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Abstract. Radial basis functions are certain real-valued functions that
depend only on the distance of their argument to a fixed point, i.e.
x 7→ Ψ(‖x − x0‖). Among them, one can find Gaussians, multiquadrics
and, the subject of this paper, Wendland functions that are compactly
supported and positive definite functions [20], constructed as polynomi-
als on their compact support. They find a great amount of applications,
in particular, in algorithms to construct complete Lyapunov functions.
In this paper, we present a new code to construct Wendland functions of
any order, as well as their derived auxiliary functions used for numerically
solving PDEs. This new code simplifies the structure and the ease of use
compared to the code presented in [4]. Further, it optimises the routines
to evaluate the functions and presents a new feature: a compilable LATEX
report with all the instructions and steps to construct them.
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mathematics, interpolating functions, compactly supported functions

1 INTRODUCTION

Wendland functions are compactly supported Radial Basis Functions (RBFs)
widely used in (generalised) interpolation problems, including solving linear Par-
tial Differential Equations (PDEs).

Let N points x1, . . . ,xN ∈ Rn (collocation points), xi 6= xj if i 6= j, and asso-
ciated values f1, . . . , fN ∈ R be given. A classical interpolation problem consists
of finding a function f : Rn → R satisfying f(xj) = fj for all j = 1, . . . , N . In a
generalised interpolation problem one prescribes the values of linear functionals
applied to the function f . By prescribing the values of a linear differential oper-
ator, generalised interpolation problems can be used to numerically solve linear
PDEs.

RBFs as kernels for Reproducing Kernel Hilbert Spaces (RKHS) provide a
mighty machinery for solving interpolation and generalised interpolation prob-
lems in arbitrary dimensions [8,10,18]. Further, the error between the numerically
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computed interpolants and the true solution can be bounded above in terms of
the fill distance, which is the proper measure of the density of the collocation
points.

Another advantage of using RBFs and generalised interpolation problems for
solving PDEs is that the collocation points do not have to be evenly distributed
and no triangulation of the phase-space is needed. Such methods have been
used in numerous different settings in areas as different as geography, image
processing, various engineering applications, numerical integration [9], machine
learning and neural networks, cf. e.g. [9,22]. The authors are mainly interested in
RBFs methods for numerically solving PDEs [11], in particular in solving Zubov-
like PDEs for the computation of (complete) Lyapunov functions in dynamical
systems [12,1,2,3].

A (generalised) interpolation problem aims to select a function in a given
function space, typically a RKHS, that optimally fulfills certain conditions. The
Wendland functions are polynomials on their compact support and are well
suited as kernels for RKHS. The structure of a particular Wendland function
depends on two parameters and they can be defined in a recursive manner.

In this paper we present a major revision of our first open-source code to com-
pute Wendland functions [4] and give a new simplified algorithm implemented in
C++ to explicitly compute any Wendland function. We have mentioned before
in [4] the existence of different code, written in MAPLE [24,17] as well as the
C++ libraries libMesh [13] and FOAM-FSI [7] that can be used to evaluate and
provide Wendland functions. Further, there is a code written in R that can be
used to evaluate Wendland functions for given radial values [14]. However, these
tools are limited to a predefined selection of Wendland functions or to the use
of commercial computational packages. In [6] a program written in Python was
presented, that generates C++ header files and code for Wendland functions,
that can be included in C++ projects. In our code the use is somewhat simpler
using classes and the evaluation of the Wendland functions and their auxiliary
functions uses the factorised form, that was shown in [5] to give much more exact
results than when they are not factorised.

We present a C++ code that includes all necessary operations to compute
any Wendland function and uses the Armadillo C++ library for linear algebra
and scientific computing [15,16], which is also distributed free of charge.

Further, as a new tool, our code produces a LATEX report in which all the oper-
ations to construct a Wendland function and auxiliary functions are summarised.
This tool was introduced because the computation of Wendland functions and
their auxiliaries requires the repeated application of several operations, that can
be error prone in practice:

– Polynomial integration,
– Polynomial derivation,
– Polynomial factorisation.

Such a report provides a useful debugging tool and delivers the constructed
Wendland functions and auxiliary functions in LATEX format, both factorised
and expanded.
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The new algorithm provides the coefficients of the polynomials of the Wend-
land functions as integers, which is the form in which Wendland functions are
usually presented [12]. When Wendland functions are used to solve generalised
interpolation problems, they appear linearly on both sides of linear equations and
therefore they are essentially only defined up to a non-zero multiplicative con-
stant. If the integer coefficients cannot be represented by built in integer types
then the program reports this. In fact, for practical computations Wendland
functions are commonly used for quite low parameters l, k, because otherwise
the condition number of the collocation matrix is often very large.

