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Abstract We present a generalization of results obtained by X. Mao in his book
“Stochastic Differential Equations and Applications” (2008). When studying what
Mao calls “almost sure exponential stability”, essentially a negative upper bound
on the almost sure Lyapunov exponents, he works with Lyapunov functions that are
twice continuously differentiable in the spatial variable and continuously differen-
tiable in time. Mao gives sufficient conditions in terms of such a Lyapunov function
for a solution of a stochastic differential equation to be almost surely exponentially
stable. Further, he gives sufficient conditions of a similar kind for the solution to be
almost surely exponentially unstable. Unfortunately, this class of Lyapunov functions
is too restrictive. Indeed, R. Khasminskii showed in his book “Stochastic Stability
of Differential Equations” (1979/2012) that even for an autonomous stochastic dif-
ferential equation with constant coefficients, of which the solution is stochastically
stable and such that the deterministic part has an unstable equilibrium, there cannot
exists a Lyapunov function that is differentiable at the origin. These restrictions are
inherited by Mao’s Lyapunov functions. We therefore consider Lyapunov functions
that are not necessarily differentiable at the origin and we show that the sufficiency
conditions Mao proves can be generalized to Lyapunov functions of this form.

Keywords Almost sure exponential stability · Lyapunov function · Almost sure
Lyapunov exponent

1 Introduction

Lyapunov methods, as first described in [1], have been widely used to study the
behaviour of various dynamical systems, both real-world examples or purely theo-
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retical ones. This is a very active field due to the complicated dynamics exhibited in
several real-world systems, as for example the wobblestone model presented in [2].
Other specific examples include the dynamics of the double [3] or triple pendulum
[4, 5], where Lyapunov exponents were used to study the chaotic behavior of the
systems. Often it is necessary to modify a dynamical system to include either an
unknown force, or to consider the perturbation of the system by some noise, and that
is where stochastic differential equations (SDEs) are commonly used. Here in this
paper, we are concerned with applying Lyapunov methods for classical dynamical
systems to the stochastic framework, as done by Khasminskii [8].

We work in a complete probability space (Ω,F , P) with a right continuous
filtration {Ft}t≥0 and such thatF0 contains all P null sets. In this paper we consider
strong solutions of the d -dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) on t ≥ t0 (1)

where B(t) is anm-dimensional Brownian motion. For a more detailed description of
the setting cf. [9, Sec. 2.1].We assume that for any given initial value x(t0) = x0 ∈ Rd

there exists a unique global solution, denoted by t �→ x(t, t0, x0), with continuous
sample paths. Furthermore, we assume that

f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0.

Sufficient condition for the existence of such solutions are, for example, given by
the following statement, cf. [9, Thm. 2.3.6].

For any real number T > 0 and integer n ≥ 1, the following hold true:

1. There exists a positive constant KT ,n, such that for all t ∈ [t0,T ] and all x, y ∈ Rd with
|x| ∨ |y| ≤ n,

|f (x, t) − f (y, t)|2
∨

|g(x, t) − g(y, t)|2 ≤ KT ,n|x − y|2.

2. There exists a positive constant KT , such that for all (x, t) ∈ Rd × [t0,T ]

x�f (x, t) + 1

2
|g(x, t)|2 ≤ KT (1 + |x|2).

Here | · | is the Euclidean norm and the symbols ∧ and ∨ are defined to be the
minimum and the maximum respectively:

a ∧ b := min(a, b) and a ∨ b := max(a, b).

Corresponding to the initial value x(t0) = 0, we have the solution x(t) = 0 for all
t. This solution is called the trivial solution. In this paper we are studying the stability
of the trivial solution and, more specifically, when it is almost surely exponentially
stable. This definition is taken fromMao’s book [9, Def. 4.3.1], see also e.g. [6, 11].
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Definition 1 The trivial solution of (1) is said to be almost surely exponentially
stable if

lim sup
t→∞

1

t
log |x(t, t0, x0)| < 0

almost surely, for all x0 ∈ Rd .

