Advanced algorithm for interpolation with
Wendland functions*

Hjortur Bjornsson and Sigurdur Hafstein[0000—0003—0073-2765]

Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
hjb6@hi.is, shafsteinChi.is

Abstract. We develop and study algorithms for computing Lyapunov
functions using meshless collocation and Wendland functions. We present
a software tool that generates a C/C++ library that implements Wend-
land functions of arbitrary order in a specified factorized form with ad-
vantageous numerical properties. Additionally, we describe the algorithm
used by the tool to generate these Wendland functions. Our factorized
form is more efficient and has higher numerical accuracy than previous
implementations. We develop and implement optimal grid generation
for the interpolation problem using the Wendland functions. Finally, we
present software that calculates Lyapunov functions using these Wend-
land functions and the optimally generated grid. The software tool and
library are available for download with examples of usage.

Keywords: Wendland function, Lyapunov functions, radial basis func-
tions, code generation.

1 Introduction

Interpolation and collocation using Radial Basis Functions (RBF), in partic-
ular compactly supported RBFs, have been the subject of numerous research
activities in the past decades [27,9,10,24,7,6,25,26]. They are well suited as
kernels of Reproducing Kernel Hilbert Spaces and their mathematical theory is
mature. The authors and their collaborators have applied Wendland’s compactly
supported RBF's for computing Lyapunov functions for nonlinear systems, both
deterministic [11, 12, 14] and stochastic [5], where Lyapunov functions are a use-
ful tool to analyse stability of these systems, cf. e.g. [18,22,23,19,20]. Various
numerical methods have been used to find Lyapunov functions for the systems
at hand [14, 16]. Meshless collocation using RBFs is one such method and many
different families of RBFs have been studied [25].

In the papers [12-14, 5] and the book [11] meshless collocation is used with
Wendland functions, where the Wendland function family is defined in a recur-
sive way and in order to determine the actual functions to use in a software
implementation many calculations had to be done by hand. In [2] an algorithm

* This research was supported by the Icelandic Research Fund (Rannis), grant number
152429-051, Lyapunov Methods and Stochastic Stability.

2 H. Bjornsson and S. Hafstein

is proposed that determines the Wendland polynomials in expanded form, that
is: for each pair of integers [,k > 0, it finds a list of numbers ag, ay, ... aq such
that the Wendland function v x(r) = Zf:o a;r. However, it was shown in [3]
that the evaluations of these polynomials in this form using typical schemes,
such as Horner’s scheme, can lead to significant numerical errors.

Having the Wendland functions in factorized form [3] is more efficient and
numerically accurate, so we propose an alternate method to determine the func-
tions in factorized form. For that purpose, we have created a software tool that
generates a reusable software library in C/C++, which implements these Wend-
land polynomials in factorized form. A first version of this software library was
presented in [4]. We have now extended it considerably and added more function-
ality, most notably efficient grid generation and algorithms to solve interpolation
problems for generating Lyapunov functions for stochastic and deterministic dy-
namical systems.

2 Background

Meshless collocation with RBF's is a method that can be used to calculate Lya-
punov functions for either stochastic or deterministic dynamical systems. In
paper [5] meshless collocation was used to calculate Lyapunov functions for
Stochastic Differential Equations (SDE); see e.g. [11, 14] for a similar approach
for deterministic systems.

The method revolves around solving a linear Partial Differential Equation
(PDE). Let 2 C R™ be a given domain and I" C R™ its boundary. Then we want
to solve the (PDE)

{LV(X) =h(x) x€N
Vix)=cx) x€eT,

where L is a certain differential operator, and h and c are some appropriately
chosen functions.

Using meshless collocation to solve the PDE above we choose points X; =
{X1,...,xn} C 2 and X5 = {&,...,&u} C I', and solve the interpolation
problem

LV (x;) =h(x;) foralli=1,...,N
V(&) = c(&) foralli=1,..., M.

The solution is then given in terms of a radial basis function ,

N M
V(x) =Y ar(dx, o L eI = yI) + D ansrl(de, o LY o(Ix —yll), (1)
k=1 k=1

where L? is the identity operator, d, V() = V(y) and superscript y denotes that
the operator is applied with respect to the variable y.

Advanced algorithm for interpolation with Wendland functions 3

The constants a; are determined as a solution to the linear system
Aa =7, (2)

where A, called the interpolation matrix, is the symmetric matrix

B C
=) 3)
and the matrices B = (bji)jk=1,..N, C = (¢jk)j=1,.. .Nk=1,..m and D =

(djk)jk=1,.,m have elements:

bjr = (5xj o L)*(dx, o LY Y(x —y)
Cik = (6xj © L)x(5§k © Lo)y¢(x - Y)
djk = (8¢, 0 L*)* (8¢, o L)Y ¥ (x — y).

