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Abstract. Many phenomena in disciplines such as engineering, physics
and biology can be represented as dynamical systems given by ordinary
differential equations (ODEs). For their analysis as well as for modelling
purposes it is desirable to obtain a complete description of a dynamical
system. Complete Lyapunov functions, or quasi-potentials, describe the
dynamical behaviour without solving the ODE for many initial condi-
tions. In this paper, we use mesh-free numerical approximation to com-
pute a complete Lyapunov function and to determine the chain-recurrent
set, containing the attractors and repellers of the system. We use a homo-
geneous evaluation grid for the iterative construction, and thus improve a
previous method. Finally, we apply our methodology to several examples,
including one to compute an epigenetic landscape, modelling a bistable
network of two genes. This illustrates the capability of our method to
solve interdisciplinary problems.
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1 Introduction

Let us consider a general autonomous ordinary differential equation (ODE) ẋ =
f(x), where x ∈ R

n. A classical (strict) Lyapunov function [29] is a scalar-valued
function that can be used to analyze the basin of attraction of one attractor such
as an equilibrium or a periodic orbit. It attains its minimum at the attractor,
and is otherwise strictly decreasing along solutions of the ODE.

A generalization of this idea is the notion of a complete Lyapunov function
[10,20,28,35], which characterizes the complete behaviour of the dynamical sys-
tem. It is a scalar-valued function V : Rn → R, defined on the whole phase space,
not just in a neighbourhood of one particular attractor. It is non-increasing along
solutions of the ODE. The phase space can be divided into the area where the
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complete Lyapunov function strictly decreases along solution trajectories and
the one where it is constant. For the first case, the complete Lyapunov func-
tion characterizes the gradient-like flow. There solutions pass through and the
larger this area is, the more information is obtained from the complete Lya-
punov function. Note that, by definition, the complete Lyapunov function needs
to be constant along solution trajectories on each transitive component of the
chain-recurrent set.

Furthermore, there are other methods to analyze the general behaviour of
dynamical systems such as the direct simulation of solutions with many different
initial conditions. This, however, is costly and can only give limited information
about the general behaviour of the system, unless estimates are available, e.g.
when shadowing solutions. More sophisticated methods include the computa-
tion of invariant manifolds, forming the boundaries of basins of attraction of
attractors [37]; here, additional analysis of the parts with gradient-like flow is
necessary. The cell mapping approach [18] or set oriented methods [12] divide
the phase space into cells and compute the dynamics between these cells, see also
for example [30]; these ideas have also been used to compute complete Lyapunov
functions [9].

Since our first method was proposed in [31] to compute complete Lyapunov
functions using mesh-free collocation and thus to divide the phase space into the
chain-recurrent set and the gradient-like flow, several improvements have been
proposed. We will shortly review such improvements and explain the novelties
of this current work.

The general idea [31] is to compute a complete Lyapunov function v by
approximating the solution of V ′(x) = −1, where V ′(x) = ∇V (x) · f(x) denotes
the orbital derivative, the derivative along solutions of the ODE. We use mesh-
free collocation with Radial Basis Functions (RBF) to approximately solve this
partial differential equation (PDE): we choose a finite set of collocation points X
and compute an approximation v to V which solves the PDE at all collocation
points. Note, however, that the PDE cannot be fulfilled at all points of the chain-
recurrent set, such as an equilibrium or periodic orbit. For that reason, we used
the failure of the method to approximate in certain areas to classify them [31]:
we separate the collocation points X into a set X0, where the approximation
fails, and X−, where it works well.

In general, a complete Lyapunov function should be constant in X0. For
that reason, in a subsequent step we solved the PDE V ′(x) = 0 for all x ∈ X0

and V ′(x) = −1 for all x ∈ X−, which is a more accurate approximation of
a complete Lyapunov function. This procedure is then iterated, either for a
specified number of iterations or until no more points are added to X0. The
computed function v gives us the following information about the ODE under
consideration: the set X0, where v′(x) ≈ 0, approximates the chain-recurrent
set, including equilibria, periodic orbits and homoclinic orbits, while the set
X−, where v′(x) ≈ −1, approximates the area with gradient-like flow, where
solutions pass through. The function v, through its level sets, gives additional
information about the stability and attraction properties: minima of v corre-
spond to attractors, while maxima represent repellers.
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Let us give more details on how we determine whether the approximation
near a collocation point is poor (or fails), resulting in placing this collocation
point into the set X0, or whether the approximation is good, and the collocation
point is placed into X−. By construction, at the collocation points we have
v′(xj) = V ′(xj), which thus will always be a perfect approximation. We thus
evaluate v′(x) for all x of an evaluation grid Yxj

of points near the collocation
point xj . We fix a critical value γ ≤ 0 and place the collocation point xj into
X0 if v′(x) > γ holds for at least one x ∈ Yxj

; otherwise xj is placed into X−.
While the basic method is already capable of classifying the chain-recurrent

set in many examples, there were several shortcomings which were addressed
in subsequent improvements: (a) in examples, where the velocity ‖f(x)‖ varies
considerably, the chain-recurrent was either over- or under-estimated and (b)
the method does not produce a complete Lyapunov function with a continuous
derivative. Here, ‖ · ‖ denotes the Euclidean norm in R

n.
To address (a), we have introduced a method [32] to analyze systems that

have a large change in their velocity, namely where ‖f(x)‖ varies considerably
over the phase space. We proposed to normalize the system by “almost” the
norm. In particular, this is done by replacing the original system ẋ = f(x) by
the system