First, we clarify some of the notation used in the paper. For our purposes all
integrals in this paper of the form

∫ · dB(s) are to be interpreted in the Itô sense.
We write bn ↑ a if the sequence bn is increasing and has limit a. We denote by
L 2(R+, Rd×m) the family of all (d × m)-matrix valuedmeasurable {Ft}t≥0-adapted
processes f = {f (t)}t≥0 such that

∫ T

0
|f (t)|2dt < ∞ a.s. for every T > 0

and by M 2(R+, Rd×m) the family of all processes f ∈ L 2(R+, Rd×m) such that

E
{∫ T

0
|f (t)|2dt

}
< ∞ for every T > 0.

Here E denotes the expectation and a.s. is an abbreviation for almost surely as
usual. Let f ∈ M 2(R+, Rd×m) and consider the process

Mt =
∫ t

0
f (s)dB(s)

then there exists a t-continuous version of the processMt . Furthermore the process is
{Ft} adapted and is a square integrablemartingale [10, Thm. 3.2.5]. By the preceding
remark, we will assume that

∫ t
0 f (s)dB(s) refers to a t-continuous version of the

integral.
A sequence of stopping times {τk}k≥1 is called a localization if it is non-decreasing

and τk ↑ ∞ almost surely. A right continuous adapted process M = {Mt}t≥0 is
called a local martingale if there exists a localization {τk}k≥1 such that the process
{Mτk∧t − M0}t≥0 is a martingale for every k ≥ 1. We denote the quadratic variation
of a continuous local martingale M by 〈M ,M 〉t , which is the unique continuous
adapted process of finite variation, such that {M 2

t − 〈M ,M 〉t}t≥0 is a continuous
local martingale which takes the value 0 at t = 0.

Let Mt be a continuous martingale of the form

Mt =
∫ t

0
f (s)dB(s).
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Then the quadratic variation 〈M ,M 〉t is given by

〈M ,M 〉t =
∫ t

0
|f (s)|2ds

almost surely [9, Thm. 1.5.14].
Let τ be a stopping time and let [[0, τ ]] be the stochastic interval

[[0, τ ]] = {(t, ω) ∈ R+ × Ω : 0 ≤ t ≤ τ(ω)}.

We now list a few facts needed to give rigid proofs of our results. For any f ∈
L 2(R+, Rd×m) we can define a sequence of stopping times

τn := n ∧ inf{t ≥ 0 :
∫ t

0
|f (s)|2ds ≥ n}.

It is easy to see that τn ↑ ∞ almost surely. Let IA, for A ⊂ R+ × Ω , be the indicator
function, that is IA(x) = 1 if x ∈ A and zero otherwise. Thenwe can define the process
gn(t) = f (t)I[[0,τn]](t). We see that gn ∈ M 2(R+, Rd×m) so the integral

Jn(t) =
∫ t

0
gn(s)dB(s)

is a martingale. That is to say, the process

J (t) :=
∫ t

0
f (s)dB(s)

is a local martingale with localization {τn}, since for any n ≥ 1

J (t ∧ τn) =
∫ t∧τn

0
f (s)dB(s) =

∫ t

0
f (s)I[[0,τn]](s)dB(s) =

∫ t

0
gn(s)dB(s) = Jn(t)

is a martingale.
In his book [9], Mao considers Lyapunov functions V (x, t) ∈ C2,1(Rd × [t0,

∞[; R+) where C2,1(Rd × [t0,∞[ ; R+) is the set of all continuous functions
Rd × [t0,∞[ → R+, which are continuously differentiable twice in the first coordi-
nate x, with x ∈ Rd , and once in t with t ∈ [t0,∞[ . Now define a differential operator
L associated with (1) by

L = ∂

∂t
+

d∑

i=1

fi(x, t)
∂

∂xi
+ 1

2

d∑

i,j=1

[g(x, t)g�(x, t)]ij ∂2

∂xi∂xj
, (2)
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where [g(x, t)g�(x, t)]ij is the (i, j)-th component of the (d × d)-matrix gg� at (x, t).
If x(t) is a solution of (1) then by Itô’s formula

dV (x(t), t) = LV (x(t), t)dt + Vx(x(t), t)dB(t)

where Vx ∈ R1×d is the derivative (gradient) of V with respect to x.
Khasminskii showed in his book [8, p. 154–155] that even for SDEs with constant

coefficients there cannot exist Lyapunov functions that are differentiable at 0 unless
the deterministic part of the SDE is already stable. Therefore we extend the results
from Mao’s book using the larger class of functions C2,1

0 (Rd × [t0,∞[ ; R+) which
are continuous, continuously differentiable in t, and twice continuously differentiable
in x except at the point x = 0.

