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Abstract— In [3] Conley showed that the state-space of a
dynamical system can be decomposed into a gradient-like part
and a chain-recurrent part, and that this decomposition is
characterized by a so-called complete Lyapunov function for the
system. In [14] Kalies, Mischaikow, and VanderVorst proposed
a combinatorial method to compute discrete approximations
to such complete Lyapunov functions. Their approach uses a
finite subdivision of a compact subset of the state-space and a
combinatorial multivalued map to approximate the dynamics.
They proved that as the diameter of the elements of the subdivi-
sion approaches zero the resulting approximations to complete
Lyapunov functions converge to a true complete Lyapunov
function for the system. In [2] Ban and Kalies implemented
this algorithm and used it to compute an approximation to a
complete Lyapunov function for a time-T mapping of the van
der Pol oscillator.

The CPA method to compute Lyapunov functions uses linear
programming to parameterize true Continuous and Piecewise
Affine Lyapunov functions for continuous dynamical systems
[11], [1], [8].

In this paper we propose using the CPA method to evaluate
approximations to complete Lyapunov functions computed by
the combinatorial method. Especially, we can explicitly compute
the region of the state-space where the orbital derivative of the
approximation is negative. Further, we use the RBF method [5]
to solve a Zubov equation ∇V (x) · f(x) = −p(x) and compare
the solution V with the complete Lyapunov function computed
by the combinatorial method for the van der Pol oscillator.

Index Terms— complete Lyapunov functions, nonlinear sys-
tems, combinatorial methods, continuous piecewise affine func-
tions, radial basis functions

I. INTRODUCTION

Let X be a metric space and φ : R × X → X be a
flow on the space, i.e. φ is continuous, φ(0, x) = x and
φ(t, φ(s, x)) = φ(t+s, x) for all x ∈ X and all s, t ∈ R. The
chain recurrent set of a flow is an adequate generalization
of recurrent and almost recurrent phenomena and includes
equilibrium points, periodic orbits, homoclinic orbits, etc.
For a proper definition cf. e.g. [3]. Denote by RC(φ) the
chain recurrent set of the flow φ. In [3] Conley showed that
for a compact X there exists a so-called complete Lyapunov
function for the flow φ, i.e. a continuous function V : X →
[0, 1] such that t 7→ V (φ(t, x)) is:

• constant for each x ∈ RC(φ)
• strictly decreasing for each x ∈ X \ RC(φ)
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Thus, the flow is gradient-like on X \ RC(φ). Hurley in
[13] proved similar results for time discrete semi-flows on
separable metric spaces and in a recent short notice [15]
Patrão adapted Hurley’s results to prove the existence of
a complete Lyapunov function for semi-flows on separable
metric spaces.

In this paper we will discuss how to adapt the CPA
method to evaluate the quality of approximations to complete
Lyapunov functions. We will compute such approximations
using the combinatorial methods presented in [2], [14] and
the RBF method presented in [5]. We give a brief overview
of the ideas behind these three methods and how we use them
in our approach in Sections II to IV. Then, in Section V, we
compute approximations to complete Lyapunov functions for
the van der Pol oscillator and verify them with the adapted
CPA method. Finally, we give some conclusions and outlook
for further research in Section VI.

Notations: We write vectors in Rn and vector fields Rn →
Rn in boldface, e.g. x and f(x). We consider the dynamical
system

ẋ = f(x) (I.1)

where f : Rn → Rn is (at least) locally Lipschitz. The
solution to the system is denoted φ(t, ξ), i.e. t 7→ φ(t, ξ) is
the solution to the initial-value problem ẋ = f(x), x(0) =
ξ. We denote the power-set of a set U by P(U). For a
vector x ∈ Rn and p ≥ 1 we define the norm ‖x‖p =

(
∑n
i=1 |xi|p)

1/p. We also define ‖x‖∞ = maxi∈{1,...,n} |xi|.
Let x0,x1, . . . ,xm be vectors in Rn. The

set of all convex combinations of these vec-
tors is denoted by co{x0,x1, . . . ,xm} :=
{
∑m
i=0 λixi : 0 ≤ λi ≤ 1,

∑m
i=0 λi = 1}. The vectors

x0,x1, . . . ,xm are called affinely independent if∑m
i=1 λi(xi − x0) = 0 implies λi = 0 for all i = 1, . . . ,m.

