
Class library in C++ to compute
Lyapunov functions for nonlinear systems

Jóhann Björnsson ∗ Skuli Gudmundsson ∗ Sigurdur Hafstein ∗

∗Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
e-mail: {johannbj, skuligu, sigurdurh}@ru.is

Abstract: Lyapunov functions are of fundamental importance in the stability analysis of
dynamical systems. Unfortunately, the construction of Lyapunov functions for nonlinear systems
is in general a very difficult problem. We present software written in C++ that computes
Lyapunov functions for n-dimensional, nonlinear, time-continuous dynamical systems defined
through systems of autonomous differential equations.
The software implements the computation of continuous and piecewise affine (CPA) Lyapunov
functions through linear programming (LP) and the computation of Lyapunov functions using
radial basis functions (RBF) and collocation. In the former case a common Lyapunov function
for a finite set of nonlinear systems can be computed and it is guaranteed to be a true Lyapunov
function, i.e. to fulfill the defining properties of a Lyapunov function exactly and rigorously (as
opposed to approximately, which is so often the case with numerically contrived results). In
the latter case the computed function is smooth and is guaranteed to be a Lyapunov function
outside of an arbitrary small neighbourhood of the equilibrium, if the collocation points are
close enough. However, it is not obvious how to determine what is close enough. A Lyapunov
property test for the CPA interpolation of the computed RBF solution is therefore also part of
the software.

Keywords: Lyapunov function, C++ software, stability, dynamical systems

1. INTRODUCTION

The computation of Lyapunov functions has been an active
field of study for decades. Earlier, much attention was
spent on linear differential inclusions Brayton and Tong
(1979); Wang and Michel (1996); Polanski (2000) and this
is still an active field of study Lazar and Jokić (2010);
Lazar and Doban (2011). Since the turn of the millennium
several different more general approaches have appeared
in the literature. For polynomial vector-fields the com-
putation of polynomial Lyapunov functions has received
much attention, either using the sum-of-squares (SOS)
relaxation and semi-definite programming Peet (2009);
Peet and Papachristodoulou (2012), introduced in Par-
rilo (2000), or different methods like quantifier-elimination
Burchardt and Ratschan (2007). For an overview of
SOS methods we refer the reader to Anderson and Pa-
pachristodoulou (2015) and for an overview of other poly-
nomial methods we refer the reader to Kamyar and Peet
(2015). Other approaches use graph theoretic methods
Kalies et al. (2005); Ban and Kalies (2006) or other diverse
methods to solve the Zubov equation Zubov (1964); Van-
nelli and Vidyasagar (1985); Camilli et al. (2001); Grüne
(2002). For a more detailed overview of different methods
to compute Lyapunov functions numerically cf. the recent
review Giesl and Hafstein (2015b).

There have been numerous publications on two other
methods, the CPA method that uses LP to parameter-

? Björnsson and Gudmundsson are supported by The Icelandic
Research Fund, grant nr. 130677-052 and 152429-051 respectively.

ize a CPA Lyapunov function and the RBF method, a
collocation method that uses radial basis functions to
solve a Zubov equation numerically, a first-order partial
differential equation (PDE), whose solution is a Lyapunov
function for the system at hand. Recently, the advantages
of both these methods were combined in Giesl and Hafstein
(2015a). The RBF method is used to propose a Lyapunov
function and then the constraints of the LP problem of the
CPA method are verified. This delivers a method that is
exact, i.e. results in a true Lyapunov function and not an
approximation, and has the numerical complexity of the
RBF method, which is considerably lower than that of the
CPA method.

In this paper we present a class library in C++ that
implements both the CPA and the RBF method and the
combined method from Giesl and Hafstein (2015a). In the
next section we give a very brief overview of the CPA and
RBF methods respectively. Then we discuss the structure
of the software briefly and give five worked out examples
of its use.

2. METHODS IMPLEMENTED

We give a short introduction of the methods implemented.
For a more detailed description we refer the reader to
Hafstein (2007); Giesl and Hafstein (2014) for the CPA
method and Giesl (2007) for the RBF method. For either
method we consider the following autonomous system:

ẋ = f(x), where f ∈ C2(Rn,Rn) and f(0) = 0. (1)

CPA method: To define a CPA function we first fix a
suitable triangulation. A suitable triangulation of a subset
DT of Rn, breaks DT up into a finite collection T = (Sν)
of n-simplices Sν := co(x0,x1, . . . ,xn), such that pairs of
simplices intersect in a common face or not at all. Further,
we demand that the interior D◦T of

DT =
⋃

Sν∈T

Sν

is a simply connected neighbourhood of the origin and that

0 ∈ Sν = co(x0,x1, . . . ,xn) ∈ T ⇒ x0 = 0.

