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A constructive converse Lyapunov theorem on asymptotic stability
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An ordinary differential equation’s (ODE) equilibrium is asymptotically stable,
if and only if the ODE possesses a Lyapunov function, that is, an energy-like
function decreasing along any trajectory of the ODE and with exactly one local
minimum. Theorems regarding the ‘only if’ part are called converse theorems.
Recently, the author presented a linear programming problem, of which every
feasible solution parameterizes a Lyapunov function for the nonlinear auto-
nomous ODE in question. In 2004 the author proved the first general constructive
converse theorem by showing that if the equilibrium of the ODE is exponentially
stable, then the linear programming problem possesses a feasible solution. In this
paper we prove a constructive converse theorem on asymptotic stability for non-
linear autonomous ODEs and so improve the 2004 results. The only restriction on
the ODE _xx ¼ fðxÞ is that f is a class C2 function. Note, that these results imply that
the algorithm presented by the author in 2002 is capable of constructing
a Lyapunov function for all nonlinear systems, of which the equilibrium is
asymptotically stable.

1. Introduction

The Lyapunov stability theory is the most useful general theory for studying the
stability of the equilibria of ordinary differential equations (ODEs). It is covered in
practically all textbooks on dynamical systems, on control theory and in many on
ODEs. It was introduced by Alexandr M. Lyapunov in 1892 and includes two
methods: Lyapunov’s indirect method and Lyapunov’s direct method. An English
translation of his work can be found in [1].

Lyapunov’s direct method is a mathematical extension of the fundamental phy-
sical observation that an energy dissipative system must eventually settle down to an
equilibrium point. It states that if there is an energy-like function V for a system, that
is strictly decreasing along every trajectory of the system, then the trajectories are
asymptotically attracted to an equilibrium. The function V is then said to be a
Lyapunov function for the system (an exact mathematical definition follows
below). The region (basin, domain) of attraction of a dynamical system’s equilibrium
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is the set of those initial values that are attracted to the equilibrium by the dynamics
of the system. A Lyapunov function provides through its preimages a lower bound
on the region of attraction. This bound is non-conservative in the sense that it
extends to the boundary of the domain of the Lyapunov function.

The original Lyapunov theory did not secure the existence of non-local Lyapunov
functions for nonlinear systems with asymptotically stable equilibrium points. The
first results on this subject are due to K. Perdeskii in 1933 [2]. The general case was
resolved somewhat later, mainly by Massera [3, 4] and Malkin [5].

Theorems, which secure the existence of a Lyapunov or a Lyapunov-like function
for a system possessing an equilibrium, stable in some sense, are called converse
theorems in the theory of dynamical systems. The first constructive converse theorem
was presented in 2004 by the author [6]. Former converse theorems were proved by
constructing by a finite or a transfinite procedure a Lyapunov(-like) function using
the trajectories of the respective ODE. Hence, these earlier converse theorems are
pure existence theorems. However, one of them was used in the proof of the con-
structive converse theorem on exponential stability in [6] and we will use another one
here to prove a constructive converse theorem on asymptotic stability.

There are several possibilities to formulate Lyapunov’s direct method. In this
work we follow [7] and only consider autonomous systems, where the dynamics of
the system are modelled by an ODE

_xx ¼ fðxÞ, ð1Þ

where f 2 ½C
2
ðUÞ�

n is a function from a domain U � R
n into R

n, of which every
component fi is two times continuously differentiable, and such that 0 2 U and
fð0Þ ¼ 0. We denote by � the ‘solution’ of (1), that is, _��ðt, nÞ ¼ fð�ðt, nÞÞ and
�ð0, nÞ ¼ n for all n 2 U and all (possible) t. In this case the direct method of
Lyapunov states (proved in this form in chapter 1 in [7]):

Proposition 1: Consider the ODE (1) and assume there is a domain M in R
n,

0 2 M � U, and a locally Lipschitz and positive definite function V :M�!R, that
is, Vð0Þ ¼ 0 and VðxÞ > 0 for all x 2 Mnf0g, such that

Dþt Vð�ðt, nÞÞ :¼ lim sup
s!0þ

Vð�ðt, nÞ þ sfð�ðt, nÞÞÞ � Vð�ðt, nÞÞ

s
< 0

for all �ðt, nÞ 2 M. Then every compact and connected component of every preimage
V�1ð½0, c�Þ, c>0, that contains the origin is a subset of the region of attraction

n 2 U
��� lim sup

t!þ1
�ðt, nÞ ¼ 0

� �

of the equilibrium at the origin.

