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Abstract. We present a novel method to compute Lyapunov functions for

continuous-time systems with multiple local attractors. In the proposed method
one first computes an outer approximation of the local attractors using a graph-

theoretic approach. Then a candidate Lyapunov function is computed using a

Massera-like construction adapted to multiple local attractors. In the final step
this candidate Lyapunov function is interpolated over the simplices of a simpli-

cial complex and, by checking certain inequalities at the vertices of the complex,

we can identify the region in which the Lyapunov function is decreasing along
system trajectories. The resulting Lyapunov function gives information on the

qualitative behavior of the dynamics, including lower bounds on the basins of

attraction of the individual local attractors. We develop the theory in detail
and present numerical examples demonstrating the applicability of our method.

1. Introduction. The decomposition of the flow of a dynamical system into a
chain-recurrent part and a part where the flow is gradient-like is characterized by a
so-called complete Lyapunov function for the system [6, 13, 21]. This decomposition
is sometimes referred to as the Fundamental Theorem of Dynamical Systems [19].
A complete Lyapunov function V for a dynamical system is a continuous function
that is decreasing along trajectories of the system in the gradient-like part of the
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flow and each chain transitive component of the chain-recurrent part is contained
in a preimage V −1(c) for some constant c ≥ 0.

In this paper we consider the system

ẋ = f(x), (1.1)

where f : Rn → Rn is r-times differentiable and n, r ∈ N; i.e., f is Cr on Rn. We
denote the solution of system (1.1) with initial value ξ at time zero by t 7→ φ(t, ξ)
and we assume that it is defined for all t ≥ 0. Note that φ(0, ξ) = ξ.

In this paper, we are interested in studying local attractors and their respective
basins of attraction; these local attractors could, e.g., be components of the global
attractor. If some information about one or several local attractors is available,
one approach to constructing local Lyapunov functions for local attractors is to
simply deal with each attractor independently. At least for local attractors that are
topologically equivalent to points, previous work on computing Lyapunov functions
for exponentially or asymptotically stable equilibrium points on a compact domain
[8, 10, 11, 12, 20, 22, 23] could be modified in a straightforward manner to replace
the equilibrium point with a local attractor, and then apply the chosen method on
a compact domain within the basin of attraction of the attractor.

A more complete approach involves both estimating all local attractors and re-
pellers for (1.1), and computing something close to a complete Lyapunov function.
Such an approach was proposed in [2, 15], where a discretization of both the phase
space and the system dynamics are used to generate a transition graph for how
the system evolves which, in turn, can be used to approximate a complete Lya-
punov function for the system. Furthermore, these algorithms were implemented
and tested for simple systems in [2]. An apparent drawback of this approach for
continuous-time systems is that choosing a good time step for discretization to si-
multaneously obtain a good approximation of all local attractors and repellers as
well as computing the Lyapunov function can be quite difficult. In general it seems
that the time step needs to be “large” in order to approximate the local attractors
and repellers, but “small” in order to give a sufficiently good approximation to the
Lyapunov function. In Section 5 we present a technique similar to the one presented
in [15] in order to approximate only the local attractors of (1.1) in a given domain.

With an estimate of the local attractors available, the next task is to construct a
Lyapunov function on some subset of the basin of attraction for each local attrac-
tor. We do this using a Continuous and Piecewise Affine (CPA) approximation to
a Lyapunov function construction in a converse Lyapunov theorem. Such an ap-
proach has been used in [5, 12] for (1.1) where the origin is an asymptotically stable
equilibrium point. Where [12] uses a particular Lyapunov function construction due
to Yoshizawa [27], [5] uses a Lyapunov function construction due to Massera [18].
Here, we will demonstrate a converse Lyapunov theorem for multiple local attrac-
tors using a construction similar to [5, 18]. The Lyapunov function construction
at each point x ∈ Rn of this converse theorem is dependent on solutions of (1.1)
with the initial condition x ∈ Rn. Therefore, at each vertex of a simplicial complex
we numerically solve an initial-value problem and then interpolate the numerically
computed values at each vertex to obtain a CPA function. Using recently derived
results on CPA functions [10, 11, 12] we then check a system of linear inequalities
to verify that the CPA function is indeed a Lyapunov function.

The paper is organized as follows. In Section 2 we present the essential sufficient
Lyapunov-based conditions required to prove convergence to a neighborhood of a
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local attractor from some (large) subset of its basin of attraction. In Section 3 we
provide a converse theorem to the sufficient conditions in Section 2. In Section 4
we summarize some results on approximating Lyapunov functions by Continuous
and Piecewise Affine (CPA) functions and in Section 5 we describe a method for
approximating the local attractors for (1.1). Finally, in Section 6 we apply our
constructive techniques to three particular nonlinear systems to demonstrate the
utility of this approach.

2. Lyapunov functions for compact invariant sets. In this section we provide
necessary notation and define a Lyapunov function for a general compact invariant
set Ω, not only an equilibrium. Moreover, in contrast to a classical Lyapunov
function, we do not assume that the function is decreasing along solution trajectories
everywhere outside the compact invariant set, but allow for it to be nonnegative on
a larger set, a neighborhood F of Ω. We generalize this to a Lyapunov function for
several compact invariant sets, with the goal of later constructing such a Lyapunov
function.

For a set D ⊂ Rn, we denote the interior of D by D◦, the closure of D by D, the
boundary of D by ∂D, and the complement of D by DC . For a vector x ∈ Rn, we
denote the 2-norm by |x|, the 1-norm by |x|1, the maximum-norm by |x|∞, and for
a matrix A ∈ Rn×n we denote its spectral norm by ‖A‖ := max|x|=1 |Ax|. For an
ordered tuple (x0,x1, . . . ,xk) of vectors in Rn we define their convex combination
as

co (x0,x1, . . . ,xk) :=

{
k∑
i=0

λixi : 0 ≤ λi ≤ 1 for i = 0, 1, . . . , k and

k∑
i=0

λi = 1

}
.