The vector v has components given by

v =r(x;), 1<j<N
vi+n =c(§), 1<j<M

There are different choices for the radial basis function ¥. We want the inter-
polation matrix A to be symmetric and positive definite and choosing 1 to have
compact support can make A sparse. Under a few mild conditions the choice
of 1 as a Wendland function, i.e. a compactly supported radial basis function,
ensures this [26].

This method works the same way for determining Lyapunov functions for
both deterministic systems and SDEs, the difference is the choice of the differen-
tial operator L. For deterministic systems it is the orbital derivative, a first order
differential operator, and for stochastic systems it is a second order differential
operator.

To compute such a Lyapunov function a large number of evaluations of the
function ¥ and its derivatives is necessary, see e.g. the examples given in equa-
tions (16) and (19). To verify the properties of a Lyapunov function for the
function computed, even more evaluations are necessary. Therefore, it turned
out to be essential that these evaluations could be carried out in an efficient and
accurate way.

3 Wendland functions

The Wendland functions are compactly supported radial basis functions that
are polynomials on their support, which makes computations with them simple.
They are a family of functions depending on two parameters [,k € Ny defined
by the recursive relations:

Yro(r) = [(1—7)+] (4)

4 H. Bjornsson and S. Hafstein

and

1
Y1 ps1(r) = ClJc—i—l/ ty 1 (t)dt, (5)

s

where (1 —r)4 := max{1l —r,0} and Cj ;11 # 0 is a constant.
Therefore these functions also satisfy the relation

d
—Clpt1tik(r) = 7”1/)[’];“(”. (6)
For interpolation using a particular Wendland function as the base function,
the value of the constant Cj 41 # 0 is not of importance because the Wendland
function appears linearly on both sides of a linear equation. Therefore, one can
just fix values that are convenient for the problem at hand and we will do this
in the following section. However, when solving collocation problems, we apply
a differential operator, see equations (1) and (3), so we get terms involving
both the original Wendland function and its derivatives. The derivative of a
Wendland function can be written in terms of a lower order Wendland function,
using equation (6), and when doing this it is necessary to keep track of the
constants Cj ;41 for the derivatives. It is only the constant for the base function
that can be chosen arbitrarily. After the choice has been made, we must keep
track of it through all calculations.
First, we choose a particular function ¢; ;, and by abuse of notation we denote
it by 1o = 11 1. Then we define

d).
zpi(r):M fori=1,2,...,k (7)
The function 1; is then a specific Wendland function of order [, k — 1.
Now the functions

Bro(r) = [(1=r)4])" and (8)
1
By p(r) = / Bro(OH(E —) 1dt for k> 0)
also satisfy a relation of the form

d
<P r
—2(k —)&y (r) = M7
T
for all integers k,I > 0, i.e. a relation identical to equation (6) with Cj 41 =
2(k — 1). Just note that
d 1 1
- Do)t —r?)tdt = —2r(k — 1)/ Dy o(t)t(t? — r?)F2dt.
r T T

Therefore equation (9) delivers an alternative way to define the Wendland
functions, see [26]. Note that [26] uses a different numbering scheme of the func-
tions than we do in this paper.

The Wendland functions have several important properties, cf. e.g. [11, Prop. 3.10]:

Advanced algorithm for interpolation with Wendland functions 5

1) ¢y ,(r) is a polynomial of degree ! + 2k for r € [0,1] and supp(¢.x) = [0, 1].
2) The radial function ¥ (x) := 9, x(||x]|) is C?* at 0.
3) 'l/)l,k is CF+I=1 at 1.

Frequently we fix the parameter [:= [gJ + k + 1, where n is the spacial
dimension we are working in, and a constant ¢ > 0 to fix the support. By the
properties stated above, the radial function ¥(x) := 1 x(c|[x||) is then a C?*
function with supp(¥) = B4(0,c¢~!) C R", where B*(0,c!) is the closed n-

dimensional ball around the origin with radius ¢=!.

4 Computing formulas for Wendland functions

In this section we introduce a method to generate Wendland functions of arbi-
trary degree. As a first step we discuss polynomial representations in software.

4.1 Polynomials Representation

We represent d-degree polynomials Z:‘l:o a;t' as alist of coefficients (ag, a1, - . ., aq)-
Our implementation uses Python with List objects. Addition and multiplication
of polynomials of this form are easily implemented as:

dy ds max{dy,d2}
dlaitt +Y bt = Y (ai+ bt
i=0 =0 i=0

where a; = 0 for ¢ > d; and b; = 0 for j > do. Multiplication is given by

dy+da

dq do
(Z (Liti> Z bjtj = Z Citi,
=0 j=0 =0

where

C; = Z akbj.

kj=i
An anti derivative of a polynomial is given by

a1 as aq
273777 d+1

),

(G/Oa a1,0a2y ..., ad) = (0; ao,
corresponding to
d d .
R i itl
/Zaltdt_Zz‘Jrlt ’
=0 =0

and differentiation by

(ao,al, c. ,ad) — (a1,2a2,3a3, .. .,dad).