If x0,x1, . . . ,xm are affinely independent, then the set
S := co{x0,x1, . . . ,xm} is called an m-simplex and the
vectors x0,x1, . . . ,xm are said to be its vertices.

We denote the diameter of a bounded set U ⊂ Rn with
respect to the norm ‖ · ‖p by

diamp(U) := sup
x,y∈U

‖x− y‖p.

II. THE CPA METHOD

In the CPA method, linear programming is used to con-
struct Lyapunov functions that are continuous and piecewise
affine. A Lyapunov function V is parameterized by its values
at the vertices of a triangulation and linear inequalities ensure



that V is strictly decreasing along all solution trajectories,
also inside the simplices.

In this paper, we will use the CPA method not to construct,
but to verify complete Lyapunov functions. We will use
a different method to assign values to V at the vertices
of the triangulation and then verify certain inequalities for
these values. In other words, we construct a function, and
then check if its CPA interpolation on a triangulation is
a complete Lyapunov function. A similar approach was
followed for classical Lyapunov functions constructed by
the Yoshizawa method in [12]. In this paper, we will use
two methods to construct complete Lyapunov functions, the
combinatorial method described in Section III and the RBF
method described in Section IV.

In this section, we first define triangulations and CPA func-
tions. The main result, which we will use in the following,
is Theorem 2.5.

A triangulation T of a subset of Rn consists of countably
many n-simplices. To simplify notations, we often write T =
(Sν), where it is to be understood that ν ∈ {1, 2, . . . , N},
if T has a finite number N of (different) simplices, or
ν ∈ N>0, if T is infinite. In this paper, we will only use
triangulations with a finite number of simplices. We will
briefly describe triangulations suited for our needs; for more
details on triangulations for the CPA method, cf. [9], [10].

Definition 2.1 (Triangulation): Let T be a collection of
n-simplices Sν in Rn. T is called a triangulation if for
every Sν ,Sµ ∈ T , ν 6= µ, either Sν ∩ Sµ = ∅ or
Sν and Sµ intersect in a common face. Recall that a
face of an n-simplex co{x0,x1, . . . ,xn} is a k-simplex
co{xi0 ,xi1 , . . . ,xik}, where 0 ≤ i0, i1, . . . , ik ≤ n are
pairwise different integers and 0 ≤ k ≤ n.

For a triangulation T we define

VT := {x ∈ Rn : x is a vertex of a simplex in T }

and
DT :=

⋃
Sν∈T

Sν .

We call VT the vertex set of the triangulation T and we say
that T is a triangulation of the set DT .

�
Let T = (Sν) be a triangulation of a set D ⊂ Rn. Then

we can define a continuous, piecewise affine function P :
D → R by fixing its values at the vertices of the simplices
of the triangulation T . More exactly:

Definition 2.2 (CPA function): Let T = (Sν) be a trian-
gulation of a set D ⊂ Rn and assume that for every x ∈ VT
we are given a number Px ∈ R. Then we uniquely define a
function P : D → R through :

i) P (x) := Px for every x ∈ VT .
ii) P is affine on every simplex Sν ∈ T , i.e. there is

a vector aν ∈ Rn and a number bν ∈ R, such that
P (x) = aTν x + bν for all x ∈ Sν .

The set of all such continuous, piecewise affine functions
D → R fulfilling i) and ii) is denoted by CPA[T ] or

CPA[(Sν)]. We identify P ∈ CPA[T ] with (Px)x∈VT and
write P ∼ (Px)x∈VT .

For every Sν ∈ T we define ∇Pν = ∇P |Sν := aν ,
where aν ∈ Rn is as in ii).

�
Note that aν and thus∇Pν in ii) of Definition 2.2 is unique

for every simplex Sν .
Remark 2.3: If x ∈ Sν = co {xν0 ,xν1 , . . . ,xνn} ∈ T , then

x can be written uniquely as a convex combination

x =

n∑
i=0

λix
ν
i ,

n∑
i=0

λi = 1, 0 ≤ λi ≤ 1 for i = 0, 1, . . . , n,

of the vertices of Sν and

P (x) = P

(
n∑
i=0

λix
ν
i

)
=

n∑
i=0

λiP (xνi ) =

n∑
i=0

λiPxνi
.