If the vectors x0,x1, . . . ,xk are affinely independent, i.e. the vectors x1 − x0,x2 −
x0, . . . ,xk − x0 are linearly independent, then the set co (x0,x1, . . . ,xk) is called a
k-simplex. We denote the positive real numbers by R>0 and the nonnegative real
numbers by R≥0. Given ε ∈ R>0 we define Bε := {x ∈ Rn : |x| < ε}. We denote the
distance from a point x ∈ Rn to a set Ω ⊂ Rn by dist(x,Ω) := infy∈Ω |x − y| and
we denote the diameter of Ω by diam(Ω) := supx,y∈Ω |x − y|. For sets A,B ⊂ Rn
we write the Minkowski sum A+B = {x+y | x ∈ A,y ∈ B}. We denote the empty
set by ∅ and the power set of a set A by P (A). Finally, for a mapping f : A → A
we define f ` as the `-fold composition of f , i.e. f1 = f and f (`+1) = f ◦ f `.

For M ⊂ Rn, the orbital (upper right) Dini derivative of a locally Lipschitz
function V : M → R≥0 along the solution trajectories of (1.1) is defined at every
x ∈M◦ by

D+V (x, f(x)) := lim sup
h→0+

V (x + hf(x))− V (x)

h
. (2.1)

Since V is locally Lipschitz, it is differentiable almost everywhere and, where V is
differentiable D+V (x, f(x)) = ∇V (x) ·f(x). If V is continuously differentiable, then
the orbital Dini derivative coincides with the usual orbital derivative everywhere.

For a fixed compact set Ω ⊂ Rn we define the set N(Ω) of certain neighborhoods
of Ω that we will repeatedly use in this paper.

Definition 2.1. Let Ω ⊂ Rn be a compact set. Denote by N(Ω) the set of all
subsets D ⊂ Rn that fulfill :

(i) D is compact.
(ii) The interior D◦ of D is a connected open neighborhood of Ω.



4 BJÖRNSSON, GIESL, HAFSTEIN AND KELLETT

(iii) D = D◦.
In general, it is well-known that level sets of a Lyapunov function are forward

invariant. To facilitate the development of a numerical procedure for computation
of Lyapunov functions for systems with multiple local attractors, we will define a
region of interest, D ⊂ Rn, that contains the local attractor. In order for this
to make sense, we explicitly require the existence of level sets with closed level
hypersurfaces lying in the interior of D to guarantee that trajectories do not leave
the region of interest. Furthermore, particularly for the development of numerical
procedures, we will use an outer approximation F ⊂ Rn of a local attractor Ω,
given by Ω ⊂ F , and hence we require that closed level hypersurfaces also lie in the
complement of F . This motivates the following level set definition.

Definition 2.2. Let Ω be a compact set, F ,D ∈ N(Ω), and F ⊂ D◦. Let V :
D \F◦ → R≥0 be a continuous function and let m ∈ R>0 be a constant. Define the
set

Om := F ∪ {x ∈ D \ F◦ : V (x) < m} ⊂ D.
Denote by Om,Ω the connected component of Om satisfying Ω ⊂ Om,Ω ⊂ Om. If

F ⊂ O◦m,Ω ⊂ Om,Ω ⊂ D◦ we define the level set LV,m := Om,Ω. If no such Om,Ω
exists we write LV,m := ∅. We further define

Linf
V :=

⋂
m∈R>0
LV,m 6=∅

LV,m and Lsup
V :=

⋃
m∈R>0

LV,m .

Observe that it is possible that Linf
V and Lsup

V can be empty if Om,Ω fails to exist
for all m ∈ R>0. However, when nonempty, Linf

V is a closed set, see Theorem 2.5
(e), Lsup

V is an open set, and Linf
V ⊂ L

sup
V .

We define a Lyapunov function for Ω on D \ F◦ that is strictly positive and is
such that there is a reasonable region, outside of F , where the Lyapunov function
is strictly decreasing. Here, F ideally is a tight outer approximation of the local
attractor Ω, and D is tight inner approximation of its basin of attraction B(Ω).

Definition 2.3. Let F ,D ∈ N(Ω) satisfy F ⊂ D◦. Let G ⊂ Rn satisfy G ⊇ D \F◦.
A Lipschitz function V : G → R≥0 is called a Lyapunov function for Ω on D\F◦
for (1.1) if there exists a constant α ∈ R>0 such that

(i) V (x) > 0 for all x ∈ D \ F◦,
(ii) D+V (x, f(x)) ≤ −α for all x ∈ D◦ \ F , and

(iii) Linf
V 6= ∅.

Note that the definition of a Lyapunov function for (1.1) for a local attractor Ω
on a domain D is similar to the above with the Lyapunov function V : D → R≥0

being positive definite with respect to Ω and with a negative definite Dini derivative
in the direction of the vector field; i.e., V (x) = 0 for all x ∈ Ω and V (x) > 0 for all
x ∈ D\Ω, and D+V (x, f(x)) < 0 for all x ∈ D◦ \Ω. Note that this then implies the
existence of an m > 0 such that LV,m 6= ∅ (with F = Ω) and hence Linf

V and Lsup
V

are nonempty. In particular, since V (x) = 0 for x ∈ Ω, V (x) > 0 for x ∈ D, and
V is continuous, for some m > 0 sufficiently small, LV,m is nonempty. By contrast,
in Definition 2.3 since we merely require V (x) > 0 for x ∈ D \ F◦ and not that
V (x) = 0 for x ∈ F , we must explicitly assume that Linf

V 6= ∅.
A Lyapunov function provides information about the basin of attraction through

its sublevel sets. For a Lyapunov function on D \ F◦ as in Definition 2.3 similar
statements hold as we show in Theorem 2.5 below.
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Definition 2.4. Consider the system (1.1). Let Ω be a compact, invariant subset
of Rn. We call Ω a local attractor if

(i) for every ε > 0 there exists a δ > 0 such that

dist(x,Ω) < δ ⇒ dist(φ(t,x),Ω) < ε for all t ≥ 0,

(ii) the set

B(Ω) := {x ∈ Rn : lim sup
t→∞

dist(φ(t,x),Ω) = 0}

is an open neighborhood of Ω.

B(Ω) is called the basin of attraction of Ω.

Theorem 2.5. Let Ω ⊂ Rn be a local attractor with basin of attraction B(Ω). Let
F ,D ∈ N(Ω), F ⊂ D◦, and let V be a Lyapunov function for Ω on D \ F◦. Let
m ∈ R>0 be a constant such that LV,m 6= ∅. Then :

(a) LV,m, Linf
V , and Lsup

V are forward invariant sets.
(b) There is a constant T > 0 such that ξ ∈ Lsup

V implies φ(T, ξ) ∈ Linf
V .