Proposition 1 is particularly useful when V 2 C1ðMÞ and f 2 ½C
1
ðUÞ�

n. Then

lim sup
s!0þ

Vð�ðt, nÞ þ sfð�ðt, nÞÞÞ � Vð�ðt, nÞÞ

s
¼ ½rV �ð�ðt, nÞÞ � fð�ðt, nÞÞ
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by the chain rule and the right-hand side of this equation can be checked for nega-
tivity without knowing the solution �. The function V in Proposition 1 is called a
Lyapunov function for the ODE (1). For every n 6¼ 0 in the domain of the Lyapunov
function, the function t 7!Vð�ðt, nÞÞ is strictly decreasing on its domain. This implies
that every solution of (1) either leaves the boundary of the domain of the Lyapunov
function or is asymptotically attracted to the origin. The latter is necessarily the case
if the initial value n is in a connected compact component of a set of the form
V�1ð½0, c�Þ, c>0, that contains the origin, for else there would be a contradiction
to t 7!Vð�ðt, nÞÞ being decreasing.

The origin is said to be an asymptotically stable equilibrium of (1), if and only if:

(i) for every ">0 there is a �>0, such that knk2 < � implies k�ðt, nÞk2 < " for all
t� 0,

(ii) and the set fn 2 U j lim supt!þ1 �ðt, nÞ ¼ 0g is a neighbourhood of the origin.

Hence, the origin is an asymptotically stable equilibrium of (1) if it possesses a
Lyapunov function. If, additionally, there exist real numbers m� 1 and �>0 and a
neighbourhoodM of the origin, such that k�ðt, nÞk2 � me��tknk2 for all n 2 M and
all t� 0, then the origin is said to be an exponentially stable equilibrium of (1).

We denote by K the set of all continuous and strictly monotonically increasing
functions R�0�!R vanishing at the origin. If the closure of M is compact in R

n,
then V :M�!R is a Lyapunov function for (1), if and only if for an arbitrary norm
k � k on R

n, there are functions �,�,! 2 K such that

�ðkxkÞ � VðxÞ � �ðkxkÞ

and

Dþt Vð�ðt, nÞÞ � �!ðk�ðt, nÞkÞ

for all x,�ðt, nÞ 2 M. A function  : R�0�!R is said to be convex if

� ðxÞ þ ð1� �Þ ðyÞ �  ð�xþ ð1� �ÞyÞ

for all � 2 ½0, 1� and all x, y 2 R�0. Clearly, without loss of generality, we can assume
that � and ! are convex functions.

Further, note that if the closure of M is a compact set, then the concept
‘exponentially stable’ for an asymptotically stable equilibrium is a purely local
property. The origin is an exponentially stable equilibrium, if and only if all real
parts of the eigenvalues of the Jacobian rfð0Þ are strictly negative, that is, if the
matrix rfð0Þ is Hurwitz. If all real parts of the eigenvalues of rfð0Þ are negative and
some are equal to zero, then the origin is not exponentially stable but might be
asymptotically stable, and if some real parts are larger than zero, then the origin
is an unstable equilibrium point.

For our proof of the constructive converse theorem presented in this work we will
use a well-known non-constructive converse theorem on asymptotic stability.

Theorem 1: Assume the origin is an asymptotically stable equilibrium of the ODE (1)
and letM� U be a domain containing the origin, of which the closureM is a compact
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subset of the equilibrium’s region of attraction. Then, for every norm k � k on R
n, there

are functions �,�,! 2 K and a function W 2 C2ðMÞ, such that

�ðkxkÞ �WðxÞ � �ðkxkÞ

and

rWðxÞ � fðxÞ � �!ðkxkÞ

for all x 2 M.

Proof: Follows, for example, from Theorem 24 in section 5.7 in [8]. œ

The Lyapunov theory is covered in numerous textbooks on dynamical systems,
for example, [2, 8–10] to name a few.

The structure of the rest of this paper is as follows: in section 2 we give a short
description of linear programming problems. In section 3 we introduce a vector
space of continuous piecewise affine functions. In section 4 we state the linear pro-
gramming problem LPðf, d, y, k � kÞ, of which every feasible solution parameterizes a
continuous piecewise affine Lyapunov function. In section 5 we give an algorithm
that systematically applies the linear programming problem LPðf, d, y, k � kÞ in a
search for a parameterized Lyapunov function for the ODE in question. Then we
prove that if the origin is an asymptotically stable equilibrium point, the algorithm
finds a Lyapunov function for the ODE in a finite number of steps. Further, we give
an example of its use. Finally, in section 6, we give some conclusions and ideas for
future research.