ẋ = f̂(x), where f̂(x) =
f(x)

√
δ2 + ‖f(x)‖2 (1)

with small parameter δ > 0. The dynamical system defined by (1) with f̂(x) has
the same solution trajectories as ẋ = f(x), but these are traversed at a more
uniform speed, namely ‖f̂(x)‖ = ‖f(x)‖√

δ2+‖f(x)‖2
≈ 1. The smaller δ is, the closer the

speed is to 1. While the normalized method generally produces better results, it
comes at a higher computational cost due to the evaluation of f̂ .

To address problem (b), we have proposed different improvements. After
solving V ′(x) = −1, we again split the collocation points into X0 and X−.
However, instead of solving V ′(x) = r(x) with r(x) = −1 for x ∈ X− and
r(x) = 0 for x ∈ X0, which results in a discontinuous function r(x), we make
the right-hand side r(x) smooth by using the distance d(x) between the point x
and the set X0. In detail, we solve the PDE

V ′(x) = r(x) :=

{
0 if x ∈ X0,

− exp
(
− 1

ξ·d2(x)

)
if x ∈ X−,

(2)

where d(x) = miny∈X0 ‖x − y‖ is the distance between the point x and the set
X0 and ξ > 0 is a parameter [32].

Using (2) we guarantee that r(x) and thus V is a smooth function such that
for x with a large distance to X0, r(x) is close to −1 while for close distances it
raises up to zero.

A different method to solve problem (b) defines r(xj) to be the average value
of v′(y) over all y ∈ Yxj

, this is done regardless of whether xj lies in X0 or X−.
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This again results in a smooth function r(x), and the distinction between X0

and X− is just used to determine the chain-recurrent set [33,34].
In previous work, we have used different sets for the evaluation points Yxj

.
In [31], in two dimensions, we used points on two circumferences around each
collocation point. Later we introduced a new evaluation grid consisting of points
along the direction of the flow, f(xj) at each collocation point. That allowed
to expand our method from two to higher dimensions without increasing the
amount of evaluation points exponentially [34].

Combining this with fixing r(xj) by averaging over all v′(y) with y ∈ Yxj
may

result in the right-hand side converging to zero as the number of iterations goes
to infinity. This would result in a constant complete Lyapunov function, which
is a trivial complete Lyapunov function and does provide any information about
the dynamics. To fix that, we introduced a methodology in [33] that scales the
orbital derivative condition, which shows to be efficient to avoid trivial solutions.
However, for few iterations that consideration is not necessary.

In this paper, we use an evaluation grid to evaluate the complete Lyapunov
function that consists of a homogeneous distribution of points on two circumfer-
ences around each collocation point. We use an iterative method to construct a
complete Lyapunov function by replacing the right-hand side r(xj) by the aver-
age of v′(y) over all points of the evaluation grid at the respective collocation
point xj . Depending on the example, we either consider the original equation
ẋ = f(x) or the normalized one, see (1). Furthermore, we apply our methodology
to four examples. The first three are from [32]. The final example is a biological
system to prove the capabilities of our method in applications.

Let us give an overview over the paper: in Sect. 2 we discuss complete Lya-
punov functions as well as mesh-free collocation to approximate solutions of a
general linear PDE. In Sect. 3 we present our algorithm to compute a complete
Lyapunov function. In Sect. 4 we apply the method to four examples and discuss
the results in detail.

2 Preliminaries

2.1 Complete Lyapunov Functions

We will consider a general autonomous ODE

ẋ = f(x), where x ∈ R
n. (3)

A complete Lyapunov function [10] is a continuous function V : Rn → R which
is constant along solution trajectories on the chain-recurrent set, including local
attractors and repellers, and decreasing along solution trajectories elsewhere. In
contrast to classical Lyapunov functions [29], which are defined on the basin of
attraction of just one attractor, a complete Lyapunov function characterizes the
flow on the whole phase space and distinguishes between the chain-recurrent
set and the gradient-like flow. Thus, it captures the long-term behaviour of the
system.
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Auslander [5] and Conley [10] proved the existence of complete Lyapunov
functions for dynamical systems on a compact metric space. The idea is to con-
sider corresponding attractor-repeller pairs and to construct a function which
is 1 on the repeller, 0 on the attractor and decreasing in between. Then these
functions are summed up over all attractor-repeller pairs. This was generalized
to more general spaces by Hurley [19,20,28].

The smaller the part of the phase space where the complete Lyapunov func-
tion is constant, the more information is provided by a complete Lyapunov
function. There exists a complete Lyapunov function which is only constant
on the generalized chain-recurrent set [5], thus providing further information
about the system as the generalized chain-recurrent set is a subset of the chain-
recurrent set.