Denote by VT the set of all vertices of all simplices of T .

A function V : DT → R is said to be a CPA function on the
triangulation T , written V ∈ CPA[T], if V is continuous
and affine on each simplex Sν ∈ T . It is not difficult to see
that V is uniquely determined by its values at the vertices
VT . Since V is affine on each Sν ∈ T , there is a vector
wν ∈ Rn and a number aν ∈ R, such that

V (x) = wν · x + aν , ∀x ∈ Sν .

We define ∇Vν := wν . As shown in (Giesl and Hafstein,
2014, Remark 9) ∇Vν is affine in the values Vi = V (xi)
of V at the vertices xi of Sν := co(x0,x1, . . . ,xn). V ∈
CPA[T] is positive definite, if and only if

V (0) = 0 and V (x) > 0, ∀x ∈ VT \ {0}. (2)

The (Dini) orbital derivative

V ′(x) := lim sup
h→0+

V (x + hf(x))− V (x)

h

of V ∈ CPA[T] is negative on Sν = co(x0,x1, . . . ,xn), if

∇Vν · f(xi) + ‖∇Vν‖1Bνhi,ν
hi,ν + hν

2
< 0, (3)

where

hi,ν := ‖xi − x0‖2 for i = 1, 2, . . . , n,

hν := max
x,y∈Sν

‖x− y‖2

is the diameter of Sν , and

Bν ≥ max
i,r,s=1,2,...,n

x∈Sν

∣∣∣∣ ∂2fi
∂xr∂xs

(x)

∣∣∣∣
is an upper bound (not necessarily tight) on the second-
derivatives of the components fi of f in Sν . Especially,
V is negative definite on D◦T if (3) holds true for all
xi ∈ VT \ {0}.
The inequalities (2) and (3) can be treated as the linear
constraints of an LP program with the values Vi of V on
VT \ {0} as variables. Because these values of V on VT
determine V ∈ CPA[T], an LP problem can be used to
parameterize a CPA Lyapunov function. This is the idea
of the CPA method.

Another possibility is to compute the values V (xi) at the
vertices xi ∈ VT by other means and then verify that
the inequalities (2) and (3) hold. Obviously, the values
Vi = V (xi) should be computed in such a way that
the corresponding V ∈ CPA[T] (the CPA interpolation)
has a likelihood of being Lyapunov. This has been the
subject of several recent publications Hafstein et al. (2014);
Björnsson et al. (2014b, 2015) using converse theorems by
Massera Massera (1949) and Yoshizawa Yoshizawa (1966)
and by using the RBF method Björnsson et al. (2014a);
Giesl and Hafstein (2015a).

RBF method: The RBF method uses collocation to solve
the Zubov equation

∇V (x) · f(x) = −p(x) (4)

for V , where f is from the system (1) and p is a positive
definite function.

First, a finite number N of collocation points X :=
{y1,y2, . . . ,yN} ⊂ Rn with f(yi) 6= 0 and a basis-function
ψ are fixed. We take the ψ to be a Wendland radial basis
function Wendland (2005) and for n = 2, 3 a suitable
choice is, cf. (Giesl, 2007, Table 3.1),

ψ1(r) := r−1ψ′(cr) = −22c2(1− cr)7+[16(cr)2 + 7cr + 1],

ψ2(r) := r−1ψ′1(cr) = 528c4(1− cr)6+[6cr + 1],

where x+ := max(0, x) and c > 0 is a fixed parameter.
These assignments for ψ1 and ψ2 are the default in the
software.

Second, the matrix A = (ajk)j,k=1,2,...,N is written. With

zjk := yj − yk and zjk := ‖zjk‖2 we set

ajk = ψ2(zjk)[zjk ·f(yj)][zkj ·f(yk)]−ψ1(zjk)[f(yj) ·f(yk)]

Third, the linear equation

Aβ = α, where αi = p(yi) (5)

is solved for β.

The function

VR(x) :=

N∑
k=1

βk(yk − x) · f(yk)ψ1(‖x− yk‖2) + V0,

where the constant V0 is chosen such that VR(0) = 0,
is now a Lyapunov function for the system on coX , apart
from a small neighborhood of the origin, if the fill-distance

hX := max
x∈coX

min
k=1,2,...,N

‖x− yk‖2

of the collocation points in X if small enough.

