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Abstract— The numerical construction of Lyapunov functions
provides useful information on system behavior. In the Contin-
uous and Piecewise Affine (CPA) method, linear programming
is used to compute a CPA Lyapunov function for continuous
nonlinear systems. This method is relatively slow due to the
linear program that has to be solved. A recent proposal was
to compute the CPA Lyapunov function based on a Lyapunov
function in a converse Lyapunov theorem by Yoshizawa. In
this paper we propose computing CPA Lyapunov functions
using a Lyapunov function construction in a classic converse
Lyapunov theorem by Massera. We provide the theory for such
a computation and present several examples to illustrate the
utility of this approach.

I. INTRODUCTION

Let K ⊂ Rn be a compact neighborhood of the origin
and consider a C2 vector field f : K → Rn. We consider a
dynamical system

ẋ = f(x) (I.1)

where the origin is an asymptotically stable equilibrium
point. As the general reader will be well aware, it can be
difficult to find the general solution to such a system, that
is for a given x ∈ K and an interval I ⊂ R≥0 find
a function φ : I × Rn → Rn such that d

dtφ(t,x) =
f(φ(t,x)), φ(0,x) = x. Our goal then instead is to construct
a continuous Lyapunov function for the system, that is a
positive definite continuous function V : K → R such
that for every solution φ of d

dtφ(t,x) = f(φ(t,x)) on
K \ {0} we have for every t0, t1 ∈ I that t0 < t1 implies
V (φ(t0,x)) < V (φ(t1,x)). It is well known that this
condition follows for a Lipschitz V such that

V +(x) := lim sup
h→0+

V (x + hf(x))− V (x)
h

< 0

on K◦ where K◦ denotes the interior of the set K ⊂ Rn.
Note that V +(x) is sometimes referred to as the orbital
derivative of V at x with respect to f ; or simply the orbital
derivative of V .

In general, constructing a Lyapunov function for (I.1) is a
difficult problem. However, once constructed on a specific
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domain, a Lyapunov function gives a good idea of the
behavior of all solutions in that domain. In particular, its
sublevel sets are inner bounds on the basin of attraction of
the equilibrium.

There have been numerous proposals of how to compute
Lyapunov functions numerically for nonlinear systems. For
example, collocation methods were proposed in [11], [3],
[21], graph theoretic methods in [2], [12], semidefinite
optimization for sum-of-squares polynomials (SOS method)
[17], [18], [19], as well as automated algebraic methods [20],
[22].

In [15] a method was proposed for constructing a Lya-
punov function by solving linear inequalities on a finite
set of points in K, called a vertex set for K, which in
turn determine a unique continuous piecewise affine (CPA)
Lyapunov function on the whole of K. This method is
referred to as the CPA method. The CPA method has been
improved [7] and extended to different kinds of systems [9],
[1], [5], [6].

The method presented here is a simple modification of the
CPA method where, instead of using linear programming
to determine the values at the points of the vertex set,
we use a function construction from a classical converse
Lyapunov theorem developed by Massera [16] to determine
the values. This is similar to the procedure in [10] where a
construction due to Yoshizawa [25] was used. As with the
Yoshizawa construction, the complexity of the computation
for the Massera construction used herein is linear in the
number of grid points and is thus much lower than when
the linear programming is used. A theoretical advantage of
the Massera construction to the Yoshizawa construction is
that the Lyapunov function is guaranteed to be as smooth as
the vector field f in (I.1).

This paper is organized as follows. In Section II we give a
brief summary of the CPA method and describe the converse
Lyapunov theorem that provides the function we use to define
a CPA function. In Section III we present four numerical
examples illustrating the utility of our proposed construction.

We denote the positive integers by N and the strictly posi-
tive real numbers by R>0. For a vector x = [x1, . . . , xn]T ∈
Rn we define the norms ‖x‖p = (

∑n
i=1 |xi|p)

1
p for p ≥ 1

and denote for a set A ⊆ Rn its diameter by diam2(A) :=
supx,y∈A ‖x−y‖2. We denote the open ball in Rn of radius
r > 0 centered at the origin by

Br := {x ∈ Rn : ‖x‖2 < r}.