(c) For every ξ ∈ Lsup
V there is a sequence (tk)k∈N, tk → +∞, such that φ(tk, ξ) ∈ F

for all k.
(d) If F ⊂ B(Ω) then Lsup

V ⊂ B(Ω).
(e) Set a := maxx∈∂F V (x). Then Linf

V is the connected component of F ∪ {x ∈
D \ F◦ : V (x) ≤ a} that contains Ω. Especially, Linf

V is a closed set.
(f) With b := sup{c ∈ R : LV,c 6= ∅} the set Lsup

V is the connected component of
F ∪ {x ∈ D \ F◦ : V (x) < b} that contains Ω.

Proof. The proof of (a)-(d) is largely based on [17, Theorem 1.16].

Proposition (a). That LV,m is forward invariant follows immediately from the
proof of [17, Th. 1.16 (i)] and the forward invariance of Linf

V and Lsup
V , the intersec-

tion and the union of forward invariant sets, are well known consequences.

Propositions (b) and (c). Consider for all ξ ∈ Lsup
V \ F the mapping ψξ(t) :=

V (φ(t, ξ)) + αt, where α is as in Definition 2.3. As shown in the proof of [17,
Th. 1.16 (ii)], ψξ is monotonically decreasing for any such ξ on an interval [0, Tξ[,
where either φ(Tξ, ξ) ∈ F or Tξ = +∞. Note that since D \ F◦ is compact and
V is continuous Vmin := minD\F◦ V (x) and Vmax := maxD\F◦ V (x) are properly
defined. We show that Tξ ≤ (Vmax − Vmin)/α for all ξ ∈ Lsup

V \ F .
Assume on the contrary there is a ξ ∈ Lsup

V \F such that Tξ > (Vmax− Vmin)/α.
Then

Vmax ≥ V (ξ) = ψξ(0) ≥ ψξ(Tξ) = V (φ(Tξ, ξ)) + αTξ

> Vmin + α · Vmax − Vmin

α
= Vmax,

a contradiction.

Proposition (d). Follows immediately from (c).

Proposition (e). Let F∗ be the connected component of F∪{x ∈ D\F◦ : V (x) ≤
a} that contains Ω. For every c such that a < c ≤ m we have F∗ ⊂ LV,c and thus
F∗ ⊂ Linf

V , since LV,c = ∅ for c ≤ a.
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To show Linf
V ⊂ F∗, assume on the contrary that there is an x ∈ Linf

V but x /∈ F∗.
Set c := V (x). Then a < c ≤ m and hence x /∈ LV,(a+c)/2. Since Linf

V ⊂ LV,(a+c)/2,
this is a contradiction.

Proposition (f). Note that if for an M ∈ R>0 we have LV,M 6= ∅, then LV,c ⊂
LV,M for all c ≤ M . However, if LV,M = ∅ and M > m, then LV,c = ∅ for all
c ≥M . Thus, we can define b := sup{c ∈ R : LV,c 6= ∅} and let S be the connected
component of F ∪ {x ∈ D \ F◦ : V (x) < b} that contains Ω.

We first show Lsup
V ⊂ S. Indeed, LV,c ⊂ S for all c ∈ R>0, because LV,c is either

empty or a subset of S.
Now we establish S ⊂ Lsup

V . Let x ∈ S \ F . Then there is a continuous map
γ : [0, 1] → S such that γ(0) ∈ Ω and γ(1) = x as well as V (γ(θ)) < b for all
θ ∈ [0, 1]. Since V and γ are continuous and [0, 1] is compact, there exists

max
θ∈[0,1]

V (γ(θ)) =: c < b.

Hence, x ∈ LV,(b+c)/2 6= ∅, showing S ⊂ Lsup
V .

3. Converse theorem. In this section we will show the existence of a Lyapunov-
like function, that is a Lyapunov function as defined in the previous section for
several different local attractors. To achieve this, assume that Ωi, i = 1, 2, . . . , N
are local attractors of the system (1.1). Note that the system may have other local
attractors, even infinitely many. We fix sets Fi,Di ∈ N(Ωi), Fi ⊂ Di, where Fi
should be thought of as a small, and Di a large, neighborhood of Ωi. Preferably
Di is a close inner approximation to the basin of attraction B(Ωi) and Fi is a close
outer approximation of the local attractor Ωi.

We now show the existence and some properties of a Lyapunov-like function that
decreases along solutions in large parts of the phase space and provides information
about the basins of attraction of the Ωi’s through sublevel sets; see Theorem 2.5.

To achieve this, we first prove a lemma to show the existence of a time T > 0
such that all solutions starting in Di reach and stay in Fi for all times t ≥ T .

Lemma 3.1. Consider the system (1.1) and assume it possesses a local attractor
Ω. Fix F ,D ∈ N(Ω) such that F ⊂ D ⊂ B(Ω). Then there is a T > 0 such that
φ(t,D) ⊂ F for all t ≥ T .

Proof. By the stability of Ω there exists a forward invariant neighborhood P ⊂ F
of Ω. We show that there is a finite time T > 0 such that for every x ∈ D we have
φ(t,x) ∈ P for all t ≥ T .

Assume, on the contrary, there is no such finite time T > 0. Then there is
a sequence of times (tk)k∈N, tk → ∞, and a sequence (xk)k∈N in D, such that
φ(tk,xk) 6∈ P for all k ∈ N. Since D is compact, there is a convergent subsequence
(xkj )j∈N of (xk)k∈N with limit x ∈ D. Let ε > 0 be so small that Ω + Bε ⊂ P.
Since D ⊂ B(Ω), there is a τ > 0 such that dist(φ(τ,x),Ω) < ε/2. By continuity
of x 7→ φ(t,x) there is a δ > 0 such that |φ(τ,x) − φ(τ,y)| < ε/2 holds for all
|x−y| < δ. There is a j ∈ N large enough such that both |xkj −x| < δ and tkj ≥ τ
holds. For this j we have

dist(φ(τ,xkj ),Ω) ≤ |φ(τ,xkj )− φ(τ,x)|+ dist(φ(τ,x),Ω) < ε

which implies φ(τ,xkj ) ∈ P, so that φ(t,x) ∈ F for all t ≥ τ , in particular for
t = tkj which is a contradiction.