3. EXAMPLES

We present the software by five worked out examples. In
all but the third example we consider the system (1) with
different f . In the third example we consider a differential
inclusion. We make use of the classes T std NK and ZGrid,
whose implementations are described in detail in Hafstein
(2013). For the programming we used Visual C++ Express
Desktop 2013 for Windows with heavy reliance upon the
Armadillo Linear Algebra Library Sanderson (2010). To
solve the LP problems the software is configured to use
either Gurobi or Gnu Linear Programming Kit (GLPK).
To make the figures we used Scilab and Matlab. Visual
C++ Express, Armadillo, and Scilab are available at no
cost and Gurobi is available at no cost for academics
(registration required).

Example 1 - nonlinear planar system: The first
example is the system (1) with

f(x, y) =

(−1.5y
1

1.5
x+ y[

(x

1.5

)2
+ y2 − 1]

)
.

It is simple to verify that the origin is an exponentially
stable equilibrium point. To generate the LP problem
we first create a simplicial complex, where the simplex
(here triangle) vertices are the integer coordinates of the
square [−15, 15]2 outside the region [−2, 2]2, where instead

Fig. 1. Computed CPA Lyapunov function for Example 1.

Fig. 2. Level-sets of the CPA Lyapunov function computed
in Example 1.

a simplicial fan is used. A simplicial fan has the origin
as one vertex and the integer coordinate points on the
edge of [−2, 2]2 as the other vertices. Such a complex is
constructed by the command

T std K BC(Nm, Np, Km, Kp);

where Nm=(−15,−15)T , Np=(15, 15)T , Km=(−2,−2)T ,
and Kp=(2, 2)T .

We then define the function F : R2 → R2 by

F(0) := 0 and F(x) := 0.075 · ‖x‖∞
‖x‖2

x for x 6= 0

and construct a new simplicial complex SC from the orig-
inal BC with the command FT SC(&BC, F). A simplex
co(v0,v1,v3) in BC becomes co(F(v0),F(v1),F(v3)) in
SC. The LP problem is now constructed by

LP CA LP(&SC);
LP.AddSystem(new MonE23, true);
LP.MakeLPProblem();

where the function f is implemented in the class MonE23
in “DynSystem.cpp”. Additionally we need bounds on the
second-order derivatives of the components of f . This is
implemented by defining the function B : [0,∞)2 → [0,∞)
in MonE23, such that

B(x, y) ≥ max
|x∗|≤x, |y∗|≤y

(
max
g
|g(x∗, y∗)|

)
,

where g runs over all second-order derivatives of the
components f1 or f2 of f . The only non-vanishing such
second-order derivatives are

∂2f2
∂x2

=
8

9
y,

∂2f2
∂x∂y

=
∂2f2
∂y∂x

=
8

9
x, and

∂2f2
∂y2

= 6y

and we can thus set B(x, y) := max{8/9x, 6y}. Note that
these bounds do not have to be tight, any finite upper
bound will do the job!

To solve the LP problem we can use the command
LP.SolveLPwithGLPK() or LP.SolveLPwithGUROBI().
Note that the Gurobi-solver is considerably faster. If the
problem has a solution, as it does with these parame-
ters, the above commands are completed and the solution
becomes a part of the LP object. We set-up the CPA
Lyapunov function from the solution using the command
LP.DefineV C(). Files containing data in text format, re-
quired to plot the function are created with the command:
WriteMesh(“Lya1”,LP.V C,x min,x max,x steps)

where x min is the lowest-leftmost point and and x max
the highest-rightmost points of the domain of the function
to be plotted and x steps contains the resolution to be
used. In Figure 1 the computed CPA Lyapunov function
LP.V C is depicted and in Figure 2 we plot its level-sets.
This is done with the self-explanatory Scilab script in the
file plot2dmesh.sce, so long as Name=“Lya1” matches the
filename used by WriteMesh. The text-data files are in
standard ascii-form and the data can therefore be accessed
from other tools with a minimal effort.

Example 2 - systematic complex refinement: Here
we consider the system (1) with

f(x, y) =

 x3(y − 1)

− x4

(1 + x2)2
− y

1 + y2

 .

This system is taken from (Hafstein, 2007, Sec. 9.1) and
an appropriate B(x, y) and the fact that the origin is an
asymptotically rather than exponentially stable equilib-
rium, is derived there. Hence, the system cannot possess a
CPA Lyapunov function in a neighbourhood of the origin.
We can, however, compute a CPA Lyapunov function if we
exclude an arbitrary small neighbourhood of the origin.