�
Definition 2.4: Let P : U → R, U ⊂ Rn, be a function

and let T be a triangulation with DT ⊂ U . We call the
function Q ∼ (Qx)x∈VT ∈ CPA[T ], where Qx := P (x) for
every x ∈ VT , the CPA interpolation of the function P
on T . Usually we write the CPA interpolation of P as PC .

�
The following theorem follows directly from the proof of

Theorem 4.5 in [1].
Theorem 2.5: Consider the system (I.1), let T = (Sν) be

a triangulation, and assume that f in (I.1) is C2 on DT . Let
V ∼ (Vx)x∈VT ∈ CPA[T ].

Define for every Sν ∈ T the constants hν := diam2(Sν)
and

Eν :=
nBν

2
h2
ν , where (II.1)

Bν ≥ max
m,r,s=1,2,...,n

max
z∈Sν

∣∣∣∣ ∂2fm
∂xr∂xs

(z)

∣∣∣∣ .
Assume that for a simplex Sν = co{x0,x1, . . . ,xn} ∈ T
the inequality

0 > ∇Vν · f(xi) + Eν‖∇Vν‖1 (II.2)

holds true for every vertex xi ∈ Sν . Then

0 > ∇Vν · f(x) for all x ∈ Sν .
�

III. THE COMBINATORIAL METHOD

Consider the dynamical system (I.1) on a compact set
C ⊆ Rn, where f is a C1 vector-field on C. We additionally
assume that C is an invariant set for the dynamics, i.e. if
x ∈ C then φ(t,x) ∈ C for all t ∈ R. Our aim is to
construct an approximate Lyapunov function for the system
by discretizing both the state-space C and the time-T map of
the flow generated by the vector field f in order to construct
a finite directed graph which encapsulates the behaviour of
the system.

We begin by discretizing C. We call a family U = {Ui}i∈I
of compact sets a grid for the set C if the following conditions
are met:



1) C ⊆
⋃
Ui.

2) U◦i = Ui for all i.
3) U◦i

⋂
U◦j = ∅ if i 6= j.

We refer to the sets Ui’s as the cells of the grid. For ε > 0
we define the diameter of U to be

diam(U) := sup
i∈I

diam2(Ui)

and note that since C is compact, there exists for each ε > 0
a finite grid U for C with diam(U) ≤ ε.

We now wish to encode the dynamics as a map

Φ : U → P(U)

and thus obtain a directed graph (U, Φ̃) which contains
information about the original dynamical system. We shall
construct the map Φ in two steps. First we fix a time T and
compute the time-T map φT (x) := φ(T,x) of the system.
We do this by first integrating the system numerically for
selected initial-values. As we shall see later, different values
of T give us quite different results. We then use the time-
T map φT to construct the map Φ. This can be done in
numerous ways, the only condition is that the map Φ covers
the time-T map, that is for each Ui we have

φT (Ui) ⊂

 ⋃
S∈Φ(Ui)

S

◦ . (III.1)

If Φ fulfills this condition we say that it is an outer approx-
imation of φT . Obviously Φ(Ui) should not be much larger
than necessary to fulfill (III.1) if Φ is supposed to replicate
the dynamics of the discrete-time system

xk+1 = φT (xk) (III.2)

in any useful way.
Once an outer approximation Φ has been constructed we

can use it to construct the graph (U, Φ̃), where Φ̃ is the set
of arcs:

(Ui,Uj) ∈ Φ̃ ⇐⇒ Uj ∈ Φ(Ui).

We want to construct a complete Lyapunov function V on
the graph, i.e. a function V : U → [0, 1] such that

(Ui,Uj) ∈ Φ̃ =⇒ V (Uj) ≤ V (Ui). (III.3)

Moreover, if there is not a directed path in (U, Φ̃) from Uj to
Ui, then the inequality in (III.3) must be strict, i.e. V (Uj) <
V (Ui).

