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Abstract Ordinary differential equations arise in a variety of applications, includ-
ing climate modeling, electronics, predator-prey modeling, etc., and they can exhibit
highly complicated dynamical behaviour. Complete Lyapunov functions capture this
behaviour by dividing the phase space into two disjoint sets: the chain-recurrent part
and the transient part. If a complete Lyapunov function is known for a dynamical
system the qualitative behaviour of the system’s solutions is transparent to a large
degree. The computation of a complete Lyapunov function for a given system is, how-
ever, a very hard task. We present significant improvements of an algorithm recently
suggested by the authors to compute complete Lyapunov functions. Previously this
methodology was incapable to fully detect chain-recurrent sets in dynamical systems
with high differences in speed. In the new approach we replace the system under con-
sideration with another one having the same solution trajectories but such that they
are traversed at a more uniform speed. The qualitative properties of the new system
such as attractors and repellers are the same as for the original one. This approach
gives a better approximation to the chain-recurrent set of the system under study.
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1 Introduction

Let us consider a general autonomous ordinary differential equation (ODE) ẋ = f(x),
where x ∈ R

n. A (classical) Lyapunov function [1] is a scalar-valued function defined
in a neighborhood of an invariant set. It is built to show the stability of such a set and
can be used to analyse its basin of attraction. Hence, it is linked to one attractor, e.g.
an equilibrium or a periodic orbit. In particular, a (strict) Lyapunov function attains
its minimum on the attractor and is strictly decreasing along solutions of the ODE.

This idea is generalized to a complete Lyapunov function [2–5], which completely
characterizes the behaviour of the dynamical system in the whole phase space.

A complete Lyapunov function is a scalar-valued function V : Rn → Rwhich
is defined not only on a neighbourhood of one attractor but in the whole phase
space under the condition of being non-increasing along solutions of the ODE.

The phase space can be divided into the area where the complete Lyapunov func-
tion strictly decreases along solution trajectories and the area where it is constant
along solution trajectories. If the complete Lyapunov function is sufficiently smooth,
these properties can be expressed by the orbital derivative V ′(x) = ∇V (x) · f(x), i.e.
the derivative along solutions of the ODE. The first area, where V ′(x) < 0, charac-
terizes the region where solutions pass through and the larger this area is, the more
information is obtained from the complete Lyapunov function. The second area,
where V ′(x) = 0, includes the chain-recurrent set; the complete Lyapunov function
is constant on each transitive component of the chain-recurrent set. In short, the
first one determines where solutions pass through while the second accounts for
determining the long-time behaviour.

Dynamical systems model real-world systems and describe their often compli-
cated behaviour, e.g. the double [6] and triple pendulumwith periodic forcing [7] and
dry friction [8], leading to time-periodic and non-smooth systems, or the dynamics
of the wobblestone [9]. There are many methods to analyse the qualitative behaviour
of a given dynamical systems: one of them directly simulates solutions with many
different initial conditions. This becomes very expensive and unable to provide gen-
eral information on the behaviour of a given system, unless estimates are available,
e.g. when shadowing solutions. More sophisticated methods include invariant man-
ifolds and their computation, which form boundaries of basins of attraction for the
attractors [10]. The cell mapping approach [11] or set oriented methods [12] divide
the phase space into cells and compute the dynamics between them, see e.g. [13].
These ideas have been used for a computational approach to construct complete Lya-
punov functions [14], where the authors consider the discrete system given by the
time-T map, divide the phase space into cells and compute the dynamics between
them through an induced multivalued map. This is done with the computer pack-
age GAIO [15]. Then, using graphs algorithms, an approximate complete Lyapunov
function is computed [16]. However, even for low dimensions, a high number of
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cells is required to compute the Lyapunov function under this approach. We will use
a different methodology, significantly improving the method described in [17].

Our newapproach follows fromamethod to compute classicalLyapunov functions
for a given equilibrium by approximating the solution to V ′(x) = −1, i.e. the orbital
derivative. We approximate the solution of this partial differential equation (PDE)
by means of mesh-free collocation with Radial Basis Functions: over a finite set of
collocation points X , we compute an approximation v to V that solves the PDE in
all collocation points.