Below is a theorem taken from Mao’s book [9] which we will use in the next
chapter. For completeness we give a more worked out proof than in the book.

Theorem 1 [9, Thm.1.7.4]
Let g = (g1, . . . , gm) ∈ L 2(R+, Rd×m), and T , α, β be any numbers ≥ 0. Then

P
{
sup

0≤t≤T

[∫ t

0
g(s)dB(s) − α

2

∫ t

0
|g(s)|2ds

]
> β

}
≤ e−αβ. (3)

Proof Define the process

x(t) = α

∫ t

0
g(s)dB(s) − α2

2

∫ t

0
|g(s)|2ds

and for every integer n ≥ 1, define the stopping time

τn = inf

{
t ≥ 0 :

∣∣∣∣
∫ t

0
g(s)dB(s)

∣∣∣∣ +
∫ t

0
|g(s)|2ds ≥ n

}
.

Then τn is a localization, and since

|xn(t)| ≤ α

∣∣∣∣
∫ t

0
g(s)I[[0,τn]](s)dB(s)

∣∣∣∣ + α2

2

∫ t

0
|g(s)|2I[[0,τn]]ds

≤ αn + α2

2
n = n

2α + α2

2

we see that the process xn(t) := x(t ∧ τn) is bounded.
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Apply Itô’s formula to exp(xn(t)) and we obtain

exp(xn(t)) = 1 +
∫ t

0
exp(xn(s))dxn(s) + α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

= 1 +
(

α

∫ t

0
exp(xn(s))g(s)I[[0,τn]](s)dB(s)

−α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

)

+ α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

= 1 + α

∫ t

0
exp(xn(s))g(s)I[[0,τn]](s)dB(s).

The term inside the integral is bounded by n2 2α+α2

2 almost surely, therefore the
process exp(xn) is a non negative martingale with E {exp(xn(T ))} = 1, for all n ≥ 1.
This construction is known as the Doléans-Dade exponential of the local martingale
Yt := ∫ t

0 g(s)dB(s), see [8, Thm. 26.8].
By Doob’s martingale inequality [9, Thm. 1.3.8] we get that

P
{
sup

0≤t≤T
exp[xn(t)] ≥ eαβ

}
≤ e−αβE {exp(xn(T ))} = e−αβ.

Then it follows that

P
{
sup

0≤t≤T

xn(t)

α
> β

}
≤ e−αβ.

Since this inequality holds for any n ≥ 1, and

lim
n→∞ xn(t) = x(t)

almost surely, we get by the dominated convergence theorem that

P
{
sup

0≤t≤T

x(t)

α
> β

}
≤ e−αβ

and the proof is complete. ��

2 The Theorems and Their Proofs

As discussed above, we state two theorems from Mao’s book [9], more specifically
Theorem4.3.3 andTheorem4.3.5, exceptwe allow theLyapunov functions V to be in
the C2,1

0 space instead of the too restrictive space C2,1, like Mao does. The difference
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is that in the former space the functions are not required to be differentiable at the
origin, while functions in the latter one are smooth everywhere. As already explained
before, this makes the results much more relevant and useful.
First we state and proof Theorem 4.3.3 from [9] with the weaker conditions. Note
that, like above, Vx ∈ R1×d is the derivative (gradient) of V with respect to x.

Theorem 2 (advancement of Thm. 4.3.3 in Mao)
Assume there exists a function V ∈ C2,1

0 (Rd × [t0,∞); R+) and constants p > 0,
c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all x �= 0 and t ≥ t0:

1. c1|x|p ≤ V (x, t),
2. LV (x, t) ≤ c2V (x, t),
3. |Vx(x, t)g(x, t)|2 ≥ c3V 2(x, t).