2. Linear programming problems

A linear programming problem is a set of linear constraints, under which a linear
function is to be minimized. There are several equivalent forms for linear program-
ming problems, one of them being

minimize gðxÞ :¼ cTx,
given Cx � b, x � 0,

ð2Þ

where r, s > 0 are integers, C 2 R
s�r is a matrix, b 2 R

s and c 2 R
r are vectors, and

x � y denotes xi � yi for all i. The function x 7! c
T
x is called the objective of the

linear programming problem and the conditions Cx � b and x � 0 together are called
the constraints. A feasible solution of the linear programming problem is a vector
x
0
2 R

r that satisfies the constraints, that is, x0 � 0 and Cx0 � b. There are numerous
algorithms known for solving linear programming problems, the most commonly
used being the simplex method [11] or interior-point algorithms [12], for example,
the primal-dual logarithmic barrier method. Both need a feasible starting solution for
initialization. A feasible solution to (2) can be found by introducing slack variables
y 2 R

s and solving the linear programming problem:

minimize g
x

y

� �� �
:¼
Xs
i¼1

yi,

given C �Is
� 	 x

y

� �
� b,

x

y

� �
� 0,

ð3Þ
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which has the feasible solution x ¼ 0 and y ¼ ðjb1j, jb2j, . . . , jbsjÞ
T. If this linear

programming problem has the solution gð½x0 y0�TÞ ¼ 0, then x
0 is a feasible solution

to (2). If the minimum of g is larger than zero, then (2) possesses no feasible solution.

3. CPWA Lyapunov functions

In order to construct a Lyapunov function from a feasible solution to a linear
programming problem, one needs a class of continuous functions that can be
parameterized. The class of the continuous piecewise affine (often called piecewise
linear) functions is an obvious candidate. In this section we introduce continuous
piecewise affine (CPWA) functions R

n
�!R. The advantage of this function space is

that it is a finite dimensional vector space over R in a canonical way.
Let N>0 be an integer and y :¼ ð y0, y1, . . . , yNÞ

T
2 R

Nþ1 a vector such that
0 ¼ y0 < y1 < � � � < yN. Let P : ½0,N ��!½0, yN� be the unique continuous function,
of which the restriction on every interval ½i, iþ 1�, i ¼ 0, 1, . . . ,N� 1, is affine,
and such that PðiÞ ¼ yi for all i ¼ 0, 1, . . . ,N. Define the function
PS : ½�N,N �n�!½�yN, yN�

n through

PSðxÞ :¼
Xn
i¼1

signðxiÞPðjxijÞei,

where ei is the ith unit vector. Denote by Symn the set of permutations of f1, 2, . . . , ng
and define for every � 2 Symn the simplex

S� :¼ fy 2 R
n
j 0 � y�ð1Þ � y�ð2Þ � � � � � y�ðnÞ � 1g:

Denote by Pðf1, 2, . . . , ngÞ the power-set of f1, 2, . . . , ng and define the function
R
J : R

n
�!R

n for every J 2 Pðf1, 2, . . . , ngÞ through

RJ ðxÞ :¼
Xn
i¼1

ð�1Þ�J ðiÞxiei,

where �J : f1, 2, . . . , ng�!f0, 1g is the characteristic function of the set J . A con-
tinuous function G : ½�yN, yN�

n
�!R is defined to be an element of

CPWA½PS, ½�N,N �n�, if and only if its restriction GjPSðRJ ðzþS� ÞÞ to the set
PSðR

J
ðzþ S�ÞÞ is affine for every J 2 Pðf1, 2, . . . , ngÞ, every � 2 Symn and every

z 2 f0, 1, . . . ,N� 1gn. It is proved in chapter 4 in [7] that the mapping

CPWA½PS, ½�N,N �n��!R
ð2Nþ1Þn , G 7! ðazÞz2f�N,�Nþ1,...,Ngn ,

where az ¼ GðPSðzÞÞ for all z 2 f�N, �Nþ 1, . . . ,Ngn is a vector space
isomorphism. This means that we can uniquely define a function in CPWA
½PS, ½�N,N �n� by assigning it values on the grid f�yN, � yN�1, . . . , y0, y1, . . . , yNg

n.
In the next section we state a linear programming problem, of which every feasible
solution parameterizes a CPWA Lyapunov function.
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4. The linear programming problem LPðf, d, y, k � kÞ

The linear programming problem LPðf, d, y, k � kÞ, defined below, is not the first
effort to construct Lyapunov functions by linear programming. In [13] there is an
earlier, simpler effort, to do the same. However, it includes an a posteriori analysis of
the quality of the Lyapunov function, which renders this method inapplicable for a
constructive converse theorem. For a detailed discussion of the differences we refer
to [7, 14].

In chapter 5 in [7] it is proved that every feasible solution of the following linear
programming problem parameterizes a CPWA Lyapunov function for (1).