We shall now go into some details on how we construct the
Lyapunov function for the graph (U, Φ̃). As a simple example
consider the graph in Figure 1. We start by using the well
known algorithm of Tarjan [16], which computes the strongly
connected components of the graph and sorts the resulting
graph of equivalence classes topologically. This delivers the
graph in Figure 2 for the the graph (U, Φ̃) in Figure 1. Each
vertex in this new graph represents a strongly connected
component of the original graph. We refer to this new graph
as the component graph of (U, Φ̃). For two vertices X and
Y , X 6= Y , in the component graph, there is an arc from

Fig. 1. An exemplary figure of a graph (U, Φ̃). Some values of Φ are
Φ(U1) = {U2,U6}, Φ(U4) = {U9}, and Φ(U9) = {U5,U10}.

Fig. 2. The graph delivered by Tarjan’s algorithm when applied to the graph
(U, Φ̃) from Figure 1. Its vertices represent strongly connected components
in the original graph.

X to Y if and only if there exist x ∈ X and y ∈ Y such
that there is an arc from x to y in the original graph, or
equivalently y ∈ Φ(x).

In order to construct a complete Lyapunov function for the
original graph (U, Φ̃) we first construct a Lyapunov function
for its component graph. To do this consider the following
partial ordering over the component graph: X < Y if and
only if there exists a directed path from X to Y . We assign
a natural number iA to every vertex A of the component
graph, such that

X < Y =⇒ iX < iY .

We can then define a complete Lyapunov function Ṽ for the
component graph by assigning appropriate numerical values
to Ṽ (X) for all vertices X . Ṽ can then be extended to a
complete Lyapunov function V on (U, Φ̃) in the canonical
way V (x) := Ṽ (X) for all x ∈ X .

In [14] and [2] it is shown how to compute appropriate
values for Ṽ (X), such that it approximates a Lyapunov
function for the system (III.2) arbitrary close. Due to space
constraints we do not discuss the general case, but in Section
V we write down the formulas for our particular example.

IV. THE RBF COLLOCATION METHOD

Meshless collocation, in particular using Radial Basis
Functions (RBF), has been successfully used to construct
(classical) Lyapunov functions on the basin of attraction of
an exponentially stable equilibrium. We will briefly recall
the method, and then describe how we have generalised the
method in this paper to approximate a complete Lyapunov
function.

We consider the system given by (I.1) with f ∈ Cσ , where
σ will be defined later, and assume that x0 is an exponentially
stable equilibrium with basin of attraction A(x0). A classical
Lyapunov function is a function V ∈ C1(A(x0),R) attaining
its minimum at x0 and with strictly negative orbital derivative



V ′(x) := ∇V (x) · f(x) < 0 for all x ∈ A(x0) \ {x0}. In
particular, the solution of the first-order linear PDE, with
differential operator D,

DV (x) := V ′(x) = ∇V (x) · f(x) = −‖x− x0‖22 (IV.1)

is such a classical Lyapunov function. The RBF method ap-
proximates the solution of (IV.1) using meshless collocation.
Thereto, we fix a compact set C and choose a grid, i.e.
a finite set of pairwise distinct points X = {x1, . . . ,xN}
in C, not containing an equilibrium. Furthermore, we fix
a Radial Basis Function Φ(x) = ψ(‖x‖2). For this paper
we use the family of Wendland’s compactly supported RBF
ψl,k(r) [17] each of which is a polynomial on its support,
and define ψ(r) = ψl,k(cr), where c > 0 is a constant and
l := bn2 c+k+1. Then k ∈ N, k ≥ 2 reflects the smoothness
of the function Φ(x) = ψl,k(c‖x‖2) ∈ C2k(Rn). We require
f to be smooth, namely, f ∈ Cσ with σ = dk + n+1

2 e. In
this paper we use c = 1 and the Wendland function

ψ4,2(r) = (1− r)6
+[35r2 + 18r + 3],

where x+ = x for x > 0 and x+ = 0 for x ≤ 0.
The approximate solution of (IV.1) is now given by

VR(x) =

N∑
j=1

αj(δxj ◦D)yΦ(x− y)

where δxjg(x) = g(xj), D denotes the differential operator
of the orbital derivative, and the superscript y denotes the
application of the operator with respect to y. The coeffi-
cients αj ∈ R are determined by the collocation conditions
V ′R(xi) = V ′(xi) = −‖xi−x0‖2 =: ri for all i = 1, . . . , N
and are calculated by solving the linear system of equations
Aα = r, where r = (r1, r2, . . . , rN )T and

A =
(
(δxi ◦D)x(δxj ◦D)yΦ(x− y)

)
i,j=1,...,N

.