An obvious corollary is:
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Corollary 1. Consider the system (1.1) and assume Ωi, i = 1, 2, . . . , N , are finitely
many local attractors. For each Ωi fix neighborhoods Fi,Di ∈ N(Ωi), Fi ⊂ Di ⊂
B(Ωi). Then there is a finite time T > 0 such that φ(t,Di) ⊂ Fi for all t ≥ T and
all i = 1, 2, . . . , N .

Theorem 3.2. Consider the system (1.1) and finitely many local attractors Ωi, i =
1, 2, . . . , N . For each local attractor, fix Fi,Di ∈ N(Ωi) such that Fi ⊂ Di ⊂ B(Ωi).

Let γ : Rn → R be a locally Lipschitz function such that γ(x) = 0 if x ∈
⋃N
i=1 Fi

and γ(x) > 0 otherwise.1

Let T > 0 be as in Corollary 1, so that, for all x ∈ Di, φ(t,x) ∈ Fi for all t ≥ T
and all i = 1, 2, . . . , N . Define the function V : Rn → R as

V (x) :=

∫ T

0

γ(φ(τ,x)) dτ. (3.1)

Then V is a locally Lipschitz function such that

D+V (x, f(x)) = −γ(x) for all x ∈ Di, i = 1, 2, . . . , N.

Further, if γ is a Cp function and f is a Cr function, then V is a Cq function with
q := min{r, p}.

Proof. Let C ⊂ Rn be compact and let R > 0 be so large that φ(t,x) ∈ BR for all
x ∈ C and all t ∈ [0, T ]. Let G be a Lipschitz constant for γ on BR. Further, let L
be a Lipschitz constant for f on BR. Then for every x,y ∈ C we have the standard
estimate |φ(t,x)− φ(t,y)| ≤ |x− y|eLt and it follows that

|V (x)− V (y)| =

∣∣∣∣∣
∫ T

0

[γ(φ(τ,x))− γ(φ(τ,y))] dτ

∣∣∣∣∣
≤ G

∫ T

0

|φ(τ,x)− φ(τ,y)|dτ

≤ G
∫ T

0

|x− y|eLτdτ

=
G

L
(eLT − 1)|x− y|.

Hence, V is locally Lipschitz.
Further,

V (φ(h,x))− V (x) =

∫ T+h

h

γ(φ(τ,x))dτ −
∫ T

0

γ(φ(τ,x))dτ

=

∫ T+h

T

γ(φ(τ,x))dτ −
∫ h

0

γ(φ(τ,x))dτ

so

lim
h→0+

1

h
[V (φ(h,x))− V (x)] = γ(φ(T,x))− γ(x)

and since V is locally Lipschitz and φ(T,x) ∈ Fi, i.e. V (φ(T,x)) = 0, for all x ∈ Di,
i = 1, 2, . . . , N , we have D+V (x, f(x)) = −γ(x), see [17, Theorem 1.17].

It is well known that if f is Cr then so is φ and the last proposition follows
immediately.

1Such a function γ can, for example, be constructed by convolution of the characteristic func-
tion, as discussed in more detail in Section 6.
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The function V of Theorem 3.2 satisfies D+V (x, f(x)) < 0 for all x ∈ Di \ Fi.
Choosing D = Di and F = Fi + Bε with ε > 0 small enough such that F ⊂ D, we
can satisfy the condition on the orbital derivative in Definition 2.3 (ii).

Consider a particular triple Ωi,Fi,Di as in Theorem 3.2. A Lyapunov function
Vi on Di \ F◦i for Ωi implies the existence of a forward invariant set Pi = LVi,c for
some c > 0, such that Fi ⊂ P◦i ⊂ Pi ⊂ Di, and therefore, if such a set Pi does not
exist, there can be no such Lyapunov function Vi. If, however, there exists such a
forward invariant set Pi, then, by eventually increasing the values of γ close to the
boundary of Di, the construction of V = Vi in (3.1) yields a Lyapunov function on
Di \Fεi , for every Fεi = Fi +Bε with ε > 0 small enough. This is stated in the next
theorem.

Theorem 3.3. Given a triple Ωi,Fi,Di as in Theorem 3.2, i ∈ {1, 2, . . . , N},
assume there exists a closed forward invariant set Pi such that Fi ⊂ P◦i ⊂ Pi ⊂ D◦i .
Let V : Rn → R≥0 be defined by (3.1). Then, by eventually increasing the values
of γ in a neighborhood of ∂Di, the function Vi : Di → R≥0, Vi(x) = V (x) for
all x ∈ Di, is a Lyapunov function for the system (1.1) on Di \ Fεi , for every
Fεi := Fi + Bε ⊂ Pi, ε > 0.

Proof. Increasing the values of γ in Di \ Fi does not affect V (x) > 0 and D+V (x,
f(x)) < 0 for all x ∈ Di \ Fi. By defining

α := min
x∈D\Fεi

γ(x) > 0

the condition in Definition 2.3 (ii) is fulfilled for all x ∈ D◦ \Fεi . It remains to prove
the condition in Definition 2.3 (iii).

We prove Linf
Vi
6= ∅ by showing that we can always achieve

min
x∈∂Di

V (x) > max
x∈∂Pi

V (x)

by increasing the values of γ in a small neighborhood of ∂Di.
Let D be a bounded domain in Rn so large that φ(t,x) ∈ D for all x ∈ Di and

all t ∈ [0, T ], where T is as in Corollary 1, and let F,G > 0 be constants such that
F > supx∈D |f(x)| and G := maxx∈Pi γ(x).

Choose δ > 0 so small such that

Pi + B2δ ⊂ D◦i and δ < TF.

Replace γ in the definition of V in (3.1) with a function γ̃ such that γ̃(x) = γ(x)
for all x ∈ Pi and such that

x ∈ ∂Di + Bδ ⇒ γ̃(x) >
TFG

δ
.

Then for every x ∈ Di and every 0 ≤ t ≤ δ/F , we have

|φ(t,x)− x| =
∣∣∣∣∫ t

0

φ̇(τ,x)dτ

∣∣∣∣ ≤ ∫ t

0

|f(φ(τ,x))|dτ < δ

F
F = δ,

especially x ∈ ∂Di implies φ(t,x) ∈ ∂Di + Bδ for all 0 ≤ t ≤ δ/F . Hence, for every
x ∈ ∂Di we have

V (x) =

∫ T

0

γ̃(φ(τ,x))dτ >

∫ δ
F

0

TFG

δ
dτ = TG.
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On the other hand, for every x ∈ Pi, because Pi is forward invariant, we have

V (x) =

∫ T

0

γ̃(φ(τ,x))dτ =

∫ T

0

γ(φ(τ,x))dτ ≤ TG.