Here we search iteratively for a simplicial complex such
that the LP problem has a solution. More exactly, for
K = 1, 2, . . . , 10 we set N = 15K and construct the ini-
tial simplicial complex by T std NK BC(Nm, Np), where
Nm= (−N,−N)T and Np= (N,N)T . Notice that the
command T std NK accepts the syntax shown here and
results in a simplicial complex without the simplicial fan
from before. We then construct a new simplicial com-
plex with the command FT SC(&BC, F), but now with
F(x) = 2‖x‖∞/(N‖x‖2) x. We next load the system
into the LP object with LP.AddSystem(new MonE1,true).
We can use the command ZGrid Excl(Km, Kp), where
Km= (−K,−K)T and Kp= (K,K)T , to specify simplices
in BC which we want to exclude from the LP problem.
We construct the LP problem with these exclusions us-
ing the command LP.MakeLPProblem(Excl). The exact
functionality is that a simplex in BC is excluded from the
constraints of the LP problem, if all of its vertices belong
to {−K,−K + 1, . . . ,K}2.

Fig. 3. Computed CPA Lyapunov function for Example 2.

Fig. 4. Level-sets of the CPA Lyapunov function computed
in Example 2.

When a solution to the LP problem is found, which should
happen with K = 3, N = 45, the CPA Lyapunov function
is defined by LP.DefineV C(Excl), where we have specified
that the simplices excluded in the LP problem are not to be
used in the definition of LP.V C. In Figure 3 the computed
Lyapunov function LP.V C is depicted and in Figure 4 we
plot its level-sets. Note that a neighbourhood of the origin
is excluded from its definition.

Example 3 - differential inclusion: The third example
is a differential inclusion from (Hafstein, 2007, Sec. 9.2),

ẋ ∈ co{f1(x), f2(x), f3(x)}, (6)

where

f1(x, y) =

(
−y

x− y(1− x2 + 0.1x4)

)
f2(x, y) =

(
−y + x(x2 + y2 − 1)
x+ y(x2 + y2 − 1)

)
,

and f3 is the f from Example 1.

To compute a CPA Lyapunov function for the differ-
ential inclusion one proceeds just as in Example 1 to
construct the simplicial complex, but now one must add
to the LP problem the entire collection of systems cor-
responding to ẋ = f1(x), ẋ = f2(x), and ẋ = f3(x)
as shown below. Indeed, the computed CPA Lyapunov

Fig. 5. Computed CPA Lyapunov function for Example 3.

Fig. 6. Level-sets of the CPA Lyapunov function computed
in Example 3.

function will be a common Lyapunov function for these
three systems. This is achieved by creating the f ’s and
appropriate B’s as part of the Dynamic-system classes
MonE21, MonE22, and MonE23 for the three systems in
question. The explicit commands are: LP.AddSystem(new
MonE21, true), LP.AddSystem(new MonE22, true), and
LP.AddSystem(new MonE23, true); to add the systems to
the LP object. The setting up of the problem is finalized
with LP.MakeLPProblem(). Then one proceeds again as
in Example 1. In Figure 5 the computed CPA Lyapunov
function LP.V C is depicted and in Figure 6 we plot its
level-sets.

Example 4 - The RBF method and CPA verifica-
tion: We consider the computation of a Lyapunov function
with the RBF method on a domain where the system has
three equilibria, an exponentially stable one at the origin
(0, 0) and two saddle points at (0,±

√
3). The system is (1)

with

f(x, y) =

(
y

−x+
1

3
x3 − y

)
.

First, the system is defined by defining f in the dynamic-
system class SE2. For the RBF problem we do not need
to define B(x, y), but for the subsequent CPA verification
we do. Straight-forward calculations show that we can set

2x =: B(x, y) ≥ max
|x∗|≤x,|y∗|≤y

∣∣∣∣∂2f2∂x2
(x∗, y∗)

∣∣∣∣

Fig. 7. Computed RBF Lyapunov function for Example 4.

because all other second-order derivatives vanish.