II. THEORY

We start by giving a summary of the CPA method as
presented in [9]. We define a grid on K ⊂ Rn and calculate
for each point x in the grid the value that V is to take at
x. The values for V on the grid can then be used to extend
V to all of K such that V is a continuous piecewise affine
Lyapunov function on K. In this section we shall provide
the details of this construction.

Let x0, . . . ,xk be a collection of affinely independent
points in Rn, that is

∑k
i=0 ci(xi−x0) = 0 implies that ci =

0 for i = 1, . . . , k. The convex combination of x0, . . . ,xk,
that is the set co{x0, . . . ,xk} := {

∑k
i=0 cixi | all ci ≥

0 and
∑k
i=0 ci = 1}, is a k-simplex in Rn.

Let T = {T1, . . . , Tm} be a set of k-simplices such that
K = ∪mi=1Ti. Suppose further that for every i, j such that i 6=
j we have that Ti∩Tj = ∅ or that Ti∩Tj is an h-simplex with
h < k. We then say that T is a triangulation of K. We further
define VT := {x ∈ Rn |x is a vertex of a simplex in T }
and call VT the vertex set for the triangulation.

For a given triangulation T = {T1, . . . , Tm} and a
function V0 : VT → R we can uniquely extend V0 to a
continuous piecewise affine function V : K → R that is C∞

in the interior of each simplex Ti. More specifically:
i) If x ∈ VT then V (x) = V0(x).

ii) For every Ti ∈ T there exists a linear mapping Ai :
Rn → R and bi ∈ R such that V (x) = Ai(x) + bi for
all x ∈ Ti and such that V is continuous on K.

We are interested in systems (I.1) with an asymptotically
stable equilibrium at the origin and consequently in Lya-
punov functions with a minimum at the origin. Since a local
minimum for a CPA function can only be attained at a vertex,
we insist that the origin be a vertex of our triangulation.
For a given triangulation T of K we denote the collection
of all continuous piecewise affine functions as described
above by CPA[T ] and identify each such function with the
corresponding function V0 : VT → R by V ∼ (V0(x))x∈VT .

The following theorem from [9] states that in order to
construct a Lyapunov function for (I.1) it is sufficient to
determine a function V0 : VT → R which satisfies certain
inequalities at each vertex x ∈ VT , for then the CPA
interpolation of V0 on K is a CPA Lyapunov function for
(I.1) on the whole of K.

Theorem 2.1: Consider the system (I.1) with triangulation
T = {T1, . . . , Tm}. Let V ∼ (V0(x))x∈VT ∈ CPA[T ]. For
each Ti ∈ T define the constants hi := diam2(Ti) and

Ei :=
nMi

2
h2
i , where (II.1)

Mi ≥ max
m,r,s=1,2,...,n

max
z∈Ti

∣∣∣∣ ∂2fm
∂xr∂xs

(z)
∣∣∣∣ .

Assume that for a simplex Ti = co{x0,x1, . . . ,xk} ∈ T the
inequality

∇Vi · f(xj) + Ei‖∇Vi‖1 < 0 (II.2)

holds true for every vertex xj ∈ Ti. Then

∇Vi · f(x) < 0 for all x ∈ Ti.

If the inequality (II.2) holds true for Ti1 , Ti2 , . . . , Tim , we
have V +(x) < 0 for all x ∈ (∪mj=1Tij )◦.
Note that the constants Ei are upper bounds and one does not
have to compute them exactly. A rough estimate is sufficient
and easily obtainable in practice.

In [9] the values of V0 at the vertex points are determined
by linear programming. Here we propose a different, and
much faster, method to calculate the vertex values similar
to the one described in [10]. In [16] Massera proved a con-
verse Lyapunov theorem for systems with an asymptotically
stable equilibrium at the origin by constructing a Lyapunov
function based on the integral of a nonlinear scaling of the
norm of the state trajectory. While Massera’s construction
is applicable to asymptotic stability, for simplicity we here
assume exponential stability. The following formulation is a
slightly simplified version of [14, Theorem 4.14].