This proves the theorem.

This theorem has an obvious corollary regarding all the local attractors Ωi, i =
1, 2, . . . , N , from Theorem 3.2.

Corollary 2. Let the triples Ωi,Fi,Di, i = 1, 2, . . . , N , be as in Theorem 3.2,
and assume that for each i there exists a closed forward invariant set Pi such that
Fi ⊂ P◦i ⊂ Pi ⊂ D◦i . Let V : Rn → R≥0 be defined by (3.1). Then, by eventually
increasing the values of γ in neighborhoods of the boundaries of the ∂Di, we can
achieve that for each i ∈ {1, 2, . . . , n} the function Vi : Di → R≥0, Vi(x) = V (x)
for all x ∈ Di, is a Lyapunov function for the system (1.1) on Di \ Fεi , for every
Fεi := Fi + Bε ⊂ Pi, ε > 0.

Proof. The proof is essentially the same as that of Theorem 3.3 by taking care to not
choose δ > 0 for a particular triple Ωi,Fi,Di so large that it effects the definition
of γ in Dj for a j 6= i, e.g. by additionally demanding (Di + B2δ) ∩ (Dj + B2δ) = ∅
for all i, j = 1, 2, . . . , N , i 6= j.

4. Continuous and piecewise affine Lyapunov functions. In the sequel, we
will define continuous and piecewise affine (CPA) functions on suitable triangula-
tions. Such functions are particularly advantageous as candidate Lyapunov func-
tions because the negativity of the orbital Dini derivative for the system (1.1) can
be guaranteed by verifying a finite number of inequalities as we show in Theorem
4.2 below.

Definition 4.1. We call a finite collection T = {S1,S2, . . . ,SN} of n-simplices in
Rn a suitable triangulation if

(i) Sν ,Sµ ∈ T , ν 6= µ, intersect in a common face or not at all.
(ii) With DT :=

⋃
S∈T S the set D◦T is connected.

Property (i), often called shape regularity in the theory of finite element methods,
is needed so that we can parameterize every continuous function, affine on every
simplex, by specifying its values at the vertices, cf. Remark 1. Such a triangulation
is also referred to as simplicial complex in the literature.

In what follows, we will define simplices by fixing an ordered set of vertices and
considering the closed convex hull of those vertices. While simplices are usually
defined by an unordered set of vertices, by insisting on an ordered set we obtain
uniqueness of the shape matrix defined below in (4.4). We denote the set of vertices
of all simplices in T by VT .

For a given suitable triangulation, T , and with DT :=
⋃

S∈T S, we denote the
set of all continuous functions f : DT → R that are affine on every simplex S ∈ T
by CPA[T ].

Remark 1. A function V ∈ CPA[T ] is uniquely determined by its values at the
vertices of the simplices of T . To see this, let Sν = co (x0,x1, . . . ,xn) ∈ T . Every
point x ∈ Sν can be written uniquely as a convex combination of its vertices,
x =

∑n
i=0 λ

x
i xi, λ

x
i ≥ 0 for all i = 0, 1, . . . , n, and

∑n
i=0 λ

x
i = 1. The value of V at

x is given by V (x) =
∑n
i=0 λ

x
i V (xi). Additionally, V has a representation on Sν
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as V (x) = wT
ν (x− x0) + aν for some wν ∈ Rn and some aν ∈ R. In what follows,

for V ∈ CPA[T ] and x ∈ Sν we denote

∇Vν := ∇V (x)
∣∣∣
x∈S◦ν

= wν .

Then, as shown in [10, Remark 9], ∇Vν is linear in the values of V at the vertices
x0,x1, . . . ,xn. �

The following theorem and corollary provide a set of linear inequalities involving
a given CPA function V and the system (1.1) so that, if the inequalities are fulfilled,
then the orbital Dini derivative of V along the trajectories of (1.1) is negative. The
proofs of Theorem 4.2 and Corollary 3 are similar to [9, Theorem 2.6].

Theorem 4.2. Assume that f = (f1, f2, . . . , fn)T defining the system (1.1) is C2.
Let T be a suitable triangulation and let V ∈ CPA[T ]. Let Sν = co (xν0 ,x

ν
1 , . . . ,x

ν
n)

∈ T and let µν ∈ R≥0 satisfy

max
i,j,k=1,2,...,n

x∈Sν

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣ ≤ µν . (4.1)

For each Sν , for i = 0, 1, . . . , n define the constants

Ei,ν :=
nµν

2
|xi − x0| (|xi − x0|+ diam(Sν)) . (4.2)

Then, for every Sν such that the inequalities

∇V Tν f(xνi ) + |∇Vν |1Ei,ν ≤ −αν (4.3)

hold for an αν ∈ R and all vertices xνi ∈ Sν , i = 0, 1, . . . , n, we have

∇V Tν f(x) ≤ −αν
for all x ∈ Sν .

Corollary 3. Assume that Ω ⊂ Rn is a local attractor for the system (1.1), where
f is C2, and that F ,D ∈ N(Ω), F ⊂ D◦. Assume that T is a suitable triangulation
such that DT = D \ F◦. If a function V ∈ CPA[T ] satisfies

• V (x) > 0 for every vertex x ∈ VT ,
• there is a constant α > 0 such that the inequalities (4.3) are fulfilled with
αν = α for all Sν ∈ T , and

• there is an m > 0 such that LV,m 6= ∅,
then V is a Lyapunov function for Ω on D \ F◦.

Remark 2. The usefulness of Theorem 4.2 and Corollary 3 is that it reduces the
verification that a function V ∈ CPA[T ] is a Lyapunov function for (1.1) to the veri-
fication of a finite number of inequalities (4.3). Finding a candidate CPA Lyapunov
function can be done as in [1, 10, 11, 16], via linear programming. Alternatively,
as in [5], [12], and this paper, one can define V ∈ CPA[T ] by computing suitable
values at the vertices of the simplices of T and then verify the inequalities (4.3). �

We now turn to the question of when a given Lyapunov function can be ap-
proximated by a CPA-Lyapunov function. To do this, we require the following
definitions.