In [9,16,24] a computational approach to construct complete Lyapunov func-
tions was proposed. The discrete-time system given by the time-T map was con-
sidered, the phase space was subdivided into cells and the dynamics between
them were computed through an induced multivalued map using the computer
package GAIO [11]. An approximate complete Lyapunov function is then com-
puted using graph algorithms [9]. This approach requires a high number of cells
even for low dimensions. We will use a different methodology, inspired by the
construction of classical Lyapunov functions, which is faster and works well in
higher dimensions. In [6], the approach of [9] is compared to the RBF method for
equilibria (see below) for one particular example; here, the method of [9] works
well only on the chain-recurrent set, while the RBF method is very efficient on
the gradient-like part.

In [8], a complete Lyapunov is constructed as a continuous piecewise affine
(CPA) function, affine on each simplex of a fixed simplicial complex. However, it
is assumed that information about local attractors is a available, while the pro-
posed method in this paper does not require any information about the system
under consideration.

In [1] a quasi-potential, which is very similar to a complete Lyapunov func-
tion, is constructed by numerical integration along solution trajectories with
different initial conditions. The landscape (plot of the complete Lyapunov func-
tion) and the level sets are used to analyze a biological system modelling two
genes that inhibit each other, forming a double-negative feedback loop structure.
We will analyze this system with our method in Sect. 4.4.

2.2 Mesh-Free Collocation

For classical Lyapunov functions, several numerical construction methods have
recently been proposed, e.g. [2–4,7,13,17,21–23,25] see also the review [15]. Our
algorithm will be based on the RBF (Radial Basis Function) method, a special
case of mesh-free collocation, which approximates the solution of a linear PDE,
specifying the orbital derivative.

Mesh-free methods, particularly based upon Radial Basis Functions, provide
a powerful tool for solving generalized interpolation problems efficiently. We
assume that the target function belongs to a Hilbert space H of continuous
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functions (often a Sobolev space) with norm ‖ · ‖H and with reproducing kernel
ϕ : Rn×R

n → R, given by a suitable Radial Basis Function Φ through ϕ(x,y) :=
Φ(x − y), where Φ(x) = ψ(‖x‖) is a radial function. Examples for Radial Basis
Functions include the Gaussians, multiquadrics and inverse multiquadrics; we,
however, will use the compactly supported Wendland functions in this paper,
which will be defined below.

We assume that the information r1, . . . , rN ∈ R of a target function V ∈ H
generated by N linearly independent functionals λj ∈ H∗ is known. The optimal
reconstruction of the function V is the solution of the minimization problem
min{‖v‖H : λj(v) = rj , 1 ≤ j ≤ N}. It is well-known [36] that the solution can
be written as v(x) =

∑N
j=1 βjλ

y
j ϕ(x,y), where the coefficients βj are determined

by the interpolation conditions λj(v) = rj , 1 ≤ j ≤ N .
In our case, we consider the PDE V ′(x) = r(x), where r(x) is a given function

and V ′(x) = ∇V (x) · f(x) denotes the orbital derivative. We choose N points
x1, . . . ,xN ∈ R

n of the phase space and define functionals λj(v) := (δxj
◦L)xv =

v′(xj) = ∇v(xj) · f(xj), where L denotes the linear operator of the orbital
derivative LV (x) = V ′(x) and δ is Dirac’s delta distribution. The right-hand
sides are rj = r(xj) for all 1 ≤ j ≤ N . The approximation is then

v(x) =
N∑

j=1

βj(δxj
◦ L)yΦ(x − y),

where Φ is a positive definite Radial Basis Function [36], and the coefficients
βj ∈ R can be calculated by solving a system of N linear equations. A crucial
ingredient is the knowledge on the behaviour of the error function |V ′(x)−v′(x)|
in terms of the so-called fill distance h = supy∈K infj=1,...,N ‖y − xj‖ which
measures how dense the points {x1, . . . ,xN} ⊂ K are in the compact set K ⊂
R

n, since it gives information when the approximate solution has a negative
orbital derivative. Such error estimates were derived, for example in [13,14], see
also [26,36].

The advantage of mesh-free collocation over other methods for solving PDEs
is that scattered points can be added to improve the approximation, no trian-
gulation of the phase space is necessary, the approximating function is smooth
and the method works in any dimension.

In this paper, we use Wendland functions [27] as Radial Basis Functions
through ψ(‖x‖) := ψl,k(c‖x‖), where c > 0, k ∈ N is a smoothness parameter
and l = �n

2 � + k + 1. Wendland functions are positive definite Radial Basis
Functions with compact support, which are polynomials on their support; the
corresponding (Reproducing Kernel) Hilbert Space is norm-equivalent to the
Sobolev space W

k+(n+1)/2
2 (Rn). They are defined by recursion: for l ∈ N, k ∈ N0

we define
ψl,0(r) = (1 − r)l

+

ψl,k+1(r) =
∫ 1

r
tψl,k(t)dt

(4)

for r ∈ R
+
0 , where x+ = x for x ≥ 0 and x+ = 0 for x < 0.
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As collocation points X ⊂ R
n we use a hexagonal grid (5) with α ∈ R

+

constructed according to
{

α

n∑

k=1

ikwk : ik ∈ Z

}

, where (5)

w1 = (2e1, 0, 0, . . . , 0)
w2 = (e1, 3e2, 0, . . . , 0)

...
...

wn = (e1, e2, e3, . . . , (n + 1)en) and

ek =

√
1

2k(k + 1)
, k ∈ N.