At points of the chain-recurrent set, such as an equilibrium or periodic orbit,
the PDE does not have a solution; the numerical method, however, always has one.
The idea is to use the area F , where the approximation is poor, to approximate the
chain-recurrent set. Following the fact that a complete Lyapunov function should be
constant in the chain-recurrent set, in the next step, we solve the PDE V ′(x) = 0 for
x ∈ F and V ′(x) = −1 elsewhere.

For the numerical method we thus split the collocation points X into a set X 0 =
X ∩ F , where the approximation is poor, andX− = X \ X 0, where it works correctly.
Then we solve the PDE V ′(x) = 0 for all x ∈ X 0 and V ′(x) = −1 for all x ∈ X−.

As a result, the approximated function v gives us information about the solution to
the ODE under consideration. On the one hand, the set X 0 where v′(x) ≈ 0 approx-
imates the chain-recurrent set, including equilibria, periodic orbits and homoclinic
orbits, and on the other hand, the set X− in which v′(x) ≈ −1 approximates the part
where the flow is gradient-like. Information about the stability and attraction prop-
erties is obtained through the level sets of the function v: minima of v correspond to
attractors while maxima represent repellers. For more details of the method see [17].

In this paper we significantly improve the method from [17], described above.
Firstly, the method in [17] was not able to accurately identify the chain-recurrent set
in more complicated examples, in particular examples where the speed ‖f(x)‖ with
which solutions of the ODE are passed through varies considerably. Hence, in this
paper we replace the original system ẋ = f(x) with the system

ẋ = f̂(x), where f̂(x) = f(x)
√

δ2 + ‖f(x)‖2 (1)

with parameter δ > 0.

The new system has the same solution trajectories as the original system, but
these are traversed at amore uniform speed, namely ‖f̂(x)‖ = ‖f(x)‖√

δ2+‖f(x)‖2 ≈ 1.

The smaller δ is, the closer the speed is to 1.

This modification improves the ability of the method to find the chain-recurrent
set significantly, as we will show in the paper.

Secondly, the function V satisfying V ′(x) = 0 for x ∈ F and V ′(x) = −1 else-
where is not smooth due to the jump in the orbital derivative, while the error estimates
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in mesh-free collocation require the solution of the PDE to be smooth. To overcome
this problem, we propose to replace the discontinuous right-hand side function by a
smooth function.

Let us give an overview of the paper: In Sect. 2 we present the method with the
modified system (1) and show the improvements over the previous method from
[17] in three examples. Section 3 studies the dependence on the parameter δ. Sec-
tion 4 discusses replacing the discontinuous right-hand side by a smooth function
and applies the improved method to the same three examples before ending with
conclusions in Sect. 5.

2 Normalized Speed

As discussed above, we fix a parameter δ > 0 and consider the modified system (1)
with normalized speed. We fix a finite set of collocation points X , none of which
is an equilibrium point for the system. For our examples we used a subset of the
hexagonal grid

αHexa-basis

{
k

(
1
0

)
+ l/2

(
1√
3

)
: k, l ∈ Z

}

with parameter αHexa-basis > 0. We approximate the solution of the PDE V ′(x) =
∇V (x) · f̂(x) = −1 using mesh-free collocation with the kernel�(x) := ψl,k(c‖x‖)
given by the Wendland function ψl,k and parameter c > 0, for details see [17, 18].
We denote the approximation by v.

To identify the collocation points where the approximation is poor, indicating the
chain-recurrent set, we evaluate v′(x) near each collocation point – note that in the
collocation point the orbital derivative is−1 by construction. In particular, inR2, for
a given collocation point xj, we build a set of points Yxj placed in two spheres with
center xj, namely:

Yxj = {xj + rαHexa-basis(cos(θ), sin(θ)) : θ ∈ {0, 2π/32, 4π/32, 6π/32, . . . , 2π}}
(2)

∪{xj + r

2
αHexa-basis(cos(θ), sin(θ)) : θ ∈ {0, 2π/32, 4π/32, 6π/32, . . . , 2π}}

(3)

where r > 0 is a parameter and αHexa-basis is the parameter used to build the hexagonal
grid defined above. We define a tolerance parameter γ > −1 and mark a collocation
point xj as being in the chain-recurrent set (xj ∈ X 0) if there is at least one point
y ∈ Yxj such that v′(y) > γ .