6 H. Bjornsson and S. Hafstein

In order to maximise exact calculations up to computer limitations, we store
the coefficients as tuples of Integers, numerator and denominator, avoiding the
floating point approximation. Specifically, we used the Rational class provided in
Python. Polynomials in two variables can be represented as a polynomial in one
of the variables, where each coefficient is a polynomial in the second variable,
and each of those coefficients is a rational number. This gives us then a list of
lists.

4.2 The Method

To calculate a polynomial representing the Wendland function 1); ;. on the inter-
val [0, 1] we start by fixing the derivative

pt) = (1=t —)t

see (9). This function is a polynomial in two variables, which we represent as a
polynomial in ¢ where each coefficient is a polynomial in r. Following equation
(9), we integrate this function with respect to ¢, and we obtain a new polynomial
p(t) in t, again with coefficients that are polynomials in r. We evaluate the
polynomial p at ¢t = 1 and at ¢t = r, which in both cases result in a polynomial
in 7, and we obtain the polynomial (r) = p(1) — p(r). Note that ¢(r) is a
representative of a Wendland function of order [, k, that is ¢(r) = C14 i (r) for
some constant C; # 0.
We factor the polynomial v, using long division, into the form

P(r) = Co(1 —) Fpyi(r) (10)

such that p; ;(r) is a polynomial with co-prime integer coefficients. This is pos-
sible since ;o has a zero of order [at 1, and by using the recursive relation
in equation (5), we see that t; ; has a zero of order [+ k at 1. The Wendland
function 1, , is only defined up to a multiplication by a non-zero constant, there-
fore we are free to ignore the constant Cy and use ¥(r) = (1 — r)FFp, 1 (r), a
polynomial with integer coefficients, as a starting point for our recursion.
Using the relation in (6) and discarding the constant Cj i, we see that

Prp_a(r) = L (1 —r)*Fp i (r)] "

r

= (1= = g () — (O + B)pi(r)

Writing the function 1 x—1, as ¥ ,—1(r) = (1 — 7)) 7% 1p; 1.1 (r), then we see

prr—1(r) = (1%1@7")}&)1

1

= = [=r)pf) = U+ Bpa(r)]

(12)

Advanced algorithm for interpolation with Wendland functions 7

We know that ;11 is a polynomial, since it is a Wendland function of order
I, k, therefore d% [(1—=7)"*p; (r)] must by divisible by the monomial 7. Since
(1—7)!** =1 is not divisible by r, the right-hand side of (12) must be a polynomial

in . Therefore p; ;1 is a well defined polynomial.

By pulling out the common factor by_1 € Z of the coefficients in p; 1 we
obtain a new polynomial p; 1 and a constant by_; such that

Pik—1 = br—1P1k—1-

Repeating this step, until we arrive at p; g, we get a collection of polynomials in
the form

Pi(r) = by bi(1 =) i(r), i=1,2,.. k. (13)

where each of the polynomials p; ;_;(r) has co-prime integer coefficients and
each of the constants b; is a negative integer.

The above list follows the notation in [11], where vy is the polynomial given in
(10) and is equal to the Wendland function ¢; i, and 91, . .., ¢; are the Wendland
functions given by v k1, . . ., ¥ k—i respectively, see equation (5). It is important
to keep track of the constants by, ...,b; in (13) as they are necessary for correct
evaluation of formula (1).

4.3 Example

We will now demonstrate how the above method determines the Wendland
function ¢y for I = 6 and k = 4. Here we start with the function p'(t) =
(1 —t)5¢(t* — r?)3 and we obtain

P(r)

/1(1 —1)5t(t? — r?)3dt

_ LTM _ 32 P13 4 17,12 _ %Tu
280 1001 8 231
§r10 _ grg T lrs _ 6

8 105 8 56

1, 1 5, 1

To80" T 18" T 2107

1
= ot L~ 7)10(429r* + 4507 + 21072 + 507 + 1).

8 H. Bjornsson and S. Hafstein

We set 1o (r) = (1 —7)0(429r% 4 45073 + 21072 + 507 + 1). For r € [0, 1] we have
the formulas (recall that v, ,(r) = 0 if r ¢ [0, 1]):

Y6,4(r) = to(r)
= (1 —7)"0(4297* + 450r® 4 210r° + 50r + 1);
d
71& r
Ye,3(r) = Yu(r) = deO()
= —26(1 —7)°(23173 + 15972 + 45r + 5);

dapy(r
¢6,2(r) = '(/}2(7«) — drq/jrl()

= 37432(1 — r)8(21T2 + 8+ 1)7
4 r
Ys1(r) = s(r) = drw:()

= —102,960(1 — T)7(77n 1)

A aps(r

P5,0(r) = Yu(r) = &3()

T
= 5,765,770(1 — r)°.

Note that we have actually computed a lot more useful information than just a
family of Wendland functions s ;, i = 0,1,2,3,4. In our algorithm, for a fixed
l, k, we have

iy = () = 22210

r
i) g
r

and we have thus delivered all the radial basis functions needed for a collocation
problem. This corresponds to computing a whole table as in [11, Table 3.1],
but for a collocation problem with arbitrary high derivatives. The software tool,
discussed in Section 6, also includes the constant ¢ > 0 in the computations,
which is used to fix the support of the Wendland functions.