Definition 4.3. Let D ⊂ Rn be a domain, f : D → R be a function, and T be
a suitable triangulation such that DT ⊂ D. The CPA[T ] approximation g of f on
DT is the function g ∈ CPA[T ] defined by g(x) = f(x) for all vertices x ∈ VT .
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A CPA approximation of a Lyapunov function must approximate its values, as
well as its first derivative. A triangulation with simplices of a small diameter is
sufficient for approximating the values of a Lyapunov function with arbitrary preci-
sion. For approximating the first derivative of a Lyapunov function we additionally
need that the simplices in the triangulation T are not too close to being degenerate;
that is, no n-simplex should be close to being of dimension n − 1. This property
can be quantified as follows: For an n-simplex Sν := co (x0,x1, . . . ,xn) ∈ T define
its shape-matrix, Xν , by writing the vectors x1 − x0, x2 − x0, . . . ,xn − x0 in its
rows subsequently; i.e.,

Xν = [(x1 − x0), (x2 − x0), . . . , (xn − x0)]
T
. (4.4)

The degeneracy of the simplex Sν is quantified by the value diam(Sν)‖X−1
ν ‖, where

‖X−1
ν ‖ is the spectral norm of the inverse of Xν (see part (ii) in the proof of [1,

Theorem 4.6]). To see why this quantity captures a “distance-to-degeneracy” of the
n-simplex Sν , observe that degeneracy corresponds to some xi, i = 1, . . . , n being
equal to x0, which results in a zero row of Xν , or some xi being equal to some
xj , i, j = 1, . . . , n, i 6= j, which results in Xν having linearly dependent rows. In
both cases, and in fact if Xν has any linearly dependent rows, then Xν is singular.
If, rather than being equal, two points as described above are close to each other,
then the spectral norm of X−1

ν will be large. Of course, we may wish to use very
small simplices in order to reduce the error between a given Lyapunov function and
its CPA approximation, and hence a reasonable measure of distance-to-degeneracy
should also scale the spectral norm of the inverse of Xν by the diameter of the
simplex, leading to the quantity diam(Sν)‖X−1

ν ‖.
We will only give a local result on the approximation to a C2 Lyapunov function,

i.e., we will use a singleton triangulation T = {Sν} for a simplex Sν . More general
results can be proved, but are rather technical to formulate and the necessary
technical burden makes the main idea of the theorem less transparent. The following
theorem is general enough to be sufficient for our needs in this paper and we refer
to [12] for an example of a similar, but more general theorem in a sightly different
setting. Since the proof in [12] can be adapted to our local case in a straightforward
manner we omit the proof.

Theorem 4.4. Assume that f in system (1.1) is C2, let W : Rn → R, y ∈ Rn, and
assume that W is C2 in N := {y} + Bε, ε > 0, and that for a constant α > 0 we
have

∇W (x)T f(x) ≤ −2α for all x ∈ N . (4.5)

Then for every R ∈ R>0 there exists a δR > 0 so that, for any n-simplex Sν :=
co (x0,x1, . . . ,xn) satisfying

x ∈ Sν ⊂ N ,
diam(Sν) ≤ δR, and (4.6)

diam(Sν)‖X−1
ν ‖ ≤ R (4.7)

the CPA[{Sν}] approximation V to W on Sν fulfills

∇V Tν f(x) ≤ −α for all x ∈ Sν .

Theorem 4.4 implies that it is always possible to find a triangulation that ad-
mits a CPA Lyapunov function approximating a twice continuously differentiable
Lyapunov function. We note that the assumption of twice differentiability and
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the bound on diam(Sν)‖X−1
ν ‖ are required in proving that |∇Vν − ∇W (xi)| can

be made arbitrarily small for every vertex xi of Sν by choosing Sν with a small
diameter. The essential idea is that since

∇Vν = X−1
ν


W (x1)−W (x0)
W (x2)−W (x0)

...
W (xn)−W (x0)

 ,

an upper bound on |∇Vν −∇W (xi)| can be obtained by

|∇Vν −∇W (xi)| ≤ ‖X−1
ν ‖

n∑
j=1

|W (xj)−W (x0)− (xj − x0)∇W (xi)|,

which converges to zero with diam(Sν), when diam(Sν)‖X−1
ν ‖ and the second

derivative of W are bounded.

5. Approximation of the attractors. As stated in the introduction we shall
now describe a method to approximate the attractors for (1.1) on a compact set D.
The method is very similar to those presented in [2] and [15]. We start by giving
the main outline of our approach and theoretical justifications, and then we give a
short discussion on the approximation algorithm and complications that arise when
implementing it. A more detailed discussion on our implementation can be found
in [4].

5.1. Main ideas and theory. Our goal is to work with a discretized approxima-
tion to the system (1.1) on a compact set D ⊂ Rn that captures its behavior to a
sufficient extent. In particular we need to discretize both the space D and the con-
tinuous dynamics on it. We start by discretizing D and we do this by constructing
a set G ⊂ P (D) having certain nice properties. Recall that P (D) denotes the power
set of D.

Definition 5.1. For a given compact set D ⊂ Rn, we say that a set G ⊂ P (D) is
a grid for D if it fulfills the following conditions :

(i) D =
⋃
G∈G G.

(ii) G◦ = G for all G ∈ G.
(iii) H ∩ G = ∂H ∩ ∂G for all G,H ∈ G.
(iv) G consists of a finite number of sets.

In the examples that follow we shall use D = [−4, 4]2 and G will be a uniform
rectangular grid on D, which obviously fulfills the conditions above. For a given grid
G we define its diameter as diam(G) := sup{diam(H) : H ∈ G} and the realization
mapping of G as

| · | : P (G)→ D, |H| :=
⋃
G∈H

G. (5.1)

Our aim is now to encode the dynamics of system (1.1) in a suitable way as a
directed graph on G. We do this by choosing a time-step t ∈ R>0 and then define
the t-advance map gt : Rn → Rn by gt(x) := φ(t,x). This gives us the following
discrete-time dynamical system on Rn:

x 7→ gt(x). (5.2)
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We now discretize the state space of the system (5.2). For this we define the minimal
outer approximation of gt on G by

Mmin : G→ P (G), Mmin(G) = {H ∈ G : gt(G) ∩H 6= ∅}.
The optimal encoding of the dynamics of the system (5.2) with respect to the grid
G can now be represented as a directed graph on G. It is naturally defined as (G,A)
where (G,H) is an edge from G to H; i.e., (G,H) ∈ A, if and only if H ∈ Mmin(G).
We say that the graph (G,A) represents the map Mmin. More generally we can for
any given map M : G→ P (G) represent it with a graph (G,A) in the same way. If
such a map satisfies the condition that Mmin(G) ⊂M(G) for all G ∈ G then we say
that M covers Mmin.