Wewill now present themethod applied to three systemswith different properties;
these are the same systems as in [17] so that we can compare the two methods.
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2.1 Attractive and Repelling Periodic Orbits

The dynamical system given by

(
ẋ
ẏ

)
= f(x, y) =

{
−x(x2 + y2 − 1/4)(x2 + y2 − 1) − y

−y(x2 + y2 − 1/4)(x2 + y2 − 1) + x
(4)

has two periodic orbits and an equilibrium. The equilibrium at the origin is asymp-
totically stable, and so is the periodic orbit with radius 1, while the periodic orbit
with radius 1/2 is unstable.

We used a hexagonal grid with αHexa-basis = 0.02 in the set [−1.5, 1.5]2 ⊂ R
2

which gives a total of 29,440 collocation points, the Wendland function with param-
eters (l, k, c) = (5, 3, 1), the critical value γ = −0.5, and δ2 = 10−8. Furthermore,
for the evaluation grid we set r = 0.5. We have compared the new method (normal-
ized, right-hand side) with the non-normalized method of [17] (left-hand side), see
Fig. 1.

In the lower right figure in Fig. 1, we can see that the equilibrium at the origin is
found with less error than in the lower left figure where there are more points around
(0, 0). The chain-recurrent set actually looks very well-defined in both cases because
of the relatively simple dynamics.

Fig. 1 Lyapunov functions for system (4) under both non-normalized (upper left) and for the
normalized approach (upper right). Chain-recurrent set for both systems non-normalized (lower
left) and normalized (lower right)
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2.2 Van der Pol Oscillator

System (5) is the two-dimensional form of the Van der Pol oscillator. The system has
an asymptotically stable periodic orbit and an unstable equilibrium at the origin.

(
ẋ
ẏ

)
= f(x, y) =

{
y

(1 − x2)y − x
(5)

We have a hexagonal grid with αHexa-basis = 0.1 in the set [−4.0, 4.0]2 ⊂ R
2 which

gives a total of 7708 collocation points, the Wendland function with parameters
(l, k, c) = (4, 2, 1), the critical value γ = −0.5, and δ2 = 10−8. As before we set
r = 0.5 in the evaluation grid. We have compared the newmethod (normalized) with
the non-normalized method of [17], see Fig. 2.

The improvement of the proposed method can be seen clearly in the lower figures
in Fig. 2: the chain-recurrent set is much better detected in the normalized system.

Fig. 2 Lyapunov functions for system (5) under both non-normalized (upper left) and for the
normalized approach (upper right). Chain-recurrent set for both systems non-normalized (lower
left) and normalized (lower right)
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2.3 Homoclinic Orbit

The system (6) has an asymptotically stable homoclinic orbit and an unstable equi-
librium at the origin.

(
ẋ
ẏ

)
= f(x, y) =

{
x(1 − x2 − y2) − y((x − 1)2 + (x2 + y2 − 1)2)

y(1 − x2 − y2) + x((x − 1)2 + (x2 + y2 − 1)2)
(6)

We used a hexagonal grid with αHexa-basis = 0.02 in the set [−1.5, 1.5]2 ⊂ R
2 which

gives a total of 29,440 collocation points, the Wendland function with parameters
(l, k, c) = (4, 2, 1), the critical value γ = −0.75, and δ2 = 10−8. Again we used
r = 0.5 in the evaluation grid. The new method (normalized) is compared with the
non-normalized method of [17] in Fig. 3.

In this case, we can see a clear enhancement on the detection of the chain-recurrent
set. In Fig. 3 (lower left) the failing set over-estimates the chain-recurrent set, while
in Fig. 3 (lower right) the normalized method detects the chain-recurrent set much
better.

Summarizing, the new method is able to better detect chain-recurrent sets.