5 Meshless collocation using Wendland functions

The method of meshless collocation can be used to calculate Lyapunov functions
for both deterministic dynamical systems and stochastic dynamical systems. We
just choose the operator L and the boundary values appropriately. The next
two sections show some of the explicit formulas involved. We also talk about
the optimal grid for the interpolation problem, and some aspects of solving the
resulting linear systems using software.

Advanced algorithm for interpolation with Wendland functions 9

5.1 Deterministic systems

Consider an autonomous deterministic system, that is a dynamical system of the
form

x'(t) = f(x)
with f: R™ — R", for which the origin is an asymptotically stable equilibrium.
We can generate a Lyapunov function, V : R® — R, for this system by solving
the interpolation problem (2) with the differential operator L being given by

LV (x) = (VV(x), f(x)),

setting the boundary I' = () and choosing the function h appropriately. Setting
the radial basis function 1 to be the Wendland function 1o (r) = ¢y x(r) for some
constants [, k, and then fixing ¢ and 15 according to equation (7), the matrix
obtained in equation (3) is given by elements of the form (see [11]):

by = Yo (l|xr — xu[]) (ke — X1, f(Xr)) (X1 — Xk, f(x2))

= P1(llxk — =) (f (xx), f(x0))- (14)
The components of the vector v are given by
Vi = r(x%5)- (15)

Then the solution to the interpolation problem has the formula, see equation

(1),
N
Vi(x) =Y artp (|l = xill) {xi = x, £ (i), (16)

k=1
where « is the solution of
Aa =~

and 1y and 1; are given by equation (7).

5.2 Stochastic Systems

For SDEs of the form
dx(t) = f(x(t))dt + g(x(t))dW (t), (17)
f:RY =R g: R - RY¥? we consider the operator L given by the associated
generator of the SDE:
d

2
LV(x) = V() 100+ 5 3 lox)g) T 5r ()

8$i8l‘j X

4,j=1

1 g
= VV(x) - f(x) + 5 Zmij(x)m‘/(x). (18)

10 H. Bjornsson and S. Hafstein

11111

choose a Wendland function ¢ = v 1, for some constants [, k, and set 1(x) =
Yo(]|x]]). We define v; according to equation (7) for ¢ = {1,2,3,4} and we get
that the solution to the interpolation problem is given by, see equation (1),

N
V(x) = Zak[wxxk||><xxk,f<xk>>
k=1

d

3 D magGen) ez =l G = x6)aCx = 1) + g (o —)]
M’L’J

+Z@N+k¢o(||x—§k||)~ (19)
k=1

In this formula the vector « is the solution to the linear system in equation (2).
The formulas for the matrix elements are

dri = Yo(||&k — &ill),
—

e = 16 %l (6 — xS ()
d
3 30 mie (i - @ —x0ilE —x0);
+oigun (16— el (20)

and, abbreviating 8 = x — xy,

b = =2 (1 BIN(B, f(xi))(B, f(x1)) — r(IBIN(Ff (xx), £ (1))
d
+% > mij("l)[wi%(”m)<ﬁ7f(xk)>ﬁi3j + P2(ll BIN S (%) Bi

ij=1

+a (181D fi (%) 85 + i 211 BID (B, f(Xk»]

d
by D mya) [— (1818, £} BiBs — wa(IBI) 5 (1)

ij=1

=2 ([IB11) fi(x1)B; — 5ij7/12(|5||)<57f(xz)>]

1 d d
4 3030 oy)| wa181)845,,.

r,s=114,j=1

+w3(||ﬂ“)[5zjﬁrﬁs + 62’7”5]’55 + §isﬂjﬁr
+5jrﬂi65 + (;jsﬂiﬁr + 5rsﬂiﬂj]

(1181 Bigbre + 8o + @séjrﬂ . (21)

Advanced algorithm for interpolation with Wendland functions 11

5.3 Generating the grid

The optimal grid in £2 C R™ for the interpolation problem (2) was studied in [17].
The grid that delivers the smallest fill-distance, the parameter which determines
the accuracy of the solution, is defined using the basis vectors wy, wa, ..., w, €
R™, where (the e;s denote the usual orthonormal basis in R™)

k—1
1
w :g eiei +(k+1)eper and € = —————.
e (F+ Lexes b 2k + 1)

The grid-points G, . = {gi : i € Z"} C R™ with fill=distance parameter
a > 0 and offset z € R™ are then given by

n
gi::z—i—ag lpwg, 1= (i1,%2,...,0,) € Z™.
k=1

Given two vectors a,b € R™ such that a; < b; for i = 1,2,...,n, we want to
compute the coordinates of the grid-points g; € G . that are in the cube

Ca,b = [al,bl] X [a27b2] X - X [ambn].