In summary, starting from the continuous system (1.1) we first construct the
discrete-time system (5.2), given by the t-advance map. Then we construct a spatial
discretization (G,A) of (5.2) with respect to the grid G.

In the examples that follow, the discrete-time system (5.2) will be approximated
by the classical Runge-Kutta RK4 method. The error of the computed system to
gt will depend on the time-step used in the Runge-Kutta method. Note, however,
that our method includes a verification that the CPA function, obtained in the final
step, is a valid Lyapunov function.

The following definition is essential for what follows:

Definition 5.2. Let (G,A) be a graph representing the map M : G → P (G).
Then :

• If M(G) 6= ∅ for all G ∈ G we say that the mapping M is forward closed.
• If M is forward closed, a set A ⊂ G is called a graph attractor for M if
M(A) = A.

Note that for M = Mmin and a graph attractor A for M we necessarily have
from Definition 5.1 (iii) that

x ∈ |A| ⇒ gt(x) ∈ |A|◦,
where |A|◦ denotes the interior of |A| in D. Thus, the invariance of A under Mmin

implies attraction if |A| 6= D.
Given a graph (G,A) representing a forward closed map M : G → P (G), it is

a simple task to identify all graph attractors A. Indeed, a set A ⊂ G is a graph
attractor for M , if and only if there exists a B ⊂ G such that B ⊂M(B) and

A = Γ+(B) :=
⋃
`∈N

M `(B).

Let gt : D → D and let Mmin be its minimal outer approximation. It follows by
[15, Proposition 5.5], that for every graph attractor A for Mmin there exists a set
A ⊂ |A| and a neighborhood U of A in D such that

ω(U) :=
⋂
k∈N

⋃
`≥k

g`t(U) = A.

Therefore, a local attractor of the system (1.1) is necessarily contained in a graph
attractor A of Mmin.

It further follows by [15, Proposition 5.5] that if the grid G is fine enough, then
every local attractor of the system gt : D → D, x 7→ gt(x), has an arbitrarily
close outer approximation by a graph attractor of Mmin. We thus compute outer
approximations of the local attractors of our original system (1.1) in D by choosing
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t ∈ R>0 and our grid G sufficiently fine, such that the attractors of Mmin give
a good approximation to the local attractors of our system. Note, that we are
not interested in local attractors that contain other local attractors. We use a well
known algorithm of Tarjan [24] to find the graph attractors, which delivers a natural
partial ordering of the graph attractors [4].

5.2. Implementation and complications. We would now like to compute all
the attractors for the system (1.1) by using the following algorithm.

Step 1. Discretize D with a suitable grid G and choose a time-step t ∈ R>0 to
obtain a t-advance map gt.

Step 2. Construct a map M : G→ P(G) that covers Mmin for gt (preferably Mmin

itself) and construct the graph (G,A) representing M .

Step 3. Determine outer approximations of the local attractors of (1.1) by applying
the results from Section 5.1.

As it turns out, there are two difficulties in implementing the algorithm above
that have to be dealt with in some manner. Firstly, the determination of Mmin, and
consequently finding a map M covering Mmin proves to be troublesome. One way
to do this is to use Gronwall’s Lemma in order to get the inequality

|gt(x)− gt(y)| ≤ |x− y|eλt

on our domain with

λ := sup
τ∈[0,t]
x,y∈D
x6=y

|φ(τ,x)− φ(τ,y)|
|x− y|

.

This estimate, however, turns out to be too conservative in our calculations, since by
using it in the examples below yields a graph containing only one strongly connected
component covering the whole ofD. One way to mend this is to estimate numerically
a constant L such that |gt(x) − gt(y)| ≤ L|x − y| for all x,y ∈ D. Another way
is simply to let L > 0 be an input parameter in the algorithm. Obviously we
have no guarantee that the algorithm will give us a faithful approximation of the
attractors of the system by using these methods, but since we verify the validity
of the CPA Lyapunov function once obtained they ought to be reasonable enough,
as the examples in Section 6 indeed suggest. This problem has been studied in the
literature in more detail, cf. e.g. [14, 7, 26].

The second difficulty stems from the fact that the useful results in Section 5.1 are
for a gt mapping D into D. Since D is usually user defined, this condition is hard to
fulfill since, in general, gt(D) 6⊂ D. If, however, D is forward invariant in the long
run, i.e., there exists a time T such that for all x ∈ D we have that φ(t′,x) ∈ D if
t′ > T , then this can be mended in the following way for our purposes: If x ∈ D
and gt(x) 6∈ D then we simply redefine gt(x) as g`t(x), where ` > 0 is the smallest
natural number such that g`t(x) ∈ D.

6. Examples. We present some numerical examples in order to evaluate how our
method works in practice. In all our examples we use the classical Runge-Kutta
method RK4 when estimating solutions φ(t,x) to (1.1). In all our numerical inte-
grations we shall denote by ∆t the time step chosen in RK4 and by [0, T ] the interval
integrated over. In order to apply our method we need to choose a function γ which
fulfills the condition imposed in Theorem 3.2. In order to do so, let Fi be the dis-
joint attractors obtained by the graph algorithm above, that do not contain smaller
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attractors. Choose a function γ ∈ C∞(Rn) such that γ(x) = 0 for all x ∈
⋃
i Fi

and γ(x) > 0 for all x ∈ D \
⋃
i Fi. The choice of γ is otherwise rather arbitrary.

Herein we construct γ by mimicking a standard technique for the smooth partition
of unity. First we define the set of all points in D that have distance greater than
one to

⋃
i Fi and then we define γ as the convolution of the characteristic function

of this set and ρ(x) = exp(−1/(1 − ‖x‖22)) for ‖x‖2 < 1 and ρ(x) = 0 otherwise.
Our γ thus grows from zero on

⋃
i Fi to one within a distance of 1.