Fig. 3 Lyapunov functions for system (6) under both non-normalized (upper left) and for the
normalized approach (upper right). Chain-recurrent set for both systems non-normalized (lower
left) and normalized (lower right)
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3 Behaviour of the Lyapunov Functions Depending
on the Values of δ

Using the system defined in Sect. 2.1 by Eq. (4), we show the dependence of the
behaviour of the Lyapunov function for a normalized system with different parame-
ters δ. We have chosen to show examples for δ2 = 10−10 and δ2 = 1. Figure 4 shows
how the Lyapunov function changes with different values of δ2: for small δ2 (black)
the function has a derivative close to 0 around the equilibrium point, while for large
δ2 (red) the function has a steep slope. Since Eq. (1) leads to the PDE

∇V (x) · f(x) = −
√

δ2 + ‖f(x)‖2,

near the equilibrium the right-hand side is ≈ −δ. Hence, the gradient of V must
become large because f(x) is small close to the equilibrium.

Fig. 4 Lyapunov function for system (4) around the equilibrium point. With δ2 = 1 the gradient
of V is much larger close to the equilibrium at zero than with δ2 = 10−10
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4 Smooth Function

Our second main objective is in the next step to find a PDE which has a smooth
solution and, subsequently, approximate its solution numerically.

The method from [17] starts with the PDE V ′(x) = −1, which does not have a
solution on chain-recurrent sets; for an equilibrium x0, e.g. we clearly have V ′(x0) =
0. By usingmesh-free collocation to approximate a solution of V ′(x) = −1we obtain
an approximation vwhich satisfies v′(x) ≈ −1 in areas which are not chain-recurrent
and results in a poor approximation in the chain-recurrent set. Let us denote the area
where the approximation is poor by F .

In the method described in [17] we then study the PDE

V ′(x) =
{
0 if x ∈ F,

−1 if x /∈ F .

As the right-hand side is discontinuous, the solution V will not be a smooth function.
We assume that F is a compact set and improve the method by considering the

following PDE with smooth right-hand side

V ′(x) = r(x) :=
{
0 if x ∈ F,

− exp
(
− 1

ξ ·d2(x)

)
if x /∈ F,

(7)

where d(x) = miny∈F ‖x − y‖ is the distance between the point x and the set F and
ξ > 0 is a parameter.

To implement the method numerically, we construct the approximation to the
complete Lyapunov function with our new approach. We first normalize our system
ẋ = f(x) by replacing it with the system (1). Note that we only need to evaluate the
right-hand side r(x) at the collocation points. Recall that we identify a collocation
point xj to be in an area of poor approximation F , as described above, if there exists
at least one y ∈ Yxj with v

′(y) > γ . Then we split the set of collocation points X into
the subsetX 0 consisting of points in an area of poor approximation and the remaining
points X− = X \ X 0.

For all collocation points xj ∈ X we then approximate the distance of x to the set
F , represented by X 0, by

d(xj) ≈ min
y∈X 0

‖xj − y‖;

note that d(xj) = 0 for all xj ∈ X 0.
Now, the right-hand side r(x) of the Eq. (7) at a collocation point xj ∈ X is set to

be r(xj) = 0 if xj ∈ X 0, and r(xj) = exp
(
− 1

ξ ·d2(xj)

)
if xj ∈ X−.

For our test systems (4), (5) and (6) we have already shown the normalized Lya-
punov functions in Figs. 1, 2 and 3, respectively, so now we show the solution of
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Fig. 5 First row: values of d as a function of the collocation points for systems (4) in column 1,
(5) in column 2 and (6) in column 3, respectively. Second and third row: Lyapunov functions (third
row) and their derivatives (second row) for systems (4) in column 1, (5) in column 2 and (6) in
column 3 respectively, with the modified, smooth right-hand side

(7) as described above in Fig. 5. In this case, for all computations in Fig. 5, the
normalization factor used is δ = 10−8 with ξ = 300. The second row shows that the
orbital derivatives of the approximated functions are smooth functions.

5 Conclusions

In this paper we have significantly improved a method to construct complete Lya-
punov functions and determine the chain-recurrent set. The two main improvements
were firstly to consider a system with normalized speed, which enabled us to detect
the chain-recurrent set more accurately. Secondly, we have replaced the discontinu-
ous right-hand side of the PDE under consideration by a smooth function so that the
PDE has a smooth solution, which is well approximated by the proposed method.
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