We set ψ0(r) := ψl,k(cr) with positive constant c and define recursively
ψi(r) = 1

r
dψi−1

dr (r) for i = 1, 2 and r > 0. The explicit formulas for v and its
orbital derivative are

v(x) =
N∑

j=1

βj〈xj − x, f(xj)〉ψ1(‖x − xj‖),

v′(x) =
N∑

j=1

βj

[
− ψ1(‖x − xj‖)〈f(x), f(xj)〉

+ ψ2(‖x − xj‖)〈x − xj , f(x)〉 · 〈xj − x, f(xj)〉
]

where 〈·, ·〉 denotes the standard scalar product in R
n, β is the solution to

Aβ = r, rj = r(xj) and A is the N × N matrix with entries

aij = ψ2(‖xi − xj‖)〈xi − xj , f(xi)〉〈xj − xi, f(xj)〉
− ψ1(‖xi − xj‖)〈f(xi), f(xj)〉

for i �= j and
aii = −ψ1(0)‖f(xi)‖2.

More detailed explanations on this construction are given in [13, Chap. 3].
If no collocation point xj is an equilibrium for the system, i.e. f(xj) �= 0

for all j, and all collocation points are pairwise distinct, then the matrix A is
positive definite and the system of equations Aβ = r has a unique solution. Note
that this holds true independent of whether the underlying discretized PDE has
a solution or not, while the error estimates are only available if the PDE has a
solution.

3 Algorithm

Starting with scattered collocation points X, we solve the equation V ′(x) = −1,
where V ′(x) := ∇V (x) · f(x) denotes the orbital derivative, the derivative along
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solutions of (3). Note that the equation V ′(x) = −1 does not have a solution
on chain-recurrent sets in general; e.g. along a periodic orbit, the orbital deriva-
tive must integrate to 0. However, as mentioned above, we can still compute a
(unique) approximation by the method described in Sect. 2.2.

In the next step we check for each collocation point xj in X whether the
approximation was poor (then xj ∈ X0) or good (then xj ∈ X−). Then we
approximate the solution of the new problem V ′(x) = −1 for x ∈ X− and
V ′(x) = 0 for x ∈ X0; the set X0 indicates the (generalized) chain-recurrent set.

To determine whether the approximation was poor or good, we evaluate v′(x)
for test points x around each collocation point xj – for a good approximation
we expect v′(x) ≈ −1. In view of our goal to compute a complete Lyapunov
function, we classify collocation points as poor if the orbital derivative near
them is larger than 0 or a chosen critical value, i.e. v′(x) > γ, for certain points
x near the collocation point xj . As points to check near a collocation point xj

we choose points on two circumferences around each collocation point xj .

Fig. 1. Improvement over the evaluation points; both have 32 points on each circumfer-
ence. Left: non-homogeneous distribution. Right: homogeneous distribution. The mid-
dle point represents the collocation point which is the centre of both circumferences.

Previously, in [31], we used points distributed on two concentric circumfer-
ences whose centre is the collocation point. However, the distribution of such
points was not homogeneous along the circumferences, see Fig. 1. In this paper,
however, we use points homogeneously distributed over two concentric circum-
ferences whose centre is the collocation point. Originally in [31], the grid Yxj

consisted of the points (6), while in this paper we use the points Yxj
in (7).

xj ± rα(cos(θ),− sin(θ))
xj ± rα(sin(θ), cos(θ))
xj ± r

2α(cos(θ), sin(θ))
xj ± r

2α(cos(θ),− sin(θ))

(6)

xj + rα
(
cos 2πk

M , sin 2πk
M

)

xj + r
2α

(
cos 2πk

M , sin 2πk
M

) (7)

For (6), we have used θ = {0.0◦, 11.25◦, 22.5◦, 45◦, 56.25◦, 67.5◦, 75◦, 105◦}
and for (7) we use M = 32. In both cases, r is a scaling parameter and 32 is
the total amount of points we distribute in each circumference, resulting in 64
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points per collocation points in total. Figure 1 shows the distributions of both
evaluation grids.

Figure 1 shows an improvement on the evaluation capabilities of our method.
The fact that the left-hand side figure in Fig. 1 is not homogeneously distributed
is seen with 4 blank spots in each of the two circumferences. Furthermore, it
also shows regions in which we can find points close to each other, while in other
regions the distance between points is large. Considering that the Lyapunov
function is first computed on the collocation points and then evaluated over the
evaluation grid, the fact that the evaluation is non-homogeneous as shown in
Fig. 1, weakens the evaluation when compared with the homogeneous case.

In [31], the aim was to obtain a description of the chain-recurrent set X0 and
the gradient-like flow X−. That description allowed to set the orbital derivative
to 0 for points in X0 and to keep the orbital derivative to be −1 for points in
X−. This results in a non-continuous right-hand side.

In this paper we use not only the information whether points lie in X0 or
X−, but also the average value of v′(y) around each collocation to determine
the PDE in the subsequent step. In particular, in the subsequent iteration we
set the orbital derivative at each collocation point to be the average value of
the Lyapunov function derivative for all evaluation points around the respective
collocation points. The evaluation grid, however, is different from [33,34] in which
a directional grid was used. The advantage of that particular grid is that it could
be used for 3-dimensional systems without increasing its size exponentially. In
our case, however, we use the averaging over the circumference values, which can
also be generalized to higher dimensions.