Theorem 2.2: Consider a dynamical system ẋ = f(x)
where f is C2 on Br ⊂ Rn for some r ∈ R>0 and suppose
that 0 is an exponentially stable equilibrium point for the
system, that is there exist constants k, λ ∈ R>0 such that
‖φ(t,x)‖ ≤ k‖x‖e−λt for all t ≥ 0 such that x ∈ Br. Then
there exists a constant N such that

V (x) :=
∫ N

0

‖φ(τ,x)‖2dτ. (II.3)

is a Lyapunov function for the system on Br.
As indicated in [14] the constant N can be taken to be

N = ln(2k2)
2λ . However, since it can be difficult to determine

λ and k for specific systems this equation is of limited
practical value. It is also worth noting that the function
constructed in Theorem 2.2 inherits the smoothness attributes
of f , essentially because φ does (c.f., [24, p. 157]), so we
have V ∈ C2(Br \ {0}).

To generalize the above to asymptotically stable systems
we can take a nonlinear scaling of the norm of the state
trajectory obtained from a class-KL asymptotic stability esti-
mate and Sontag’s Lemma on KL-estimates [23, Proposition
7] (also [13, Lemma 7]) which provides an exponentially
decreasing in time upper bound for the asymptotic stability
estimate (see [13] for the definition of class-KL).

Our modification of the CPA method is the following:
1) For a given compact neighborhood K ⊂ Rn of the

origin, define a sequence (Tj)j∈N of triangulations of
K that have uniformly bounded degeneracy (for details,
cf. [1, Remark 4.7] or the discussion after [10, Defini-
tion 3]) and such that

lim
j→∞

(
max
T∈Tj

diam2(T )
)

= 0.

2) Fix an increasing function g : N → R>0 with
limj→∞ g(j) =∞.

3) Set j = 1.
4) Compute

V j0 (x) =
∫ g(j)

0

‖φ(τ,x)‖2dτ (II.4)

at the vertices VTj and by a convex interpolation con-
struct a CPA function V j(x) on K.



5) Check inequality (II.2) at each vertex to determine
where the CPA function V j(x) is a Lyapunov function
for (I.1). If a finer result is required, increment j and
return to Step 4. Otherwise stop.

By our choice of g it is obvious that g(j) > ln(2k2)
2λ in the

long run, and in [8] and [10] it is demonstrated that there
exists a value δ > 0 such that if max

T∈T
diam2(T ) < δ then the

Lyapunov function constructed by the CPA method in fact
satisfies inequality (II.2) at every vertex point. Therefore,
if K is in the basin of attraction of the equilibrium, and
a priori given an arbitrary small ε-ball Bε centered at the
origin, the functions V j will be Lyapunov functions for
the system on K \ Bε for all large enough j. For all but
the most simple systems one has to approximate the values
of V0 numerically. It is a matter of ongoing research how
this affects the inequalities at the vertices, but the numerical
examples presented below are promising.

III. EXAMPLES

In this section we present numerical examples that demon-
strate the effectiveness of our modified CPA method. In what
follows we use the classical Runge-Kutta method RK4 to
approximate φ(t,x). Across the examples, various step-sizes
∆t for RK4 were used and for Examples 1-3 ∆t = 0.01
was found to be sufficiently small. For Example 4 a smaller
step-size of ∆t = 0.001 yielded better results in terms of
obtaining a negative orbital derivative on more simplices.

In the following examples we set g(j) = 2j · 50 · ∆t
and Sj = 4j · 200 for all j ∈ N where Sj denotes the
number of simplices in our triangulation in the j-th step
of the algorithm. In other words, at each iteration of the
algorithm we double the upper limit of integration in (II.4)
and have a fourfold increase in the number of simplices.

In the following figures we plot the calculated CPA
function at a specific iteration of the algorithm and mark with
∗ the simplices in which the computed CPA function fails to
have a negative orbital derivative. It is also worth noting that
all the functions we have calculated have been normalized
such that the maximum value of the CPA Lyapunov function
on its domain of definition is 1.