Note that the symmetric matrix A is positive definite when
choosing a positive definite Radial Basis Function and the
grid X as above and thus nonsingular so the equation Aα =
r always has a solution, cf. [7].

Error estimates of the form

‖V ′(x)− V ′R(x)‖2 ≤ Chk−1/2
X ,C ‖V ‖Wk+(n+1)/2

2 (C)

for all x ∈ C hold [7, Corollary 4.11], where VR and k were
defined above and

hX ,C = max
y∈C

min
x∈X
‖x− y‖2

is the fill distance, measuring how dense the grid points of
X lie in C. Note that V ∈ W

k+(n+1)/2
2 (C), denoting the

Sobolev space, holds due to the smoothness assumptions
on f . Due to the error estimate, even an approximation, if
the error is small enough, has negative orbital derivative,
and thus is a classical Lyapunov function. However, near
the equilibrium, where V ′(x) = 0, this argument fails
and the approximation can have points with positive orbital
derivative. Solutions to this local problem are discussed in
[5], [6].

A complete Lyapunov function for a general system (I.1)
is a continuous function V : Rn → R that is strictly
decreasing along all solution trajectories not in the chain
recurrent set of the flow. If V ∈ C1 this implies that
V ′(x) = ∇V (x)·f(x) < 0 for all x not in the chain recurrent
set. In order to approximate a function with these properties
we consider the linear first-order PDE

V ′(x) := ∇V (x) · f(x) = −‖f(x)‖2 (IV.2)

on a compact set C ⊂ Rn. Note that this equation does
not necessarily have a solution. Indeed, if C contains e.g. a
periodic orbit, then (IV.2) cannot have a solution. To see this,
assume the system has a periodic orbit given by the periodic
solution t 7→ φ(t,p), where φ(T,p) = p with period T > 0,
φ(R,p) ⊂ C. Then we have

0 = V (φ(T,p))− V (p)

=

∫ T

0

V ′(φ(t,p)) dt

= −
∫ T

0

‖f(φ(t,p))‖2 dt

< 0

as f(x) 6= 0 for all points x on the periodic orbit, which is
a contradiction.

Nevertheless, we follow the approach above, define a finite
set of pairwise distinct points X = {x1, . . . ,xN} ⊂ C, none
of whom is an equilibrium, and solve the linear equation
Aα = r with A as above and r = (r1, r2, . . . , rN )T defined
by ri = −‖f(xi)‖2 for i = 1, 2, . . . , N . Even if the problem
(IV.2) has no solution, this collocation problem always has
a solution. Indeed, the proof is the same as above, see [7],
as the operator D is the same. The matrix A is positive
definite since the functionals δxj ◦ D, j = 1, . . . , N are
linearly independent; this follows from the fact that all xj are
pairwise distinct and none of them is an equilibrium point,
which are the only singular points of D in the sense of [7,
Definition 3.2]. We expect that the approximation will not
have negative orbital derivative on and close to the chain
recurrent set, such as periodic orbits, but we anticipate to
obtain an approximation with negative orbital derivative in
the gradient-like part. The only certainty, however, is that the
solution VR cannot have a negative orbital derivative at all
points of a transitive component of the chain recurrent set,
which is fully contained in C.

V. CASE STUDY: THE VAN DER POL OSCILLATOR

In order to numerically investigate our approach we apply
it to the system of equations

ẋ = y, (V.1)

ẏ = (1− x2)y − x,

known as the van der Pol equations and we consider it
on the set C = [−4, 4] × [−4, 4]. Then C contains an
unstable equilibrium at the origin and an asymptotically
stable periodic orbit that encircles the origin. We compute
an approximation to a complete Lyapunov function for the



system, both with the combinatorial method and the RBF
method, and then we verify these approximations with the
CPA method.