The evaluation grid in this paper uses the contributions in all directions
around each collocation point instead of just in one direction and will thus
produce more accurate results. Setting r = 0.5 ensures that the evaluation grids
for adjacent collocation points do not overlap. In our computations, as we did
in [31], we use 64 evaluation points around each collocation point.

Next, we summarize our algorithm.

1. Create the collocation points X. Compute the approximate solution v0 of
V ′(x) = −1, set i = 0

2. For each collocation point xj , compute v′
i(x): if v′

i(x) > γ for a point x ∈ Yxj
,

then xj ∈ X0, otherwise xj ∈ X−, where γ ≤ 0 is a chosen critical value
3. Compute the approximate solution vi+1 of

V ′(xj) = r(xj) = 1
2M

⎛

⎝
∑

y∈Yxj

v′
i(y)

⎞

⎠ −, where z− = z for z ≤ 0 and z− = 0

otherwise
4. Set i → i + 1 and repeat steps 2. and 3. until no more points are added to

X0 or until a certain predefined number of iterations is reached

Note that the mesh-free collocation method only requires us to know the right-
hand side r(x) of the PDE at the collocation points, hence, it is sufficient to
define r at all collocation points xj .
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4 Examples

In the following we apply the method to four examples in two dimensions and
then analyze their behaviour. Note that in all examples we use the notation
x = (x, y). We have done 10 iterations of the method for each example. The
first three systems (8), (9) and (10) have been previously studied in [31], and we
compare our new method with the previous results. The final system in Sect. 4.4
models a bistable network of two genes.

For the first two examples we have used the original equation ẋ = f(x)
and have achieved very good results, while for the last two examples, we have
employed the slightly slower “almost” normalized method, introduced in [32],
using (1). For all examples, we have used the new evaluation grid (7) with
r = 0.5 and M = 32.

4.1 Two Circular Periodic Orbits

We consider system (3) with right-hand side

f(x, y) =
(−x(x2 + y2 − 1/4)(x2 + y2 − 1) − y

−y(x2 + y2 − 1/4)(x2 + y2 − 1) + x

)
. (8)

This system has an asymptotically stable equilibrium at the origin, Ω0 = {(0, 0)}

since the Jacobian at the origin is

⎛

⎜
⎝

−1
4

−1

1 −1
4

⎞

⎟
⎠ with eigenvalues λ1,2 = −0.25±i.

Moreover, the system has two periodic circular orbits: an asymptotically stable
periodic orbit at Ω1 = {(x, y) ∈ R

2 | x2 + y2 = 1} and a repelling periodic orbit
at Ω2 = {(x, y) ∈ R

2 | x2 + y2 = 1/4}.
To compute the Lyapunov function with our method we used Wendland

function ψ5,3 with the parameter c = 1. The collocation points were set in a
region (−1.5, 1.5) × (−1.5, 1.5) ⊂ R

2 and we used a hexagonal grid (5) with
α = 0.018. This setting gives a total amount of 36, 668 collocation points and
2, 346, 752 evaluation points. We computed this example with the original system
ẋ = f(x).

Figure 2 shows the approximation v0 of V ′(x) = −1 as well as its orbital
derivative v′

0. The function v0 (Fig. 2, left) clearly displays the stable periodic
orbit and equilibrium as local minima of v0, while the unstable periodic orbit
is a local maximum. The orbital derivative v′

0 (Fig. 2, right) is mostly −1 apart
from the two periodic orbits and the equilibrium, where it is close to 0. The
orbital derivative is clearly discontinuous.

Several improvements have been made to generate a continuous derivative
[32–34] in subsequent iterations. In this paper, we use the method described
above, solving V ′(x) = r(x), where r(xj) is given by the average value of the
orbital derivative at the evaluation grid around xj , using the critical value γ =
−0.5. Figure 3 shows v10 and its orbital derivative after 10 iterations.
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Fig. 2. Complete Lyapunov function for (8), iteration 0. The left-hand figure shows
the approximated complete Lyapunov function v0(x, y). The right-hand figure shows
its orbital derivative v′

0(x, y). The Lyapunov function’s minimum corresponds to the
asymptotically stable equilibrium. The two periodic orbits with radius 1 and 1/2 are
asymptotically stable (Ω1) and unstable (Ω2) and are local minima and maxima of
v0 respectively. The orbital derivative v′

0 fails to be negative on Ω1, Ω2, and at the
equilibrium, moreover, v′

0 is not continuous.

Figure 3 shows the tenth iteration of the new method. The orbital derivative
v′
10 is now continuous, which can be seen more clearly in Figs. 4 and 5, comparing

the iterations 0 and 10 on a part of the phase space. Figure 4 shows a section
of the Lyapunov function derivative v′

10 over a part of the chain-recurrent set,
namely Ω2. Figure 5 shows a section of the previous Fig. 4, which gives a clear
picture of the improved continuity of the orbital derivative.

Finally, we are interested in the behaviour of the chain-recurrent set. Figure 6
shows the points y of the evaluation grid, where v′

i(y) > γ with γ = −0.5,
which approximate the chain-recurrent set. We find the three expected connected
components of the chain-recurrent set already in iteration 0; and the sets do not
change much when considering iteration 10.