Second, we construct our RBF problem as an object of
class RBF. The equation we are solving is:

V ′(x) := ∇V (x) · f(x) = −‖x‖22(1 + ‖f(x)‖22). (7)

and the arguments of the constructor RBF V R(·, ·) are
an instance of the system SE2 and the function on
the right-hand side of (7). To determine the collocation
points we first define the characteristic function bool Do-
main(vec) of the area {(x, y) ∈ R2 : max(|x|, |y|) < 2.6},
where we want to put them. Then we add the points
with the command V R.AddVertices(HexaGrid(ZGrid(
Nm,Np),c R,Domain)), where the ZGrid should be large
enough so that all potential points generated by Hexagrid
are in the domain specified, c R is a parameter fixing
the fill distance of the grid, and Hexagrid generates the
optimal grid for the RBF problem with the specified
fill distance, cf. (Giesl, 2007, p. 133-134). The command
V R.SolveRBF(c) then solves the RBF problem using
radial-basis functions with support of radius c−1. The
default is to use the Wendland functions ψ5,3, cf. (Giesl,
2007, p. 74).

We now construct the LP problem similar to Example
1, but instead of solving the problem we read the values
from the solution to the RBF problem with the command
LP.ReadSolution(V R). With this command we assign the
values of V R to the CPA function LP.V C at all vertices
of the simplicial complex used by the LP problem LP CA
LP. We reefer to LP.V C as the CPA interpolation of the
function V R. To examine where the orbital derivative
of the CPA interpolation of V R is negative, we use
the command LP.WriteOrbDerNN(“NN4”), which writes
the coordinates of the midpoints of the simplices where
the orbital derivative of LP.V C is nonnegative in the
file NN4.txt. We refer to this as a CPA verification.
In the simplices, of which the midpoints are written to
“NN4.txt” the CPA function LP.V C, fails the condition
for a Lyapunov function.

The function V R computed by the RBF method is
depicted in Figure 7. On Figure 8 we plot its level-sets and
make black dots where the orbital derivative of its CPA
interpolation is nonnegative. As suggested by the theory
this happens close to all equilibria.

Example 5 - RBF method in 3D: The last example
is similar to Example 4, but for a 3-dimensional system

Fig. 8. Level-sets of the RBF Lyapunov function computed
for Example 4. We plot black dots where its CPA in-
terpolation fails to have a negative orbital derivative.

Fig. 9. Level-set of the RBF Lyapunov function computed
for Example 5. We plot blue dots where its CPA in-
terpolation fails to have a negative orbital derivative.

from from (Giesl, 2007, Ex. 6.4). We consider the system
(1) with

f(x, y, z) =

x(x2 + y2 − 1)− y(z2 + 1)
y(x2 + y2 − 1) + x(z2 + 1)

10z(z2 − 1)

 .

It is simple to verify that we can take

B(x, y, z) = 6 max{x, y, 10z}.

4. CONCLUSION

We gave a short description of the CPA and the RBF
methods to compute Lyapunov functions. We outlined
a C++ class library that applies these methods to
compute Lyapunov functions for nonlinear systems. To
present the capacities of the software, available freely
at www.ru.is/kennarar/sigurdurh/MICNON2015CPP.rar,

we thoroughly worked out five examples, where the class li-
brary is used to compute Lyapunov functions for nonlinear
systems. It is the hope of the authors, that the interested
reader is able to compute a Lyapunov function for a system
of her/his interest by adapting the instructions in the
worked out examples to her/his specific system.

REFERENCES

Anderson, J. and Papachristodoulou, A. (2015). Ad-
vances in computational Lyapunov analysis using sum-
of-squares programming. Discrete Contin. Dyn. Syst.
Ser. B. Accepted.

Ban, H. and Kalies, W. (2006). A computational approach
to Conleys decomposition theorem. J. Comput. Nonlin-
ear Dynam., 1, 312–319.

Björnsson, J., Giesl, P., and Hafstein, S. (2014a). Algo-
rithmic verification of approximations to complete Lya-
punov functions. In Proceedings of the 21st International
Symposium on Mathematical Theory of Networks and
Systems, 1181–1188 (no. 0180). Groningen, The Nether-
lands.

Björnsson, J., Giesl, P., Hafstein, S., Kellett, C., and Li,
H. (2014b). Computation of continuous and piecewise
affine Lyapunov functions by numerical approximations
of the Massera construction. In Proceedings of the CDC,
53rd IEEE Conference on Decision and Control. Los
Angeles (CA), USA.

Björnsson, J., Giesl, P., Hafstein, S., Kellett, C., and Li, H.
(2015). Computation of Lyapunov functions for systems
with multiple attractors. Discrete Contin. Dyn. Syst.
Ser. A, 35(9), 4019–4039.