Then

lim sup
t→∞

1

t
log |x(t; t0, x0)| ≤ −c3 − 2c2

2p
a.s.

for all x0 ∈ Rd . In particular, if c3 > 2c2, the trivial solution of Eq. (1) is almost
surely exponentially stable, see Definition 1.

The proof heremostly followsMao’s original argument, butwith somemodifications,
since the process M (t) below isn’t necessarily a martingale.

Proof Clearly the inequality holds for x0 = 0 since x(t, t0, 0) = 0 for all t. We
only need to show the inequality for all x0 �= 0. Fix any x0 �= 0 and write x(t) :=
x(t; t0, x0). It is well known that 0 is an inaccessible point, cf. e.g. [9, Lemma 4.3.2],
that is to say, x(t) �= 0 for all t ≥ t0 almost surely. Thus one can apply Itô’s formula
and get

log V (x(t), t)

= log V (x0, t0) +
∫ t

t0

LV (x(s), s)

V (x(s), s)
ds + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

≤ log V (x0, t0) + c2(t − t0) + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

where we used condition 2 for the last inequality and

M (t) :=
∫ t

t0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dB(s).

We claim the process

h(s) := Vx(x(s), s)g(x(s), s)

V (x(s), s)

is in L 2([t0,∞[, Rd ). Indeed, for almost all ω ∈ Ω , the trajectory of x(t)(ω), t0 ≤
t ≤ T , is a compact subset of Rd \ {0}. Hence, for almost all ω, the function h(s)(ω)
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is continuous on the compact set t0 ≤ s ≤ T and thus bounded. Since this holds true
for all T , we have h(s) ∈ L 2([t0,∞[, Rd ).

Fix an arbitrary ε > 0. We can now use Theorem 1 and get for all n ∈ N:

P
{

sup
t0≤t≤t0+n

[
M (t) − ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

]
>

2

ε
log(n)

}
≤ 1

n2

By the Borel Cantelli theorem, cf. e.g. [7, Thm. 3.18], there exists an n0(ω) > 0 for
almost all ω, such that

M (t) ≤ 2

ε
log(n) + ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds.

for all t0 ≤ t ≤ t0 + n if n > n0. By condition 3,

log V (x(t), t)

≤ log V (x0, t0) + c2(t − t0) + 1

2
(ε − 1)

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds + 2

ε
log(n)

≤ log V (x0, t0) + c2(t − t0) − 1

2
(1 − ε)c3(t − t0) + 2

ε
log(n)

= log V (x0, t0) − 1

2
((1 − ε)c3 − 2c2)(t − t0) + 2

ε
log(n)

for all t0 ≤ t ≤ t0 + n if n > n0 for almost all ω. Therefore we have for almost all ω,
that

1

t
log V (x(t), t) ≤ − t − t0

2t
[(1 − ε)c3 − 2c2] + log V (x0, t0) + 2 log(n)/ε

t0 + n − 1

if t0 + n − 1 ≤ t ≤ t0 + n and n > n0.
Fix ω and let n → ∞, then

lim sup
t→∞

1

t
log V (x(t), t) ≤ −1

2
((1 − ε)c3 − 2c2)

holds point-wise for almost all ω. Finally using condition 1 we have

lim sup
t→∞

1

t
log |x(t)| ≤ − (1 − ε)c3 − 2c2

2p

for almost all ω. Since ε > 0 was arbitrary we have the conclusion. ��
Now we state and proof Theorem 4.3.5 from [9] with the weaker conditions.
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Theorem 3 (advancement of Thm. 4.3.5 in Mao)
Assume that there exists a function V ∈ C2,1

0 (Rd × [t0,∞); R+), and constants p >

0, c1 > 0, c2 ∈ R, c3 > 0, such that for all x �= 0 and t ≥ t0,

1. c1|xp| ≥ V (x, t) > 0,
2. LV (x, t) ≥ c2V (x, t),
3. |Vx(x, t)g(x, t)|2 ≤ c3V 2(x, t).