Fig. 3. Complete Lyapunov function for (8), iteration 10. The left-hand figure shows
the approximated complete Lyapunov function v10(x, y). The right-hand figure shows
its orbital derivative v′

10(x, y); now continuous. The Lyapunov function’s minimum
corresponds to the asymptotically stable equilibrium. The two periodic orbits with
radius 1 and 1/2 are asymptotically stable (Ω1) and unstable (Ω2) and are local minima
and maxima of v10 respectively. The orbital derivative v′

10 fails to be negative on Ω1,
Ω2, and at the equilibrium.
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Fig. 4. Complete Lyapunov function derivative v′
0 (left) and v′

10 for (8) over Ω2 for
iterations 0 and 10, γ = −0.5.

Fig. 5. Complete Lyapunov function derivative v′
0 (left) and v′

10 for (8) over part of
Ω2 for iterations 0 and 10, γ = −0.5.

Fig. 6. The figures show the evaluation points y around each collocation point, where
v′(y) > γ = −0.5; left: iteration 0 and right: iteration 10. The three chain-recurrent
sets are clearly visible in both iterations.

4.2 Van-der-Pol Oscillator System

We consider system (3) with right-hand side

f(x, y) =
(

y
(1 − x2)y − x

)
. (9)

System (9) is the two-dimensional form of the Van-der-Pol oscillator. This
describes the behaviour of a non-conservative oscillator reacting to a non-linear
damping. The origin is an unstable focus, which can be seen from its Jacobian
at the origin with eigenvalues λ1,2 = 0.5 ± 0.866025i.

In this case, we have used the Wendland function ψ4,2 with parameter c = 1.
We set our collocation points in the region (−4, 4)×(−4, 4) ⊂ R

2, using a hexago-
nal grid (5) with α = 0.046. We have a total amount of 36, 668 collocation points
and 2, 346, 751 evaluation points. We have used the original system, namely f(x).
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Figure 7 shows the approximation v0 of V ′(x) = −1 as well as its orbital
derivative v′

0. The function v0 (Fig. 7, left) clearly displays the stable periodic
orbit as minimum and the unstable equilibrium at the origin as maximum of
v0. The orbital derivative v′

0 (Fig. 7, right) is mostly −1 apart from the periodic
orbits and the equilibrium, where it is close to 0. The orbital derivative is clearly
discontinuous.

Figure 8 shows the tenth iteration of the new method. The orbital derivative
v′
10 is now continuous, which can be seen more clearly in Figs. 9 and 10, compar-

ing the iterations 0 and 10 on a part of the phase space. Figure 9 shows a section
of the Lyapunov function derivative v′

10 over a part of the chain-recurrent set,
namely the periodic orbit. Figure 10 shows a section of the previous Fig. 9, which
gives a clear picture of the improved continuity of the orbital derivative.

Figure 11 shows the points y of the evaluation grid, where v′
i(y) > γ with

γ = −0.5, which approximate the chain-recurrent set. We find the two expected
connected components of the chain-recurrent set already in iteration 0; and the
sets do not change much when considering iteration 10.

Fig. 7. Complete Lyapunov function for (9), iteration 0. The left-hand figure shows
the approximated complete Lyapunov function v0(x, y). The right-hand figure shows
its orbital derivative v′

0(x, y). The Lyapunov function’s maximum corresponds to the
unstable equilibrium at the origin. The stable periodic orbit is a local minimum of
v0. The orbital derivative v′

0 fails to be negative on the periodic orbit and at the
equilibrium, moreover, v′

0 is not continuous.

Fig. 8. Complete Lyapunov function for (9), iteration 10. The left-hand figure shows
the approximated complete Lyapunov function v10(x, y). The right-hand figure shows
its orbital derivative v′

10(x, y); now continuous. The Lyapunov function’s maximum
corresponds to the unstable equilibrium at the origin. The stable periodic orbit is a
local minimum of v0. The orbital derivative v′

0 fails to be negative on the periodic orbit
and at the equilibrium.
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Fig. 9. Complete Lyapunov function derivative v′
0 (left) and v′

10 for (9) over the periodic
orbit for iterations 0 and 10, γ = −0.5.

Fig. 10. Complete Lyapunov function derivative v′
0 (left) and v′

10 for (9) over part of
the periodic orbit for iterations 0 and 10, γ = −0.5.

Fig. 11. The figures show the evaluation points y around each collocation point, where
v′(y) > γ = −0.5; left: iteration 0 and right: iteration 10. The chain-recurrent sets are
clearly visible in both iterations.

Note that there is a considerable improvement since [31]. Let us notice that we
had improved the results of [31] in [32] by using the almost-normalized method
(1), at a higher computational cost. However, in Fig. 11 we use the same (original)
method as in [31]. The difference is in the amount of collocation points and the
new distribution of the evaluation points. In particular, even after ten iterations,
there are no points apart from the periodic orbit and the equilibrium marked
as failing, whereas in previous methods, more and more “noise” was added at
other parts of the phase space.

