ν Ai

n∑
j=1

λjx
ν
j =

n∑
j=1

λjv
T
ν X

−1
ν Aix

ν
j

≤ −ε2

n∑
j=1

λj∥xν
j ∥2 ≤ −ε2

∥∥∥ n∑
j=1

λjx
ν
j

∥∥∥
2

= −ε2∥x∥2.



Now, for any x ∈ D◦
T F
K

we have that for any i = 1, 2, . . . , N

there exists a simplex Sν ∈ T F
K and an h > 0, such that

x + [0, h]Aix ⊂ Sν ; note that the ν depends on x and i.
Because V is linear on Sν we have

lim sup
h→0+

V (x+ hAix)− V (x)

h
= ∇Vν • Aix ≤ −ε2∥x∥2

and since this holds true for all i = 1, 2, . . . , N we have
D+V (x) ≤ −ε2∥x∥2. Since

V (x) =

n∑
j=1

λjVxν
j
≥ ε1

n∑
j=1

λj∥xν
j ∥2 ≥ ε1∥x∥2

by the constraints C1, it is clear that V fulfills the conditions
(2) for a Lyapunov function for the switched system (1) for
every x ∈ D◦

T F
K

. By extending V to Rn in the obvious
way, i.e. for every x ∈ Rn there exists an Sν and unique
numbers λi ≥ 0 such that x =

∑n
j=1 λjx

ν
j (a cone defined

by the vertices of Sν) and we set V (x) =
∑n

j=1 λjVxν
j

as
before, we see that V fulfills, with α1(y) = ε1y, α2(y) =
max∥x∥2=1 V (x) · y, and α3(y) = ε2y, the conditions (2) for
a Lyapunov function for all x ∈ Rn.

D. Augmented LP approach

Note that sublevel sets of Lyapunov functions are forward
invariant for the dynamics and their shape influences how
many simplices we need in the LP problem. Hence, one can
improve the approach by coordinate transforms that lead to
Lyapunov functions with level sets that are closer to being
hyperspheres and thus requiring fewer simplices and fewer
constraints in the LP problem. Intuitively, a long and thin
ellipsoid, say x2 + c2y2 = 1 in the plane with c2 ≫ 1, has
most of its structure in simplices with y ≈ 0, whereas the
structure of x2+y2 = 1 is evenly distributed on the simplices
of our triangulation T F

K .
For a P ∈ Sn, P ⪰ 0, there exists for every k ∈ N a unique

Q ∈ Sn, Q ⪰ 0, such that Qk = P , see e.g. [25, Th. 7.2.6].
We define P

1
k := Q and P− 1

k := Q−1.
We first show that for one system we can find a particularly

simple Lyapunov function for a suitably transformed system.
Indeed, if x 7→ xTPx is a Lyapunov function for the system
ẋ = Ax, i.e. ATP + PA = −Q for a Q ≻ 0, then y 7→
yTy is a Lyapunov function for the system ẏ = P

1
2AP− 1

2y
(coordinate transform y = P

1
2x); just note that

P
1
2

(
P− 1

2ATP
1
2 + P

1
2AP− 1

2

)
P

1
2 = ATP + PA = −Q

and P− 1
2QP− 1

2 ≻ 0. Thus, using the coordinate transform
y = P

1
2x delivers a particularly simple Lyapunov function

for the transformed system.
Now we assume that we have found a Lyapunov function

for the transformed system and show how to find a Lyapunov
function for the original system: if x 7→ xT P̃x is a Lyapunov
function for the system ẋ = R

1
2AR− 1

2x, R ∈ Sn and R ≻ 0,
i.e.

R− 1
2ATR

1
2 P̃ + P̃R

1
2AR− 1

2 = −Q̃, Q̃ ≻ 0,

then x 7→ xTPx, P = R
1
2 P̃R

1
2 , is a Lyapunov function for

the system ẋ = Ax and

ATP + PA = −R
1
2 Q̃R

1
2 .

We will now apply these general ideas for switched systems
with more than one linear system. In this case, it is not obvious
which transformation will result in a simple Lyapunov func-
tion. In our augmented approach we first compute quadratic
Lyapunov functions x 7→ xTPix for the individual subsystems
ẋ = Aix and then use a weighted sum, w.l.o.g. a convex sum,
i.e. λ ∈ [0, 1]N with

∑N
i=1 λi = 1, namely

R :=

N∑
i=1

λiPi (8)

and attempt to compute a CLF for the switched system (1) with
Ai replaced by R

1
2AiR

− 1
2 , i = 1, 2, . . . , N . Once we have

computed a Lyapunov function for the transformed system,
we can easily compute the corresponding Lyapunov function
for the original system. The advantage of this approach will
become clear in the example in the next section. However, we
will also see that it is not obvious which convex combination
of the Pis is optimal.