By observing that w,, is the only basis vector with a nonzero entry in its last
component, w,_1 and w, are the only basis vectors with nonzero entries in their
second to last component, etc. , these can be computed efficiently in a recursive
manner. Let us illustrate this with n = 3, the general strategy can be read from
the code below.

Given the offset vector z = (z1, 22, 23) € R and a3 < b3, we see that only
those i = (i1, ig,i3) € Z* with 43 fulfilling

3+1
* < bg,

< in . Cr- cr-
a3 < z3+13-Q 5.3 =

=2z3+13 -«

1
(3+1),/2.3~(3+1)

az — z3 2-3 . b3—23 2-3
- < < -
’V o V3+1-‘23\‘ o V3—|—1J7 (22)

have to be considered, because all other choices of i3 deliver an entry in the third
component that is not in the interval [as, b3]. For each i3 fulfilling this inequality,
let us denote it ¢3, we can generate appropriate i3 components by observing that
gi with i = (0,0,4%) has the entry

1

k) 1:22+a'i§'€2=zz+a'i§'m

in its second component. The appropriate iss for i3 are thus given by considering
the formula for wy and are easily seen to fulfill

CLQSZ;+Oé'i2'(2+1)62:Z2+(X~i§'€2+a'i2~(2+1)62SbQ,

12 H. Bjornsson and S. Hafstein

which can be written similarly to before as

ay —z5 [2-2) bo—2z5 [2-2
— | < < — . 2
{ o 2+1W—Z2—{ a V21 (23)

Now, having fixed an ¢} fulfilling (22) and subsequently an 5 for this % fulfilling
(23), we can in a similar manner compute appropriate iis. The vector g; with
i=(0,i3,13) has the entry

1

2=z o (e +iz6) =21+ (15 +143) —F———m——m=
[=2 (ize1 +izer) = 21 (12 +15) o=)

in its first component. Similarly to before the appropriate i1s in (i1,3,45) are
read from an inequality:

a; < zjta-ip-(14+1)e :Z1+a'(12+23)'m+a'11'(1+1)€1 <b

a; — 27 2-1 <i < bi—27 [2-1 .
« 1+1 « 1+1

This recursive procedure computes all grid vectors g; € G, . in the cube Cy
and is implemented in C++ using the Armadillo library [21] is given in Listing
1.1.

or

Listing 1.1. Code in C++ that generates the optimal grid

1 list<arma::vec> HexaGridnew (arma::vec a, arma::vec b,

double ¢, int N) {

a = a(span(0, N - 1));

b =Db(span(0, N - 1));

double tol = 1le-10; // add a small tolerance to the cube
a —= tolxones<vec>(N);

b += tol*ones<vec>(N);

list<vec> Ret;

unsigned int i, k;

vec e(N, fill::zeros);

© W N o o oA W N

=
[S)

for (k = 1; k <= N; k++) {
ek - 1) = sgrt (1.0 / (2.0xkx(k + 1)));
}

vector<vec> w(N);
for (i = 1; 1 <= N; i++) {
vec v(N, fill::zeros);
for (int k = 1; k < i; k++) {
vik = 1) = e(k - 1);
}

v(i - 1) = (1 + 1)*e(i - 1);

-
.

—
S

=
w

[
'S

[
o

=
o

[
<

[
0

=
©

V)
o

Advanced algorithm for interpolation with Wendland functions 13

21 wii - 1] = v;

22 }

23

24 function<void(int, vec)> ML = [&] (int r, vec x) {

25 for (int i = int(ceil((a(r) - x(r)) / (cx(r +
2)xe(r)))); 1 <= int (floor((b(r) - x(r)) /
(cx(r + 2)*e(r)))); i++) {

26 if (r == 0) {

27 Ret.push_back (x+i*c*w[r]);

2 }

29 else {

30 ML(r — 1, x + ixc*w[r]);

a1 }

32 }

33 };

34 ML(N - 1, 0.5%cxw[N-1]);

35 return Ret;

36 }

5.4 Solving the linear system

The linear system of equations that we obtain when solving the interpolation
problem is defined by a symmetric and positive definite matrix A, see equation
(3). LAPACK [1] has specific methods for solving these types of equations, that
use the Cholesky decomposition of the matrix A = U'U, where U is upper
triangular with positive diagonal entries. The function DPOSV overwrites the
contents of the matrix A with the Cholesky decomposition U and solves the
system Aa = 7. The acronym is understood in the following way, D stands for
Double, PO stands for Symmetric or Hermitian positive definite and SV stands
for solve. This has much better numerical properties than solving the system
with e.g. LU-decomposition.

It is also possible to store the matrix A in packed format, that is, since A
is a symmetric matrix, we can store just the upper triangular part of it. This
saves a considerable amount of memory. LAPACK has functions for computing
the Cholesky decomposition of the matrix A in packed format. The function
DPPTRF calculates the Cholesky decomposition of A in packed format, over-
writing the contents of matrix A, and the function DPPTRS solves then the
system Aa = v using the Cholesky factor computed by DPPTREF. Here the let-
ters PP stand for Symmetric or Hermitian positive definite in packed storage,
TRF means factorize to a product of triangular matrices, and TRS stands for
solving the factorized system using forward or backwards substitution.