4.3 Homoclinic Orbit

As in [31], we also consider here the following example with right-hand side

f(x, y) =
(

x(1 − x2 − y2) − y((x − 1)2 + (x2 + y2 − 1)2)
y(1 − x2 − y2) + x((x − 1)2 + (x2 + y2 − 1)2)

)
. (10)
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The origin is an unstable focus, which can be seen from the eigenvalues of its
Jacobian at the origin, which are λ1,2 = 1 ± 2i. Furthermore, the system has an
asymptotically stable homoclinic orbit at a circle centred at the origin and with
radius 1, connecting the equilibrium (1, 0) with itself.

We have used the Wendland function ψ4,2 with parameter c = 1. We set our
collocation points in the region (−1.5, 1.5) × (−1.5, 1.5) ⊂ R

2 with a hexagonal
grid (5) with α = 0.0125. In this example, we have used the almost-normalized
method, i.e. we have replace f by f̂ according to (1) with δ2 = 10−8, and we
have used γ = −0.75.

Figure 12 shows the approximation v0 of V ′(x) = −1 as well as its orbital
derivative v′

0. The function v0 (Fig. 12, left) clearly displays the stable homo-
clinic orbit as minimum and the unstable equilibrium at the origin as maximum
of v0. The orbital derivative v′

0 (Fig. 12, right) is mostly −1 apart from the
homoclinic orbits and the origin. The orbital derivative is clearly discontinuous.
In contrast to previous examples, the orbital derivative has large values around
the equilibrium at (1, 0), corresponding to the homoclinic orbit.

Fig. 12. Complete Lyapunov function for (10), iteration 0. The left-hand figure shows
the approximated complete Lyapunov function v0(x, y). The right-hand figure shows
its orbital derivative v′

0(x, y). The Lyapunov function’s maximum corresponds to the
unstable equilibrium at the origin. The stable homoclinic orbit is a local minimum of
v0. The orbital derivative v′

0 fails to be negative on the periodic orbit and at the origin,
moreover, v′

0 is not continuous.

Fig. 13. Complete Lyapunov function for (10), iteration 10. The left-hand figure shows
the approximated complete Lyapunov function v10(x, y). The right-hand figure shows
its orbital derivative v′

10(x, y); now continuous. The Lyapunov function’s maximum
corresponds to the unstable equilibrium at the origin. The stable homoclinic orbit is
a local minimum of v0. The orbital derivative v′

0 fails to be negative on the periodic
orbit and at the origin.
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Figure 13 shows the tenth iteration of the new method. The orbital deriva-
tive v′

10 is now continuous, which can be seen more clearly in Figs. 14 and 15,
comparing the iterations 0 and 10 on a part of the phase space. Figures 14 shows
a section of the Lyapunov function derivative v′

10 over the chain-recurrent set.
Figure 15 shows a section of the previous Fig. 14.

Figure 16 shows the points y of the evaluation grid, where v′
i(y) > γ with

γ = −0.75, which approximate the chain-recurrent set. We find the two expected
connected components of the chain-recurrent set already in iteration 0; and the
sets do not change much when considering iteration 10.

We notice an important improvement when compared with [32] in which we
notice that the amount of areas incorrectly marked as failing points is almost
negligible.

Fig. 14. Complete Lyapunov function derivative v′
0 (left) and v′

10 for (10) over the
homoclinic orbit and the origin for iterations 0 and 10, γ = −0.75.

Fig. 15. Complete Lyapunov function derivative v′
0 (left) and v′

10 for (10) over a part
of the homoclinic orbit for iterations 0 and 10, γ = −0.75.

Fig. 16. The figures show the evaluation points y around each collocation point, where
v′(y) > γ = −0.75; left: iteration 0 and right: iteration 10. The chain-recurrent sets
are clearly visible in both iterations.
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216 C. Argáez et al.

4.4 Application to Biology

As a final example, we consider a system from [1], Eqs. (6) and (7), which
models a network of two genes that suppress each other to form a double-negative
feedback loop. The general model is given by

f(x, y) =

(
BX + foldYXK

nH
DYX

KDYX+ynH
− degXx

BY + foldXY K
nH
DXY

KDXY+xnH
− degXy

)

. (11)

where x and y represent the concentrations of the two gene products; for the
meaning of the parameters, see [1]. We use the parameter values from [1] to
obtain the following system

f(x, y) =

⎛

⎜⎜
⎝

2
10 + 2

(
( 7

10 )
4

( 7
10 )

4
+y4

)
− x

2
10 + 2

(
( 5

10 )
4

( 5
10 )

4
+x4

)
− y

⎞

⎟⎟
⎠ . (12)

In [1], the authors compute a complete Lyapunov function, which they call
quasi-potential, by numerical integration along solution trajectories with many
different initial conditions. The resulting energy landscape, the plot of v(x, y),
is used to analyze the development and stability of cellular states.

Although this is a biological system in which only non-negative values of
x and y are of biological interest, we set our collocation points in the region
(−1, 6) × (−1, 6) ⊂ R

2 with a hexagonal grid (5) with α = 0.041. We use the
“almost” normalized method (1) with δ2 = 10−8 and γ = −0.5. Our settings
gave us a total amount of 35, 728 collocation points and 2, 286, 592 evaluation
points.