E. Example
Consider the system ẍ+ 2ẋ+ f(t)x = 0 for a measurable

function f : [0,∞) → R fulfilling a ≤ f(t) ≤ b for a, b ∈ R.
Solutions are understood in the sense of Carathéodory, see
e.g. [46, §10,Supp. II]. Its state-space form is

d

dt

(
x1

x2

)
=

(
0 1

−f(t) −2

)(
x1

x2

)
(9)

and the asymptotic stability of (x1, x2) = (x, ẋ) = (0, 0) for
the system can be asserted by showing the stability of the
origin for system (1) with N = 2,

A1 =

(
0 1
−a −2

)
, and A2 =

(
0 1
−b −2

)
. (10)

The reason for this is that this arbitrarily switched system can
by the Filippov-Wažewski Theorem approximate any solution
trajectory of the differential inclusion ẋ ∈ co{A1x, A2x} and
a solution to (9) is a solution to the differential inclusion,
see e.g. [4], [16]. System trajectories of ẋ = A1x and
ẋ = A2x are shown in Figure 2 for different values for the
constants a and b. The case with fixed a = 0.01 was studied
in [37] and it was shown that stability can be affirmed for
b = 11.3, in comparison to b = 4.3 using the circle criterion,
a generalization of the Nyquist criterion, see [13]. In [13] it is
additionally stated that stability can be guaranteed for b = 11.6
using variational analysis. Further, it is shown in [39] that the
origin is unstable for b ≥ 12.5.

We implemented the LMI approach for computing a QCLF
as {

P − εI ⪰ 0

AT
i P + PAi + εI ⪯ 0 for i = 1, 2,

(11)

with ε = 10−5. Since semidefinite solvers sometimes er-
roneously report feasibility, we verify (3) for the computed
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Fig. 2. Trajectories for ẋ = A1x for different a (left) and for ẋ =
A2x for different b (right). The matrices A1 and A2 come from (10)
and define the subsystems for the arbitrarily switched system (1) used
to investigate the stability of the origin for system (9).

solution. Using the LMI approach the best results we obtained
with a = 0.01 was b = 4.40; for higher values of b we
either did not get a solution or the reported solution did not
fulfill (3). We used the LMI solver sdpt3 [44] implemented in
Matlab with YALMIP [29], with a subsequent verification of
the inequalities. We additionally used the solvers Mosek [1]
and SeDuMi [42] and got the same results.

Using the LP approach from Section III-B with the trian-
gulation T F

50 we obtained with a = 0.01 the value b = 11.72,
a better result than b = 11.3 in [37] or b = 11.6 reported
in [13], and a much better result than b = 4.4 obtained with
LMI.

Let us compare these results with the augmented LP ap-
proach, outlined in Section III-D. First, we define

Rλ = (1− λ)P1 + λP2,

where AT
i Pi + PiAi = −I, i = 1, 2.

Then we attempt to compute a common CPA Lyapunov func-
tion for the switched system (1) with Ai from (10) replaced by
R

1
2

λAiR
− 1

2

λ , i = 1, 2. We compared the results for the values
λ = 0, 0.1, . . . , 1 for the parameter λ ∈ [0, 1], see Figure
3 (middle). The highest value obtained was b = 11.89 with
λ = 0.7 (recall that a = 0.01).

We also studied the influence of having more triangles in
the triangulation T F

K , i.e. K = 50, 100, 200, 1000, 1500, 2000,
see Figure 4 (middle). For each K we first used the LP
approach from Section III-B (without Rλ) and subsequently
the augmented LP approach from Section III-D (with Rλ),
where we put the best value obtained with λ = 0, 0.1, . . . , 1 in
the graph. The best value obtained was b = 12.34, either with
K = 2000 and no coordinate transform, or with K = 1500
and the coordinate transform with λ = 0.9. Note that in
particular for lower K, the results are notably better when
using the coordinate transform. However, the choice of the
optimal values for λ is far from transparent, see Figure 3
(middle).

We repeated all these computations with a = 0.01 and a =
0.1, see Figure 3 (top, bottom) and Figure 4 (top, bottom).
Using the LMI approach we obtained b = 4.12 and b = 5.36
for a = 0.001 and a = 0.1 respectively. With a = 0.1 we
obtained b = 13.23 with the LP method and K = 2000 and
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Fig. 3. The optimal b as a function of λ with T F
50 for a = 0.1, 0.01,
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Fig. 4. The optimal b as a function of K in T F
K , both using the LP

approach and the augmented LP approach, for a = 0.1, 0.01, and
0.001.

with the augmented LP we obtained b = 13.25, either with
λ = 0 and K = 1500 or λ = 0.8 and K = 1000. With a =
0.001 we obtained b = 12.18 with the LP method and K =
2000 and with the augmented LP we obtained b = 12.19 with
λ = 1 and K = 2000. Some of these results are compiled in
Table I. Thus, again our new methods compare very favorably
to the LMI approach, but the choice of the optimal λ parameter
is not transparent. Indeed, for a = 0.1 the value of the optimal
b is not even a monotonically increasing function of K. The
dependence of the optimal b as a function of λ and K remains
an open question and will be investigated in the future.

IV. CONCLUSIONS

We presented a linear programming (LP) algorithm to
compute a common continuous and piecewise affine (CPA)
Lyapunov function for the arbitrarily switched system (1). It
is an adaptation of the CPA method to compute Lyapunov
functions to (1). Further, we presented an adapted linear pro-
gramming (LP) approach, where a coordinate transform using
quadratic Lyapunov functions for the individual subsystems of
the switched system (1) is used to improve the LP approach.



TABLE I
THE BEST RESULTS FOR b FOR a FROM DIFFERENT APPROACHES.

a LMI LP Aug LP Circ. cri. [13] [37]
0.1 5.36 13.23 13.25

0.01 4.40 12.34 12.34 4.3 11.6 11.3
0.001 4.12 12.18 12.19

We compare our novel methods to different approaches in
the literature for an example. In particular, we compare our
methods to the usual quadratic common Lyapunov function
(QCLF) computed by linear matrix inequalities (LMIs). In all
cases our new methods compare favorably.
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