Brayton, R. and Tong, C. (1979). Stability of dynamical
systems: A constructive approach. IEEE Trans. Circuits
and Systems, 26(4), 224–234.

Burchardt, H. and Ratschan, S. (2007). Estimating the
region of attraction of ordinary differential equations by
quantified constraint solving. In Proceedings Of The
3rd WSEAS International Conference On Dynamical
Systems And Control, 241–246.

Camilli, F., Grüne, L., and Wirth, F. (2001). A general-
ization of Zubov’s method to perturbed systems. SIAM
J. Control Optim., 40(2), 496–515.

Giesl, P. (2007). Construction of Global Lyapunov Func-
tions Using Radial Basis Functions, volume 1904 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin.

Giesl, P. and Hafstein (2015a). Computation and verifica-
tion of lyapunov functions. submitted.

Giesl, P. and Hafstein, S. (2014). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410, 292–306.

Giesl, P. and Hafstein, S. (2015b). Review of computa-
tional methods for Lyapunov functions. Discrete Con-
tin. Dyn. Syst.-Series B. Accepted.

Grüne, L. (2002). Asymptotic behavior of dynamical and
control systems under perturbation and discretization,
volume 1783 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin.

Hafstein, S. (2007). An algorithm for constructing Lya-
punov functions. Monograph. Electron. J. Diff. Eqns.

Hafstein, S. (2013). Implementation of simplicial com-
plexes for CPA functions in C++11 using the armadillo
linear algebra library. In Proceedings of SIMULTECH,
49–57. Reykjavik, Iceland.

Hafstein, S., Kellett, C., and Li, H. (2014). Continu-
ous and piecewise affine Lyapunov functions using the
Yoshizawa construction. In Proceedings of the 2014
American Control Conference, 548–553 (no. 0170). Port-
land (OR), USA.

Kalies, W., Mischaikow, K., and VanderVorst, R. (2005).
An algorithmic approach to chain recurrence. Found.
Comput. Math, 5(4), 409–449.

Kamyar, R. and Peet, M. (2015). Polynomial optimization
with applications to stability analysis and control – an
alternative to sum of squares. Discrete Contin. Dyn.
Syst. Ser. B. Accepted.

Lazar, M. and Doban, A. (2011). On infinity norms
as Lyapunov functions for continuous-time dynamical
systems. In Proceedings of the 50th IEEE Conference
on Decision and Control, 7567–7572. Orlando (Florida),
USA.

Lazar, M. and Jokić, A. (2010). On infinity norms as
Lyapunov functions for piecewise affine systems. In
Proceedings of the Hybrid Systems: Computation and
Control conference, 131–141. Stockholm, Sweden.

Massera, J. (1949). On Liapounoff’s conditions of stability.
Ann. of Math., 50(2), 705–721.

Parrilo, P. (2000). Structured Semidefinite Programs and
Semialgebraic Geometry Methods in Robustness and Op-
timiziation. PhD thesis: California Institute of Technol-
ogy Pasadena, California.

Peet, M. (2009). Exponentially stable nonlinear systems
have polynomial Lyapunov functions on bounded re-
gions. IEEE Transactions on Automatic Control, 54(5),
979 – 987.

Peet, M. and Papachristodoulou, A. (2012). A converse
sum of squares Lyapunov result with a degree bound.
IEEE Transactions on Automatic Control, 57(9), 2281–
2293.

Polanski, A. (2000). On absolute stability analysis by
polyhedral Lyapunov functions. Automatica, 36, 573–
578.

Sanderson, C. (2010). Armadillo: An open source c++
linear algebra library for fast prototyping and com-
putationally intensive experiments. Technical report,
NICTA.

Vannelli, A. and Vidyasagar, M. (1985). Maximal Lya-
punov functions and domains of attraction for au-
tonomous nonlinear systems. Automatica J. IFAC,
21(1), 69–80.

Wang, K. and Michel, A. (1996). On the stability of a
family of nonlinear time-varying system. IEEE Trans.
Circuits and Systems, 43(7), 517–531.

Wendland, H. (2005). Scattered data approximation, vol-
ume 17 of Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press,
Cambridge.

Yoshizawa, T. (1966). Stability theory by Liapunov’s sec-
ond method. Publications of the Mathematical Society
of Japan, No. 9. The Mathematical Society of Japan,
Tokyo.

Zubov, V.I. (1964). Methods of A. M. Lyapunov and their
application. Translation prepared under the auspices of
the United States Atomic Energy Commission; edited
by Leo F. Boron. P. Noordhoff Ltd, Groningen.