2 GENERALISED INTERPOLATION USING
WENDLAND FUNCTIONS

In this section we sum up the most important aspects of generalised interpolation
using Wendland functions. Consider a Hilbert space H ⊂ C(Rn,R) of continuous
functions f : Rn → R and its dual H∗, i.e. the set of all linear and continuous
functionals λ : H → R. In a RKHS the point evaluation functional δx0

(f) =
f(x0), evaluating the function at a point x0 ∈ Rn, is inH∗. Given more regularity
of the functions in H, differential operators evaluated at a point, e.g., λ =
δx0
◦ ∂

∂xj
, j ∈ {1, . . . , n}, are also in H∗.

Definition 1 (Generalised interpolation problem). Given N linearly inde-
pendent functionals λ1, . . . , λN ∈ H∗ and corresponding values f1, . . . , fN ∈ R,
a generalised interpolant f ∈ H satisfies λj(f) = fj for all j = 1, . . . , N .

Note that the classical interpolation problem is a special case with λj = δxj
.

A norm-minimal generalised interpolant is an interpolant that is minimal in
the norm of the Hilbert space H, i.e.

arg min
f∈H

{‖f‖H : λj(f) = fj , 1 ≤ j ≤ N}.

The norm-minimal interpolant is unique and can be written as a linear com-
bination of the Riesz representers vj ∈ H of the functionals, cf. e.g. [22], and if
H is a RKHS the Riesz representers have a simple formula.

Recall that a RKHS is a Hilbert space H with a reproducing kernel Φ :
Rn × Rn → R such that

1. Φ(·,x) ∈ H for all x ∈ Rn

2. g(x) = 〈g, Φ(·,x)〉H for all g ∈ H and x ∈ Rn

Here 〈·, ·〉H is the inner product of H.
The Riesz representer of λj ∈ H∗ has the formula vj = λyj Φ(·,y), i.e. λj

applied to x → Φ(x,y) ∈ H. Thus we can write the norm-minimal interpolant
as f(x) =

∑N
j=1 βjλ

y
j Φ(x,y), where the interpolation conditions λj(f) = fj ,

1 ≤ j ≤ N , are used to fix the coefficients βj .
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RBF kernels are such that Φ(x,y) := Ψ(‖x−y‖) for a function Ψ : [0,∞)→
[0,∞). There are numerous RBFs that can serve as kernels for RKHS and dif-
ferent RBFs will lead to different RKHSs.

The so-called Wendland functions [23,19,20,21,24] have a compact support
and are polynomials on their support. The corresponding RKHSs are norm-
equivalent to Sobolev spaces, which together with the simple form of the Wend-
land functions make them well suited as kernels to solve linear PDEs.

The Wendland functions Ψ0
l,k, where l ∈ N and k ∈ N0, can be defined

recursively as follows, cf. [20].

Definition 2 (Wendland function). The Wendland function Ψ0
l,k, where l ∈

N and k ∈ N0, is defined recursively by

Ψ0
l,0 (r) = (1− r)l+

Ψ0
l,j+1(r) =

∫ 1

r

tΨ0
l,j (t) dt for j = 0, 1, . . . , k − 1, (1)

where x+ = max{x, 0} and xl+ := (x+)
l.

Hence

Ψ0
l,k(r) =

∫ 1

r

tk

∫ 1

tk

tk−1 · · ·
∫ 1

t2︸ ︷︷ ︸
k integrations

t1Ψ
0
l,0 (t1)

k differentials︷ ︸︸ ︷
dt1 · · · dtk . (2)

Note that the support of the Wendland function Ψ0
l,k(r) is the interval [0, 1] and

thus, for a constant c > 0 the support of the function x 7→ Ψ0
l,k(c‖x − x0‖)

is a ball of radius c−1, centered at x0. In applications for dynamical systems
we deal with certain differential operators that require the following auxiliary
functions, derived from the Wendland functions. They are also the reason, why
it is advantageous to include a constant c > 0 in the definition of a Wendland
function, i.e. consider the function r 7→ Ψ0

l,k(cr) rather than Ψ0
l,k(r).