Example 1

Our first example is the linear system

ẋ = Ax =
[

1 1
−5 −3

]
x.

Since the eigenvalues of A are −1 + i and −1 − i this
system has an exponentially stable equilibrium at the origin.
We now utilize the modified CPA method proposed above to
calculate a Lyapunov function for the system on B1 and note
that, for linear systems, we can take Mi = 0, and hence we
set Ei = 0 for each simplex. We plot the function given by
the first two iterations of the algorithm in Figures 1 and 2.
Note that even two iterations yield a Lyapunov function on
nearly the entire domain for the system. In Figure 3 we plot
some level curves for the CPA Lyapunov function obtained
on the third iteration. In Table I we give two measures for

Iteration Percentage of Simplices Radius (R) Outside
with D+V (x) < 0 Which D+V < 0

1 91.750% 1
2 98.813% 6.25 · 10−2

3 99.719% 1.563 · 10−2

4 99.930% 3.91 · 10−3

5 99.982% 9.8 · 10−4

6 99.996% 2.4 · 10−4

TABLE I
TWO DIFFERENT MEASURES FOR THE QUALITY OF THE COMPUTED CPA
LYAPUNOV FUNCTIONS FOR THE DIFFERENT ITERATIONS. IN COLUMN 2
WE GIVE THE PERCENT OF THE NUMBER OF TRIANGLES Ti ∈ T , WHERE

THE ORBITAL DERIVATIVE D+V IS NEGATIVE AND IN COLUMN 3 WE

GIVE THE RADIUS R OF A BALL BR , OUTSIDE OF WHICH THE ORBITAL

DERIVATIVE IS NEGATIVE.

Fig. 1.
First iteration of the algorithm for the system in Example

1. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 734 of the 800 simplices in

the triangulation.

the quality of the CPA Lyapunov functions computed in the
different iterations.

Example 2

Our next example is the non-linear system

ẋ1 = −x2 − (1− x2
1 − x2

2)x1

ẋ2 = x1 − (1− x2
1 − x2

2)x2.

By using polar coordinates or by linearizing one can
demonstrate that the origin is exponentially stable. It is also
simple to show that the unit circle is a recurrent set in this
example, therefore it is prudent to utilize our method on
a set slightly smaller than B1. We choose the set B0.95. In
this example we set Ei = 6h2

i ·maxx∈Ti{|x1|, |x2|} for each
simplex Ti and we obtain a Lyapunov function on the first
iteration, so further iterations are unnecessary. The resulting
CPA Lyapunov function is displayed in Figure 4. By using
a slightly stricter version of Theorem 2.1 (cf. [4, Theorem
2.6]), we can even assure that the CPA Lyapunov function
has a negative orbital derivative on its entire domain, even
in a neighborhood of the origin.

In Figure 5 we plot some of its level curves.



Fig. 2.
Second iteration of the algorithm for the system in

Example 1. We obtain a CPA Lyapunov function for the
system with negative orbital derivative in 3162 of the 3200

simplices in the triangulation.

Fig. 3.
Some level curves of the CPA Lyapunov function from the

third iteration for Example 1.

Fig. 4.
First iteration of the algorithm for the system in Example

2. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in all of the simplices in the

triangulation. Therefore no further iterations are required.

Fig. 5.
Some level curves of the CPA Lyapunov function from the

third iteration for Example 2.

Example 3

Next up is a torture test for the method. We consider the
following non-linear system on B1 where we set Ei = 12h2

i ·
maxx∈Ti

{|x1|, |x2|} for each simplex Ti.

ẋ1 = −x2 − 2x1(x2
1 + x2

2)

ẋ2 = x1 − 2x2(x2
1 + x2

2).