This system has three equilibria

z1 = (0.223344, 2.12342), z2 = (0.542514, 1.03822), z3 = (2.18526, 0.205466).

z1 and z3 are stable nodes; the eigenvalues of the corresponding Jacobians are
λ1 = −1.23942 and λ2 = −0.760578, and λ1 = −1.05331, λ2 = −0.946693,
respectively z2 is a saddle with corresponding eigenvalues of the Jacobian λ1 =
−2.98147, λ2 = 0.981468.

Figure 17 shows the approximation v0 of V ′(x) = −1 as well as its orbital
derivative v′

0. The function v0 (Fig. 17, left) clearly displays the two stable equi-
libria as minima and the unstable equilibrium as saddle of v0. The orbital deriva-
tive v′

0 (Fig. 17, right) is mostly −1 apart from the three equilibria; this can be
seen clearer in Fig. 20. Indeed, if we take a close up to the area where the critical
values are, we see that the points after the tenth iteration are clearer distin-
guishable, see Fig. 20. Figure 18 shows the tenth iteration of the new method,
which gives a similar picture.

The chain-recurrent set, given by the failing points, is shown in Fig. 19. We
can identify the three critical points z1, z2 and z3 easily with our method.
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Fig. 17. Complete Lyapunov function for (12), iteration 0. The left-hand figure shows
the approximated complete Lyapunov function v0(x, y). The right-hand figure shows its
orbital derivative v′

0(x, y). The complete Lyapunov function’s saddle point corresponds
to the unstable equilibrium while the two asymptotically stable equilibria are local
minima of v0. The orbital derivative v′

0 fails to be negative at the three equilibria,
which can be better seen in Fig. 20.

Fig. 18. Complete Lyapunov function for (12), iteration 10. The left-hand figure shows
the approximated complete Lyapunov function v10(x, y). The right-hand figure shows
its orbital derivative v′

10(x, y); now continuous. The Lyapunov function’s saddle point
corresponds to the unstable equilibrium while the two asymptotically stable equilibria
are local minima of v0. The orbital derivative v′

0 fails to be negative at the three
equilibria.

Fig. 19. The figures show the evaluation points y around each collocation point, where
v′(y) > γ = −0.5; left: iteration 0 and right: iteration 10. The three equilibria are
clearly visible in both iterations.

As in [1], we analyze the contour plots of v10 for iteration 10, Fig. 21. They are
very similar to the results obtained in [1].

We see that our numerical computation of a complete Lyapunov function of
system (12) is capable of reproducing the behaviour of the biological system.
Furthermore, we can see that our method reproduces the results from [1] but
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Fig. 20. Complete Lyapunov function derivative for iteration 0 (left) and iteration
10 (right) in the part of the phase space where it differs from −1 and in which the
equilibria can be seen.

Fig. 21. Contour plots of the complete Lyapunov function v10 for iteration 10 and
system (12).

without the need of computing numerical integration for particular solutions
which shows that our method is a powerful to solve problems in other disciplines.

5 Conclusions and Outlook

In this paper we have presented several improvements to our previous method-
ology introduced in [31]. First of all, we used an evaluation grid which homo-
geneously distributes its points around the collocation points and thus avoids
favouring specific regions. As seen in Fig. 1, in our previous method [31], an
inhomogeneous distribution would favour the weighting at the regions in which
the points are closer and hinder the regions in which the points are more dis-
tant. With a homogeneous grid, all points have the same weighting. Secondly, we
also enhanced the results for (9) previously presented in [31] without using the
“almost”-normalized method presented in [32]. Moreover, we are able to avoid
overestimating the chain-recurrent set due to “noise”.

Using the “almost”-normalized method presented in [32] with the averaging
idea presented in [34] we even managed to enhance the results previously seen
in [31,32] for the system (10). As can be seen in Fig. 16, after 10 iterations
the amount of “noise” that harms our definition of the chain-recurrent set, is
reduced. We can then conclude that averaging all around the collocation point,
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instead of in just one direction, has a better impact on determining the chain-
recurrent sets. The reason is that close to the failing points, there are small areas
that fail as well. Accordingly, if we take only one direction the failing points
close a particular failing collocation point and away from that direction will not
be noticed. However with a circumference they will be noticed and weighted.
The directional evaluation grid has, however, another advantages. It favours the
direction of the trajectories and it avoids exponential growth of the evaluation
points.

Summarizing, in this paper we were capable of obtaining a good estimate for
the chain-recurrent set for different systems using both the “almost”-normalized
method presented in [32] as well as the common method. This shows that if the
system does not present high variations of its speed the common method works
as well.

In all our computations we have obtained very clear chain-recurrent sets with
small “noise” or none of it. In short, we have presented an enhanced method to
compute a complete Lyapunov function fulfilling the conditions for its derivative
which is smooth and continuous. That allows to better determine the qualitative
behaviour of a given ODE, using both the values of the complete Lyapunov
function and its orbital derivative. Furthermore, we provide complete Lyapunov
functions V that are constant along solutions in the chain-recurrent set, i.e. the
orbital derivative is zero (V ′(x) = 0), and are strictly decreasing along solutions
in the gradient-like set, i.e. V ′(x) < 0. We have shown that the method is a
useful tool for applications and can determine the energy landscape of a quasi-
potential.
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