First we apply the combinatorial method as presented in
[2], [14]. We subdivide the interval [−4, 4] on both axes into
128 even intervals to obtain a grid of 16, 384 elements. For
every grid element Ui we denote its midpoint by ui.

To determine the map Φ we need to compute φT (x) for a
fixed T > 0 and for some x ∈ C. We did this by numerical
integration using the Runge-Kutta method RK4 with a fixed
time-step of 0.01. Second, we note that for every T the time-
T map φT is locally Lipschitz, i.e. there exists a constant
L > 0 such that

‖φT (x)− φT (y)‖∞ ≤ L‖x− y‖∞. (V.2)

Therefore we can construct an outer approximation Φ of φT
by insisting that Uj ∈ Φ(Ui) if and only if

Uj ∩
{
x ∈ C :

‖x− φT (ui)‖∞
diam∞(Ui)

≤ 1

2
L

}
6= ∅

where diam∞(Ui) = 8/128 = 1/16.
To compute a Lipschitz constant L for φT one might be

tempted to use the usual estimate from Gronwall’s lemma

‖φT (ξ)− φT (η)‖∞ ≤ ‖ξ − η‖∞eL
∗T

where

L∗ := sup
t∈[0,T ]
ξ,η∈C
ξ6=η

‖φ(t, ξ)− φ(t,η)‖∞
‖ξ − η‖∞

,

and then set L := eL
∗T . This estimate, however, is so

conservative that the outer approximation Φ is not able to
encode the dynamics of the system (III.2) in a useful way
for our numerical computations. Indeed, our computations
for several different T with such an L always resulted in the
component graph consisting of one vertex and the computed
combinatorial Lyapunov function being constant on C.

We thus resorted to estimating the constant L numerically.
By computing

‖φT (x)− φT (y)‖∞
‖x− y‖∞

directly for 5 · 105 pairs of midpoints x and y of adjacent
cells we obtained the upper bound L = 1.78 for T = 0.2
and L = 2.55 for T = 1. With these constants Φ(Ui) ⊂ U
contains 4 to 9 cells when T = 0.2 and 9 to 16 cells when
T = 1.

Note that by using these values for L instead of a theoreti-
cal upper bound we cannot be sure that Φ actually covers the
time-T map φT in the sense of (III.1). We can only assume
that (V.2) should hold for most Ui.

Since C is not an invariant set as Figure 3 obtained from
the software GAIO [4] indicates, we have to modify our
map slightly to mend this. Those midpoints ui that are not
mapped by φT into C are iterated repeatedly under φT until
we have obtained a point in C. That is, if φT (ui) /∈ C, we

Fig. 3. The relative attractor for the system (V.1) in C computed with
GAIO. This set is a global attractor of the system.

set Uj ∈ Φ(Ui), where φ(rT,ui) /∈ C for r = 1, 2, . . . , s−1
and y := φ(sT,ui) ∈ C, whenever

Uj ∩
{
x ∈ C :

‖x− y‖∞
diam∞(Ui)

≤ 1

2
L

}
6= ∅.

This is guaranteed to work for our system because the
periodic orbit in C is also a global attractor for the system
so all solutions end up in C.

To compute a Lyapunov function VG for the graph (U, Φ̃)
we followed the algorithm in [2]. There is only one attractor-
repeller pair which we have to consider. The attractor A is
depicted in Figure 6 for time-step T = 0.2 and in Figure
8 for time-step T = 1. In both cases the dual repeller A∗

consist of the four cells Uj ∈ U containing the origin. We
define the functions v, v∗ : U → [0, 1] by

v(Ui) :=
minUa∈A ‖ui − ua‖2

minUa∈A ‖ui − ua‖2 + minUa∗∈A∗ ‖ui − ua∗‖2
and

v∗(Ui) := max
Uj∈Γ+(Ui)

v(Ui),

where Γ+(Ui) ⊂ U is the forward image of Ui under Φ,
containing Ui and all Uk ∈ U such that there exists a directed
path from Ui to Uk in the graph (U, Φ̃). Then, by Theorem
3.3 in [2], the function

VG(Ui) =


0, if Ui ∈ A,
1, if Ui ∈ A∗,

1
2v
∗(Ui) + 1

2 max
Uj∈Φ(Ui)

VG(Uj), otherwise.

is a Lyapunov function for the graph (U, Φ̃) that approxi-
mates a continuous Lyapunov function for (III.2) arbitrarily
close for a grid U with a small enough diameter. Note that
the recursively defined function VG is in fact well defined on
the grounds of Conley’s fundamental theorem, cf. Theorem
1.5 in [14].