For ease of usage we have implemented functions that calculate the interpo-
lation matrices described before, i.e. equations (3),(14),(20) and (21), for both
stochastic and deterministic dynamical systems. These are available in the soft-
ware repository.

14

6

We have implemented the algorithm described in Section 4.2 in a software tool!
that generates C/C++ code versions of the Wendland functions in factorized
form. In a previous work [3], we determined that the most efficient and accurate
way to evaluate these Wendland functions was to use this factorized form. Eval-
uating these polynomials in fully expanded format using Horner’s scheme [§],
can lead to very large numerical errors as shown in [3]. We give a brief summary
of these results in a later section and in Table 1. Below in Listing 1.2 is a part of
the library generated by our tool, which shows the family of Wendland functions
obtained when starting with Wy(x) = 95 4(c||x||), where ¢ > 0 is the constant

H. Bjornsson and S. Hafstein

Software library

that controls the support of the radial function ¥.

Listing 1.2. Generated code for the 1,4 family

© ® N O w A W N e

I S R T T s e =
N o= O © W N O U A W N K O

N
w

double __wendlandpsi_6_4_0 (double x, double c){
double t=__ipow ((1.0-x),10);
t=1.0xt*x (((((429)*x + 450)*x + 210)*x + 50)*x + 5);
return t;

}

double __wendlandpsi_6_-4_1 (double x, double c){
double t=__ipow ((1.0-x),9);
t=-26.0*tx__ipow (c,2)» ((((231)*x + 159)xx + 45)xx + 5);
return t;

}

double __wendlandpsi_6_4_2 (double x, double c){
double t=__ipow ((1.0-x),8);
t=3432.0xtx__ipow (c,4) » (((21)*x + 8)xx + 1);
return t;

}

double __wendlandpsi_6_4_3 (double x, double c){
double t=__ipow ((1.0-x),7);
£t=-102960.0xt*__ipow (c,6) * ((7)*x + 1);
return t;

}

double __wendlandpsi-6_4_4 (double x, double c){
double t=__ipow ((1.0-x),6);
£t=5765760.0xt*__ipow (c,8)(1);
return t;

}

Note that __wendlandpsi_6_4_j corresponds to 1; in the example, but with

T = cr as argument.

When starting with ¥y () = 16 3(c||z||) instead, the relevant definitions are

given in Listing 1.3.

! The tool is available at https://gitlab.com/hjortur/wendland-function-generator/
with example outputs.

Advanced algorithm for interpolation with Wendland functions 15

Listing 1.3. Generated code for the 1,3 family

double __wendlandpsi_6_3_0 (double x, double c){

1

2 double t=__ipow ((1.0-x),9);

3 t=1.0xt*x ((((231)*x + 159)xx + 45)xx + 5);

4 return t;

!

¢ double __wendlandpsi_6_3_1 (double x, double c){
7 double t=__ipow ((1.0-x),8);

8 t=-132.0xtx__ipow (c,2)* (((21)xx + 8)x*x + 1);
9 return t;

0}

11 double __wendlandpsi_-6-3_2 (double x, double c){
12 double t=__ipow ((1.0-x),7);

13 t=3960.0xtx__ipow (c,4)*((7)*x + 1);

14 return t;

5}

16 double __wendlandpsi_6_3_3 (double x, double c){
17 double t=__ipow ((1.0-x),6);

18 t=-221760.0xtx__ipow (c,6)*(1);

19 return t;

20 }

Note that the polynomials __wendlandpsi_6_-3_1 and __wendlandpsi_6_4_2 differ
only by a multiplication of a constant and a power of ¢, and both polynomials
are a representative of the Wendland function s 2.

The function __ipow(x,i) evaluates 2* where z is a double and i is a positive
integer. We have “flattened” the functions __wendlandpsi_x_y_z in the sense that
their domain is [0, 1]. They require the user to pre-multiply the x value with
the chosen RBF-constant ¢ > 0, that is for ¥(x) = ¢y x(c||x]||), the user needs
to pass in the value c||x|| and ¢ after ensuring that c||x|| € [0,1]. A possible
implementation using the Armadillo library [21] can be see in listing 1.4.

Listing 1.4. Example usage

double psi3(const arma::vec &x, double c){
double cx=c*arma::norm(x,2);
return (cx < 1.0) ? __wendlandpsi_-6_4_3(cx,c) : 0.0;

L I R

}

The tool is a simple Python script named wendlandfunctions.py. When the
script is run it outputs text for code- and header-files, which contain the Wend-
land function definitions. The user can supply the script with a parameter —-1
and an integer value m > 2, in order to output code for Wendland functions
from 21 up to ¥,,; for all 0 <i < m.