Definition 3 (Auxiliary functions Ψ1
l,k and Ψ2

l,k). For a fixed c > 0 and a
given Wendland function r 7→ Ψ0

l,k(cr) the auxiliary functions r 7→ Ψ1
l,k (cr) and

r 7→ Ψ2
l,k (cr) are defined as follows for r > 0,

Ψ1
l,k (cr) = r−1

d

dr
Ψ0

l,k (cr) and Ψ2
l,k(cr) = r−1

d

dr
Ψ1

l,k (cr).

Remark 1. Auxiliary functions of higher order can be defined equivalently. The
presented code can easily be adapted to compute them as well.

Remark 2. In case Ψj
l,k (cr) can be continuously extended to r = 0, this is done

and the function is also defined for r = 0.
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3 ALGORITHM

As seen in (1), the parameters that define the polynomial’s degree are k and
l, where l denotes the degree of the initial polynomial and k is the number of
iterative integrations.

An outline of the algorithm is as follows:

1. Compute the binomial expansion of (1 − t1)
l. We do this by computing

Pascal’s triangle and expand the polynomial accordingly. The coefficients
are stored in an array, starting with the coefficient for t01 := 1 (left), then
the coefficient for t11, etc.

2. After this, the iterative procedure starts. Remember that, according to (2),
k is the number of integrations that will be performed. The operations per-
formed by the algorithm are to multiply a polynomial with the free variable
and to integrate, cf. (1). Both correspond to simple manipulations on the
vector of coefficients of the polynomial.
(a) Multiplying with the free variable corresponds to shifting all elements to

the right and put zero in the first position. After multiplying by tj an
integration is performed.

(b) Integration: We compute the following integral, with f as the polynomial
from the last step, cf. (2).∫ 1

tj+1

f(tj)dtj = F (1)− F (tj+1). (3)

Again this corresponds to shifting all elements to the right, but now the
coefficient as of tsj+1 in F (tj+1) is multiplied with 1/s. The first position,
the coefficient for t0j+1 := 1, becomes the sum of the other coefficients.
All other coefficients must then be multiplied by −1, corresponding to
F (1) − F (tj+1). Notice that the new coefficients will in general not be
integer numbers.

3. Once the for-loop ends at k, the remaining step is to compute the factor
to convert all coefficients to integers. For this the algorithm keeps track of
the least common denominator lcd and the greatest common factor hcf
of the coefficients of the polynomials. If no overflow occurs the coefficients
are multiplied by the factor round(lcd/hcf), which makes all coefficients
integers. If there is an overflow the execution is stopped and the user is
warned.

4. The final polynomial Ψ0
l,k(cr) is of order l+1+2 ·k in x = cr and is used to

compute the auxiliary functions Ψ1
l,k(cr) and Ψ

2
l,k(cr) as in Definition 3. For

the efficient implementation, it is of use to note that in general for j > 0 the
function Ψ j

l,k(cr)/c
2j can be written as a rational function of x = cr, with

the polynomial xu, u ∈ N0, in the denominator. That is

Ψ j
l,k(cr) =

v∑
i=−u

ai(cr)
ic2j = (cr)−uc2j

v+u∑
i=0

ai(cr)
i
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and the transformation from Ψ j
l,k(cr) to Ψ

j+1
l,k (cr) is, once again, essentially

just a simple manipulation of a vector of coefficients.
5. Finally, Ψ j

l,k(cr), j = 0, 1, 2, are factorised in the form

Ψj
l,k(cr) = c2j(1− cr)s ft(cr)

(cr)u
,

where ft(cr) =
∑t

i=0 bi(cr)
i is a polynomial in x = cr of maximal degree. For

this we use the fact that the coefficients in the polynomial, or polynomial
numerator, of Ψj

l,k has integer coefficients and thus, iterated polynomial
synthetic division gives exact results and the polynomial ft(cr) also has
integer coefficients.

6. Along the process the report in LATEX is written.

Remark 3. Recall that when Wendland functions are used in generalised inter-
polation, they can be multiplied with a non-zero constant because they appear
on both sides of linear equation. Therefore, they are most commonly presented
with integer coefficients as in [12].

3.1 EVALUATION

To evaluate the functions we use Horner’s scheme. A few comments are in order:
The evaluation routine is the same for all the functions, the Wendland function
and all its auxiliary functions. In general we evaluate for u, v ∈ N0 and for x = cr,
0 < x < 1, the expression

Ψ j
l,k(x) =

v∑
k=−u

ak(x)
kc2j = c2j(1− x)s ft(x)

xu
= c2j(1− x)sx−u

t∑
i=0

bix
i

using Horner’s scheme for the polynomial term
t∑

i=0

bix
i. For x ≥ 1 the routine

returns zero as expected. If u = 0 the function can be continuously extended to
x = 0 and is evaluated as above, cf. e.g. Proposition 3.5 in [12].