Now we come to the CPA approximation. A part of the
triangulation which we use for the CPA method is depicted
in Figure 5. The vertices of the triangles are (x, y) where

x = 4 ·
i− 1

2

64
and y = 4 ·

j − 1
2

64
, i, j = −63,−62, . . . , 64.

These triangles cover the square [−4 · 63.5
64 , 4 ·

63.5
64 ]2 ⊂ C.

We assign values to the CPA Lyapunov function VC from



Fig. 4. The triangulation we use in this paper. The figure shows a part
of the triangulation near the origin. The triangulation is extended in the
obvious way to cover the domain [−4 · b, 4 · b]2, where b = 127

128
, for all

examples in this paper. It consists of 2 · (2 · 127)2 = 129, 032 triangles.
The factor b is explained in the text.

Fig. 5. An exemplary picture of four cells Ui of the grid for the
combinatorial method and 25 vertices of the triangulation for the CPA
method. Some vertices are at the midpoints of the cells and some are at
the boundaries. The combinatorial method delivers values for VG at the
midpoints (the filled dots). In the text we explain how we assign values to
VC at the vertices.

VG as follows. If (x, y) = ui is the centre of an Ui, we
set VC(x, y) := VG(Ui). For other vertices (x, y) we assign
the average of the closest VG(Ui) to VC(x, y). This is best
explained graphically. In Figure 5 four cells Ui and 25
vertices are depicted. The vertices numbered 1, 3, 7, and 9 are
the centres of cells Ui and we assign to VC at these vertices
the values of VG at the cell. At vertex 2, VC is assigned the
average of the values of G at vertices 1 and 3. At vertex 4,
VC is assigned the average of the values of G at vertices 1
and 7, and for the vertices 6 and 8 we proceed identically.
At vertex 5, VC is assigned the average of the values of VG
at vertices 1, 3, 7, and 9. Note that a finer triangulation for
the CPA would deliver the same results due to the Lyapunov
function constructed by the combinatorial method and the
way how we assign values to the CPA Lyapunov function.

We now set the time step T = 0.2 and calculate an
approximation VG to a complete Lyapunov function for the

Fig. 6. The attractor of φT with T = 0.2 for the system (V.1) computed
with the combinatorial algorithm.

Fig. 7. The CPA approximation VC to a complete Lyapunov function
for φT with T = 0.2 for the system (V.1). The area where the orbital
derivative is positive for the continuous system (V.1) is painted black. The
orbital derivative is positive in 27068 of 129032 triangles or 20.98%.

time-T map φT . In Figure 6 we see the attractor computed
by the combinatorial method. We used the CPA method from
Section II to investigate where the orbital derivative of the
CPA approximation VC of VG is positive for the continuous
system (V.1). The results are depicted in Figure 7. Note that
a complete Lyapunov function for the time-T mapping φT
is not necessarily a complete Lyapunov functions for the
continuous system [2], and as seen in Figure 7 the orbital
derivative is positive in a rather large subset of C. We did the
same calculations for the time step T = 1. The results are
depicted in Figure 8. As expected, the approximation to the
attractor is now better, see Figure 8, and the approximation
to a complete Lyapunov function for the continuous system
(I.1) is poorer, cf. Figure 9. The computation time of the
complete Lyapunov function for T = 0.2 was 27 sec. and
for T = 1 it was 55 sec. on a modern PC. The verification
by the CPA methods takes 0.025 sec.

We now turn to the RBF method. We computed VR for
three different grids X , one with 11× 11 = 121 grid points,
one with 21× 21 = 441, and one with 41× 41 = 1681 grid
points. The grid points have coordinates

(x, y) =
4

q
(i, j), i, j = −q,−q + 1, . . . , q,



Fig. 8. The attractor of φT with T = 1 for the system (V.1) computed
with the combinatorial algorithm.