Then

lim inf
t→∞

1

t
log |x(t; t0, x0)| ≥ 2c2 − c3

2p
a.s.

for all x0 �= 0 in Rd .

The proof again follows the same method Mao used in his book, but here it works
without modifications for our weaker assumptions on the function V . For complete-
ness we, however, give a more worked out proof than given in [9].

Proof Just like in the proof of Theorem 2 we fix some x0 �= 0 and we write x(t) =
x(t; t0, x0). Furthermore we define M (t) and h(s) as in the proof of Theorem 2, and
by Itô’s formula we have that

log V (x(t), t) (4)

= log V (x0, t0) +
∫ t

t0

LV (x(s), s)

V (x(s), s)
ds + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds.

By condition 3, we have that |h(s)|2 < c3, so h ∈ M 2(R+, R1×m) and M (t) =∫ t
t0
h(s)dB(s) is a martingale. By Eq. (4) and condition 2

log V (x(t), t) ≥ log V (x0, t0) + c2(t − t0) − c3
2

(t − t0) + M (t)

= log V (x0, t0) + 1

2
(2c2 − c3)(t − t0) + M (t).

(5)

Since M (t) is a martingale with quadratic variation

〈M (t),M (t)〉 =
∫ t

t0

|h(s)|2ds ≤ c3(t − t0),

wehave by the strong lawof large numbers, cf. e.g. [9, Thm1.3.4], that lim
t→∞M (t)/t =

0 a.s. It therefore follows from (5) that

lim inf
t→∞

1

t
log V (x(t), t) ≥ 1

2
(2c2 − c3) a.s.
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Finally by condition 1 then

lim inf
t→∞

1

t
log |x(t; t0, x0)| ≥ 2c2 − c3

2p
.

��
Remark If in the last theorem we have 2c2 > c3, then almost all the sample paths of
t �→ |x(t; t0, x0)| will tend to infinity, and in this case the trivial solution of Eq. (1)
is said to be almost surely exponentially unstable.

Example Consider the 1-dimensional SDE

dX (t) = f (X (t), t)dt + g(X (t), t)dB(t) := 1

4
X (t)dt + X (t)dB(t) (6)

Set V (x, t) = |x|1/2, then V ∈ C2,1
0 and, by Eq. (2), the function LV (x) is given by

LV (x) = 1

4
x · (1/2)|x|−1/2 + 1

2
x2 · (−1/2)(1/2)|x|−3/2 = 1

8
|x|1/2 − 1

8
|x|1/2 = 0.

Furthermore we see that

|Vx(x)g(x, t)|2 = |(1/2)|x|−1/2x|2 = 1

4
(|x|1/2)2 = 1

4
V (x)2.

Fixing constants c1 = 1, p = 1/2, c2 = 0 and 0 < c3 < 1/4, we see by Theorem 2
that for any solution x(t) of Eq. (6) the following inequality holds

lim sup
t→∞

1

t
log |x(t)| ≤ −c3 − 2c2

2p
= −c3 < 0 a.s.

In particular the trivial solution of system (6) is almost surely exponentially stable
(in fact the solution is stable in probability, see [8, Thm. 5.3]), and the function V we
used is not differentiable at 0. Moreover, as shown by Khasminskii [8, p. 154–155],
there cannot exists a Lyapunov function for this system that is differentiable at the
origin.

3 Conclusions

In his book [9] X. Mao states and proves two theorems, Theorem 4.3.3 and Theorem
4.3.5, where he shows that the existence of a certain auxiliary function, so-called
Lyapunov function, implies the almost sure exponential stability or, for a different
kind of function, the almost sure exponential instability respectively of the zero
solution of a SDE. Unfortunately, the class of functions C2,1(Rd × [t0,∞); R+)
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he considers to serve as the foundation for Lyapunov functions is too restrictive as
had already been pointed out in the literature [8, p. 154–155]. The adequate class
of functions is given by C2,1

0 (Rd × [t0,∞); R+) and we formulate and prove Mao’s
theorems for this wider class of functions. This renders these theorems much more
useful for applications.
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