4 HOW TO USE / EXAMPLES

The program is found in https://github.com/LyapXool/WendlandXool-V2 and
consists of the files wendland.cpp and wendland.hpp.
Further, the file WendlandExample.cpp included, contains an example of its use.
The class WendRBF delivers the interface to the Wendland functions to the user.
To construct the Wendland function Ψ0

l,k(cr), for some constants l ∈ N, k ∈ N0,
and c > 0, together with its auxiliaries Ψ1

l,k(cr) and Ψ2
l,k(cr), the user can simply

make it as an object using the constructor with the corresponding parameters:

WendRBF(int l, int k, double c, bool printreport)
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If printreport=true then a detailed LATEX compilable report on the construc-
tion of theWendland function and its auxiliaries is written in wendlandreport.tex.
The default value is false and no report is written. After its initialisation/creation
the user can evaluate Ψ0

l,k(cr) at any r ≥ 0 using

double WendRBF::operator()(double r)

Note that the argument should be r, not x = cr. To evaluate Ψ1
l,k(cr) at r one

uses the member function double WendRBF::aux1(double r) and to evaluate
Ψ2

l,k(cr) the member function double WendRBF::aux2(double r). The routines
that do the actual computations are in namespace wendland. An excerpt from
the report when WendRBF psi31(3,1,1.0,true) is called follows:

Construction and all steps for the construction of the
Wendland function. Wendland function Ψ0

3,1

First binomial (1− t1)3

t01 − 3t11 + 3t21 − t31
Multiplying by t1:

0t01 + t11 − 3t21 + 3t31 − t41
Computing integration: 1
Integrating from r to 1:

5× 10−2r0 + 0r1 − 5× 10−1r2 + r3 − 7.5× 10−1r4 + 2× 10−1r5

Using the factor 20 the Wendland function becomes for
0 ≤ cr ≤ 1:

Ψ0
3,1 (cr) = 1 + 0c1r1 − 10c2r2 + 20c3r3 − 15c4r4 + 4c5r5

Construction and all steps for the construction of
the auxiliar function.

Order: 1 Wendland function derivative Ψ1
3,1.

Derive Ψ0
3,1 (cr) by r and divide the result by r:

Ψ1
3,1 (cr) = −20c2 + 60c3r1 − 60c4r2 + 20c5r3

For 0 < cr ≤ 1.
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Construction and all steps for the construction of
the auxiliar function.

Order: 2 Wendland function derivative Ψ2
3,1.

Derive Ψ1
3,1 (cr) by r and divide the result by r:

Ψ2
3,1 (cr) = 60c3r−1 − 120c4r0 + 60c5r1

For 0 < cr ≤ 1.

Functions presented in a factorised form.

Next, we present the factorised version of the Wendland function.

Ψ0
3,1 (cr) = (1− cr)4+

(
1 + 4c1r1

)
Ψ1
3,1 (cr) = (1− cr)3+ c2 (−20)

Ψ2
3,1 (cr) = (1− cr)2+ c3

(
60r−1

)

For a graphical presentation of the function Ψ0
3,1(cr), c = 1, and its two

auxiliary functions Ψ1
3,1(cr) and Ψ2

3,1(cr) can be seen in Figure 1. For a table
with the coefficients of the polynomials see Table 1.

Wendland function Ψ0
3,1(cr) Function Ψ1

3,1(r) Function Ψ2
3,1(r)

Exponent k of rk 0 1 2 3 4 5 0 1 2 3 -1 0 1
Coefficient ak of akrk 1 0 -10 20 -15 4 -20 60 -60 20 60 -120 60

Table 1. Arrays presenting the results and their storage.

5 CONCLUSIONS

We have upgraded our previous contribution [4] to compute Wendland’s com-
pactly supported Radial Basis Functions. The new code is more user friendly,
delivering the functionality though a class. Additionally, the evaluation of the
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Fig. 1. Upper left: Wendland function Ψ0
3,1(‖(x, y)‖). Upper right: Auxiliary function

1. Lower: Auxiliary function 2.

Wendland functions and their auxiliaries has been optimised for numerical ac-
curacy and, optionally, a detailed LATEX compilable report on the generation of
the Wendland functions and their auxiliaries can be generated.
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