Fig. 9. The CPA approximation VC to a complete Lyapunov function for
φT with T = 1 for the system (V.1). The area where the orbital derivative
is positive for the continuous system (V.1) is painted black. The orbital
derivative is positive in 37222 of 129032 triangles or 28.8%.

where we used q = 5, q = 10, and q = 20 respectively.
The most laborious computation with q = 20, i.e. 1681 grid
points, takes 6 sec. on a modern PC and the verification
by the CPA method takes 0.025 sec. In Figures 10 to 15 the
results are shown. The orbital derivative is negative in a much
larger area than with the combinatorial method. This is to be
expected because the combinatorial method is computing an
approximation to a complete Lyapunov function for the time-
T mapping, T = 0.2 and T = 1, which is not necessarily a
complete Lyapunov function for the continuous system. The
RBF method, however, is not designed to identify attractors
and thus does not produce a Lyapunov function with a
vanishing orbital derivative on the attractor.

VI. SUMMARY AND OUTLOOK

The complete Lyapunov functions computed by the com-
binatorial method uses a discrete-time approximation (III.2)
to the continuous-time system (I.1). Our numerical results
indicate that it is a rather poor approximation to a complete
Lyapunov function of the continuous time van der Pol
oscillator. There are at least two different paths that one
might follow to proceed. First, one could use a variation
of the CPA method for discrete-time systems as in [9] to

Fig. 10. The CPA approximation VC to a complete Lyapunov function
computed by the RBF collocation method using an 11× 11 grid. The area
where the orbital derivative is positive for the continuous system (V.1) is
painted black. The orbital derivative is positive in 9434 of 129032 triangles
or 7.3%.

Fig. 11. The periodic orbit of the system (V.1) (red) and the area where
the orbital derivative of the CPA approximation to the complete Lyapunov
function computed by the RBF method using an 11 × 11 grid is positive
(black). The orbital derivative is positive in 9434 of 129032 triangles or
7.3%.

Fig. 12. The CPA approximation VC to a complete Lyapunov function
computed by the RBF collocation method using an 21× 21 grid. The area
where the orbital derivative is positive for the continuous system (V.1) is
painted black. The orbital derivative is positive in 4592 of 129032 triangles
or 3.6%.



Fig. 13. The periodic orbit of the system (V.1) (red) and the area where
the orbital derivative of the CPA approximation to the complete Lyapunov
function computed by the RBF method using an 21 × 21 grid is positive
(black). The orbital derivative is positive in 4592 of 129032 triangles or
3.6%.

Fig. 14. The CPA approximation VC to a complete Lyapunov function
computed by the RBF collocation method using an 41× 41 grid. The area
where the orbital derivative is positive for the continuous system (V.1) is
painted black. The orbital derivative is positive in 2888 of 129032 triangles
or 2.2%.

Fig. 15. The periodic orbit of the system (V.1) (red) and the area where
the orbital derivative of the CPA approximation to the complete Lyapunov
function computed by the RBF method using an 41 × 41 grid is positive
(black). The orbital derivative is positive in 2888 of 129032 triangles or
2.2%.

verify the quality of the Lyapunov function for the discrete-
time system (III.2) directly. Second, one could use Lemma
7.7 in [14] or Theorem 1.1 in [15] to compute a complete
Lyapunov function for the continuous-time system (I.1) from
the one computed for its discrete-time approximation (III.2)
and then verify this function by the CPA method. We intend
to follow both paths in the future.

For the van der Pol oscillator, the combinatorial method
works very well to identify the attractor, i.e. in this case the
periodic orbit; the constructed complete Lyapunov function
is indeed constant on the periodic orbit. The RBF method,
on the other hand, fails to produce a function with vanishing
orbital derivative on the periodic orbit or the equilibrium,
but works very well away from it in producing a function
with strictly negative orbital derivative. This suggests that
a suitable combination of both methods is a promising
approach to construct a complete Lyapunov function. The
CPA verification method thus was the tool to rigorously
analyze the constructed functions and identify areas where
they need improvement.
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