6.1 Example Lyapunov functions

Included in the repository are example outputs and example programs that
calculate Lyapunov functions for deterministic and stochastic systems, using the

16 H. Bjornsson and S. Hafstein

software library that our tool generates and functions that generate the optimal
interpolation grid and the interpolation matrices. Figures 1, 2, 3, and 4 show
graphs of Lyapunov functions obtained from these example programs, where the
systems considered are:

B 8] N {—w(t) - (i/(f)w(t)g)y(t)] ’ (24)
[gzj: E:ﬂ - {—x(t) + gg(ct()t)?’ - y(t)}) (25)

and the stochastic systems

. 3z
dx = sin(x)dt + deV, (26)

x| —1.0 1.0
dx = [II [1.0 x| _1.0} xdt + ||x|| (]| = 0.5)(|x|| — 1L.5)xdW. (27)

For the systems in the above equations we have used the optimal grid as
described in Section 5.3 as the collocation/interpolation points. Denoting by
B?(x,r) the 2 dimensional open ball around x with radius r and

FT(N):{T<COS<‘712\;T>,sin<j]2\;T>) \ je{1,...,N}}cR2,

we used the following data to calculate the Lyapunov functions:

— Collocation grid on [—2,2] x [-2,2] \ B%(0,0.1) with fill-distance parameter

o = 1%, LV(x) = —||x]|, and tg(x) = t64(|[x||) for the system in equation
(24);

— Collocation grid on [—1.4,1.4] x [—1.4,1.4] \ B%(0,0.1) with fill distance pa-
rameter v = 28, LV (x) = —||x|| and to(x) = 953(|[x||) for the system in

equation (25);

— Collocation grid on [0.1,8.0] with fill distance parameter o = 455, LV (z) =
1074, V(0.1) = 0, V(8.0) = 1.0 and o(x) = 97.6(2|/x||) for the system in
equation (26);

— Collocation grid on [—2,2] x [-2,2] \ B%(0,0.4) with fill distance parameter
a =5, LV(x) =1072, V(&) = 0 and V(8;) = 1 for all & € I.4(4) and
all B3; € I'1 9(80). Furthermore we set ¥(x) = 16.4(||x||), for the system in
equation (27).

Note that the resulting Lyapunov functions for the systems in equations (26)
and (27) in figures 3 and 4 are comparable to the results obtained in [5] and [15].

6.2 Comparison of evaluation methods

In the paper [3] we compared different methods of evaluation for Wendland
functions at a point. The methods used where:

Advanced algorithm for interpolation with Wendland functions 17

Surface and contour plot of Lyapunov function

O Lo 4w

Fig. 1. Lyapunov function for the system in equation (24)

Surface and contour plot of Lyapunov function

- A
S, l////‘\\
- AL AT T T T T T T 7/
L AN A\,
L7

AN

NS 72

0
8
W
\
\

[N R L)
T

Fig. 2. Lyapunov function for the system in equation (25)

— Having them in factorized form, as our software tool provides, see Listing
1.2;

— Fully expanded polynomials and evaluated using Horner’s Scheme, as in [2];

— Pre-computing the function in high precision (see below) at 107 evenly spaced
points on the interval [0, 1] and using them as a lookup table. That is, round
to the closest value;

18 H. Bjornsson and S. Hafstein

Lyapunov function V(x)
1.2 T T T

06

0.4 -

02 |

02 ! ! ! ! ! ! !

Fig. 3. Lyapunov function for the stochastic system in equation (26)

Surface and contour plot of Lyapunov function

1.2

08
06
0.4
0.2

R
AT
A
-A’

7

-0.2

Fig. 4. Lyapunov function for the stochastic system in equation (27)

— Using the same lookup table but additionally linearly interpolate between

two nearest neighbours to improve accuracy.

Table 1 shows time elapsed to evaluate the Wendland function 172 at 107
different points on the interval [0, 1], and the scale of the relative error obtained

on this interval. For further analysis see [3].

Advanced algorithm for interpolation with Wendland functions 19

Method / Processor i5-8250U|i7-4790K |Rel.error
Factorized form 171.5ms| 107ms | 10~ 13
Horner’s scheme 548.1ms | 395ms 1

Lookup table 125.8ms| 105ms | 10°°
Lookup table with interpolation| 165.5ms | 128ms 1079

Table 1. Evaluation of 72 at 107 different points, for different CPUs

7 Conclusion

In this paper we have presented a software tool for generating Wendland’s com-
pactly supported Radial Basis Functions in an optimal form. This tool generates
a C/C++ library for Wendland functions of arbitrary degree in factorized form.
Furthermore, this tool generates an entire family of these functions, used for
solving collocation problesm, for each initial Wendland function 1); ;. We have
also presented an algorithm that this software tool uses for generating Wendland
functions in this factorized form, for accurate and efficient evaluations. Finally,
we have created a software library for calculating Lyapunov functions for both
stochastic and deterministic dynamical systems, using these factorized Wendland
functions that our tool generates. All the software, with example usage, is avail-
able for download at https://gitlab.com/hjortur /wendland-function-generator/.