We shall denote by V the Lyapunov function of (3.1) obtained by using γ. Once
calculated, we normalize our function by dividing by maxx∈D V (x), which clearly
does not change the sign of the orbital derivative of V at any point. Finally we
plot the graph of V and mark with an × all the simplices where the inequality (4.3)
does not hold and thus the orbital derivative is not guaranteed to be negative.

In all of our examples we use D = [−4, 4]2 and start by approximating the
attractors of the system using the graph algorithm of Section 5.2 with the t-advance
map g1. We do this with a uniform 250 × 250 rectangular grid on the specified
domain, that is we set

G :=
{[
−4 + 8i

250 ,−4 + 8(i+1)
250

]
×
[
−4 + 8j

250 ,−4 + 8(j+1)
250

]
: i, j ∈ {0, 1, . . . , 249}

}
.

which clearly fulfills the conditions in Definition 5.1. Furthermore, when construct-
ing our map M : G→ P (G) we define L := diam(G) and set H ∈M(G) if and only
if H ∩ {y ∈ D : |y − g1(xmid)|∞ ≤ L

2 } 6= ∅ where xmid is the midpoint of G.
We have chosen this rectangular grid as this was used in [2]. Moreover, the con-

struction of the map for this grid is convenient using the above estimates involving
the infinity-norm.

Example 1. Consider the two-dimensional system given by

ẋ1 = 2x1 − x1x2,

ẋ2 = 2x2
1 − x2.

Using the graph algorithm of Section 5 we obtain three graph attractors: one
contained in a ball of radius 0.1 around the point (−1, 2), another contained in a
ball of the same radius around the point (1, 2), and the third covering the other
attractors and the origin. Simple analysis of the equations yields that (−1, 2) and
(1, 2) are local attractors for the system and that (0, 0) is a saddle point, which is
in accordance with our estimate. As discussed before, we do not consider the third
graph attractor because it contains the smaller attractors.

Next we calculate V . We do this by choosing a uniform grid of 51,200 triangles,
a time step of ∆t = 0.01, and an integration horizon of T = 8. The graph of V
is shown in Figure 1 and some level curves for V are shown in Figure 2. Figure 1
indicates that our method works well outside of the x2 axis. The reason for this is
that the x2 axis is the stable manifold for the saddle point at (0, 0), as can be seen
by direct analysis.

Example 2. Our second example is the following Duffing equation:

ẋ1 = x2,

ẋ2 = 0.3(4x1 − x3
1 − x2).

In this example the graph algorithm of Section 5 finds three graph attractors:
one contained in a ball of radius 0.081 around the point (−2, 0), another contained
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Figure 1. The graph of V in Example 1. The orbital derivative
of V is negative with exception of the black area.

Figure 2. Some level curves (red) for V in Example 1. Each
closed level curve is a forward invariant set. The orbital derivative
of V is negative with exception of the black area as verified by
inequalities (4.3).

in a ball of the same radius around the point (2, 0), and a third containing the other
two and the origin, cf. Figure 3. For this example, the points (−2, 0) and (2, 0) are
known local attractors and at the origin there is a saddle point. As before the graph
algorithm gives a quite good estimate of the attractors and we do not consider the
larger third attractor containing the other two.

This example requires a considerably finer grid and larger time interval to cal-
culate a reasonable V than in the previous example; most likely because the basins
of attraction of the different attractors are intertwined. More specifically, we chose
a uniform grid of 819,200 triangles, a time step of ∆t = 0.005, and an integration
horizon of T = 128. The graph of V is shown in Figure 4 and some level curves for
V are shown in Figure 5.
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Figure 3. The graph attractor found for Example 2. The large
attractor (red) contains the smaller attractors at (−2, 0) and (2, 0)
and is thus not considered in the computation of the Lyapunov
function.

Figure 4. The graph of V in Example 2. The orbital derivative
of V is negative with exception of the black area as verified by
inequalities (4.3).

Example 3. Our final example is the following Van der Pol oscillator:

ẋ1 = x2,

ẋ2 = (1− x2
1)x2 − x1.

Using the graph algorithm of Section 5 we obtain the graph attractor shown in
Figure 6. It is an outer approximation of a stable periodic orbit.

Here we calculate V by choosing a uniform grid of 204,800 triangles, a time step
of ∆t = 0.005, and an integration horizon of T = 8. The graph of V is shown in
Figure 7 and some level curves for V are shown in Figure 8.



18 BJÖRNSSON, GIESL, HAFSTEIN AND KELLETT

Figure 5. Some level curves (red) for V in Example 2. Each
closed level curve is a forward invariant set. The orbital derivative
of V is negative with exception of the black area.

Figure 6. An outer approximation of all local attractors for our
system in Example 3 obtained by the graph algorithm.

7. Conclusions. We developed the theory for a novel method to compute Lya-
punov functions for continuous-time systems with multiple attractors and illus-
trated its applicability to three planar systems. The computed Lyapunov function
can be regarded as a rudimentary complete Lyapunov function, giving information
on attractors and their basins of attraction. Note especially, that we compute our
Lyapunov function without estimating the repellers, i.e., the attractors of the time-
reversed dynamics of system (1.1). This is a significant advantage for systems whose
state-space is not bounded.

The Lyapunov functions for the systems in the examples were each computed
in less than 30 minutes on a PC with an i5-4670 processor. The most expensive
computational step in our algorithm is by far the computation of the values of the
Lyapunov function at the vertices of the simplicial complex. However, since the com-
putation at a vertex is independent of the computation at every other vertex, this
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Figure 7. The graph of V in Example 3. The orbital derivative
of V is negative with exception of the black area as verified by
inequalities (4.3).

Figure 8. Some level curves (red) for V in Example 3. Each
closed level curve is a forward invariant set. The orbital derivative
of V is negative with exception of the black area.

step can be completely parallelized; i.e., subject to available computing resources,
all vertex values can be computed simultaneously. Furthermore, all computational
steps of our method can be parallelized. The only non-trivial part to parallelize is
the computation of the strongly connected component of the graph (G,A) in Step
3 in Section 5. For low-dimensional examples with a reasonably small state-space,
this computation can be done quite efficiently without parallelization using Tar-
jan’s Algorithm [24], but larger examples would certainly benefit from a parallel
algorithm [3].
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