Note the equilibrium at the origin is asymptotically stable
but not exponentially stable. Further, solutions in its domain
of attraction spiral around the equilibrium and converge very
slowly to the equilibrium. As expected, the convergence
of our method is noticeably slower than in the previous
examples. For example, six iterations of the algorithm are
required to obtain a Lyapunov function with a negative
orbital derivative on roughly 95% of the simplices. We note
that a smaller step-size for the RK4 integrator of the system
does not improve the results. This slow convergence can be
explained by the almost recurrent behavior of the system
close to the origin. We plot the CPA Lyapunov function
computed by the first two iterations of the algorithm in
Figures 6 and 7. In Figure 8 we plot some level curves for
the CPA Lyapunov function from the third iteration. In Table
II we give two measures for the quality of the CPA Lyapunov
functions computed in the different iterations.

Example 4

Our last example is the following non-linear equation
which we explore on the square [−3, 3]2.

ẋ1 = x2

ẋ2 = −x1 +
1
3
x3

1 − x2.

Here we set Ei = 2h2
i maxx∈Ti

|x1| on each simplex Ti.
In this example the origin is a stable equilibrium point, and
we also have equilibrium points at (

√
3, 0) and (−

√
3, 0)



Fig. 6.
First iteration of the algorithm for the system in Example

3. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 632 of the 800 simplices in

the triangulation.

Fig. 7.
Second iteration of the algorithm for the system in

Example 3. We obtain a CPA Lyapunov function for the
system with negative orbital derivative in 2680 of the 3200

simplices in the triangulation.

Fig. 8.
Some level curves of the CPA Lyapunov function from the

third iteration for Example 3.

Iteration Percentage of Simplices Radius (R) Outside
with D+V (x) < 0 Which D+V < 0

1 79.000% 0.25000
2 83.750% 0.20250
3 88.031% 0.14063
4 90.930% 0.10563
5 93.205% 0.07563
6 94.833% 0.05790

TABLE II
TWO DIFFERENT MEASURES FOR THE QUALITY OF THE COMPUTED CPA
LYAPUNOV FUNCTIONS IN EXAMPLE 3 FOR DIFFERENT ITERATIONS. IN

COLUMN 2 WE GIVE THE PERCENT OF THE NUMBER OF TRIANGLES

Ti ∈ T , WHERE THE ORBITAL DERIVATIVE D+V IS NEGATIVE AND IN

COLUMN 3 WE GIVE THE RADIUS R OF A BALL BR , OUTSIDE OF WHICH

THE ORBITAL DERIVATIVE IS NEGATIVE.

Fig. 9.
First iteration of the algorithm for the system in Example

4. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 644 of the 800 simplices in

the triangulation.

that are unstable. Therefore we cannot expect to obtain a
Lyapunov function on the whole square, but as an interesting
application we note that the domain in which we obtain a
Lyapunov function for the system gives a rough estimate
of the basin of attraction for the stable equilibrium point
at the origin (cf. Figure 11). We plot the CPA Lyapunov
function computed by the first two iterations of the algorithm
in Figures 9 and 10. In Figure 11 we plot some level curves
for the CPA Lyapunov function from the third iteration.

IV. CONCLUSIONS

We have proposed a modified CPA method for the con-
struction of Lyapunov functions on compact regions con-
taining the origin using a classical Lyapunov function con-
struction due to Massera. This modification has the benefit
that computation of the vertex values for the candidate
CPA Lyapunov function is much faster than the solving the
linear program necessary for the original CPA method [15].
We presented several numerical examples demonstrating the
utility of this modified CPA method.



Fig. 10.
Second iteration of the algorithm for the system in example
4. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 2598 of the 3200 simplices in

the triangulation.

Fig. 11.
Some level curves of the CPA Lyapunov function from the

third iteration for Example 4.

While (II.3) is known to be a Lyapunov function, the sys-
tem trajectories obtained via the Runge–Kutta RK4 method
are obviously an approximation. This causes no difficulty as
we may, in fact, choose any values for the vertices to then
define the candidate CPA Lyapunov function and then use
Theorem 2.1 to determine whether or not those particular
vertex values do, in fact, yield a negative orbital derivative
on each simplex. Using approximate values of (II.3) to fix
the vertex values is then, in some sense, a principled guess
since the results of [8] and [10] guarantee that, by a process
of iteratively refining the triangulation, using exact values of
(II.3) will eventually yield a CPA Lyapunov function.
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