Acknowledgement: This research was supported by the Icelandic Research
Fund (Rannis), grant number 152429-051, Lyapunov Methods and Stochastic
Stability.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics, 3 edn. (1999)

2. Argaez, C., Hafstein, S., Giesl, P.:. Wendland functions - a C++ code to compute
them. In: Proceedings of the 7th International Conference on Simulation and Mod-
eling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,. pp.
323-330. INSTICC, SciTePress (2017)

3. Bjornsson, H., Hafstein, S.: Verification of a numerical solution to a collocation
problem. In: Proceedings of the 15th International Conference on Informatics in
Control, Automation and Robotics - Volume 1: CTDE,. pp. 587-594. INSTICC,
SciTePress (2018)

4. Bjornsson, H., Hafstein, S.: Algorithm and software to generate code for Wend-
land functions in factorized form. In: Proceedings of the 16th International Confer-
ence on Informatics in Control, Automation and Robotics. pp. 156-162. INSTICC,
SciTePress (2019)

5. Bjornsson, H., Hafstein, S., Giesl, P., Gudmundsson, S., Scalas, E.: Computation of
the stochastic basin of attraction by rigorous construction of a Lyapunov function.
Discrete and Continuous Dynamical Systems-Series B 24(8), 4247-4269 (2019)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.

25.

26.

27.

H. Bjornsson and S. Hafstein

Buhmann, M.: Radial basis functions. In: Acta numerica, 2000, Acta Numer., vol. 9,
pp. 1-38. Cambridge Univ. Press, Cambridge (2000)

Buhmann, M.: Radial basis functions: theory and implementations, Cambridge
Monographs on Applied and Computational Mathematics, vol. 12. Cambridge Uni-
versity Press, Cambridge (2003)

Burrus, C.S., Fox, J.W., Sitton, G.A., Treitel, S.: Horner’s method for evaluating
and deflating polynomials. DSP Software Notes, Rice University, Nov 26 (2003)
Floater, M., Iske, A.: Multistep scattered data interpolation using compactly sup-
ported Radial Basis Functions. J. Comput. Appl. Math. 73(1-2), 65-78 (1996)
Franke, C., Schaback, R.: Solving partial differential equations by collocation using
radial basis functions. Appl. Math. Comput. 93(1), 73-82 (1998)

Giesl, P.: Construction of Global Lyapunov Functions Using Radial Basis Func-
tions, Lecture Notes in Mathematics, vol. 1904. Springer-Verlag, Berlin (2007)
Giesl, P.: Construction of a local and global Lyapunov function using radial basis
functions. IMA J. Appl. Math. 73(5), 782-802 (2008)

Giesl, P.: Construction of a finite-time Lyapunov function by meshless collocation.
Discrete Contin. Dyn. Syst. Ser. B 17(7), 2387-2412 (2012)

Giesl, P., Hafstein: Computation and verification of Lyapunov functions. SIAM
Journal on Applied Dynamical Systems 14(4), 1663-1698 (2015)

Griine, L., Camilli, F.: Characterizing attraction probabilities via the stochastic
Zubov equation. Discrete Contin. Dyn. Syst. Ser. B 3(3), 457-468 (2003)
Hafstein, S., Gudmundsson, S., Giesl, P., Scalas, E.: Lyapunov function computa-
tion for autonomous linear stochastic differential equations using sum-of-squares
programming. Discrete and Continuous Dynamical Systems - Series B 23(2), 939—
950 (2018)

Iske, A.: Perfect centre placement for radial basis function methods. Tech. Rep.
TUM-M9809, TU Munich, Germany (1998)

Khalil, H.: Nonlinear systems. Pear, 3. edn. (2002)

Khasminskii, R.: Stochastic stability of differential equations. Springer, 2nd edn.
(2012)

Mao, X.: Stochastic Differential Equations and Applications. Woodhead Publish-
ing, 2nd edn. (2008)

Sanderson, C.: Armadillo: An open source C++ linear algebra library for fast
prototyping and computationally intensive experiments. Tech. rep., NICTA. (2010)
Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer (1999)
Vidyasagar, M.: Nonlinear System Analysis. Classics in applied mathematics,
SIAM, 2. edn. (2002)

Wendland, H.: Error estimates for interpolation by compactly supported Radial
Basis Functions of minimal degree. J. Approx. Theory 93, 258-272 (1998)
Wendland, H.: Scattered data approximation, Cambridge Monographs on Applied
and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge
(2005)

Wendland, H.: Multiscale radial basis functions. In: Frames and other bases
in abstract and function spaces, pp. 265-299. Appl. Numer. Harmon. Anal.,
Birkh&auser/Springer, Cham (2017)

Wu, Z.: Hermite-Birkhoff interpolation of scattered data by radial basis functions.
Approx. Theory Appl. 8(2), 1-10 (1992)