Linear programming problem LPðf, d, y, k � kÞ: Consider the system (1). Let N>0 be
an integer and let 0 ¼ y0 < y1 < � � � < yN be real numbers, such that ½�yN, yN�

n
� U.

Let PS : R
n
�!R

n be defined through the constants y0, y1, . . . , yN as in the last section
and let d be an integer, 0 � d < N. Finally, let k � k be an arbitrary norm on R

n. Then
the linear programming problem is constructed in the following way:

(i) Define the sets

Xk�k :¼ fkxkjx 2 fy0, y1, . . . , yNg
ng

and

G :¼ f�yN, � yN�1, . . . , y0, y1, . . . , yNg
n n f�yd�1, � yd�2, . . . , y0, y1, . . . , yd�1g

n:

(ii) Define for every � 2 Symn and every i ¼ 1, 2, . . . , nþ 1, the vector

x�i :¼
Xn
j¼i

e�ð j Þ:

(iii) Define the set

Z :¼ ½f0, 1, . . . ,N� 1gn n f0, 1, . . . , d� 1gn� �Pðf1, 2, . . . , ngÞ:

(iv) For every ðz,J Þ 2 Z define for every � 2 Symn and every i ¼ 1, 2, . . . , nþ 1,
the vector

y
ðz,J Þ
�, i :¼ PSðRJ ðzþ x�i ÞÞ:

(v) Define the set

Y :¼ y
ðz,J Þ
�, k , y

ðz,J Þ
�, kþ1

n o��� 2 Symn, ðz,J Þ 2 Z and k 2 f1, 2, . . . , ng
n o

:

The set Y is the set of neighbouring grid-points in the grid G.
(vi) For every ðz,J Þ 2 Z and every r, s ¼ 1, 2, . . . , n let Bðz,J Þrs be a real constant,

such that

Bðz,J Þrs � max
i¼1, 2,..., n

sup
x2PSðRJ ðzþ ð0, 1Þ nÞÞ

@2fi
@xr@xs

ðxÞ

����
����:
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(vii) For every ðz,J Þ 2 Z, every k, i ¼ 1, 2, . . . , n and every � 2 Symn, define

A
ðz,J Þ
�, k, i :¼ ek � y

ðz,J Þ
�, i � y

ðz,J Þ
�, nþ1


 ���� ���:
(viii) Define the constant

xmin :¼ minfkxk x 2 G and kxk1 ¼ yNg:

(ix) Let " > 0 and �>0 be arbitrary constants.

The variables of the linear programming problem are:

�½x�, for all x 2 Xk�k,

�½x�, for all x 2 Xk�k,

V ½x�, for all x 2 G,

C½fx, yg�, for all fx, yg 2 Y:

The linear constraints of the linear programming problem are:

(LC1) Let x1, x2, . . . , xK be the elements of Xk�k in an increasing order. Then

�½x1� ¼ �½x1� ¼ 0,

"x2 � �½x2�,

"x2 � �½x2�,

and for every i ¼ 2, 3, . . . ,K� 1:

�½xi� ��½xi�1�

xi � xi�1
�

�½xiþ1� ��½xi�

xiþ1 � xi

and

�½xi� � �½xi�1�

xi � xi�1
�

�½xiþ1� � �½xi�

xiþ1 � xi
:

(LC2) For every x 2 G:

�½kxk� � V ½x�:

If d ¼ 0, then

V½0� ¼ 0:

If d� 1, then for every x 2 G, such that kxk1 ¼ yd:

V ½x� � �½xmin� � �:
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(LC3) For every fx, yg 2 Y:

�C½fx, yg� � kx� yk1 � V ½x� � V ½y� � C ½fx, yg� � kx� yk1:

(LC4) For every ðz,J Þ 2 Z, every � 2 Symn and every i ¼ 1, 2, . . . , nþ 1:

��½ky
ðz,J Þ
�, i k� �

Xn
j¼1

V ½y
ðz,J Þ
�, j � � V ½y

ðz,J Þ
�, jþ1�

e�ðjÞ � ðy
ðz,J Þ
�, j � y

ðz,J Þ
�, jþ1Þ

f�ð j Þðy
ðz,J Þ
�, i Þ

þ
1

2

Xn
r, s¼1

Bðz,J Þrs A
ðz,J Þ
�, r, i ðA

ðz,J Þ
�, s, i þ A

ðz,J Þ
�, s, 1Þ

Xn
j¼1

C½fy
ðz,J Þ
�, j , y

ðz,J Þ
�, jþ1g�:

Note that the values of the constants ">0 and �>0 do not affect whether there is a
feasible solution to the linear programming problem or not. If there is a feasible
solution for " :¼ "0 > 0 and � :¼ �0 > 0, then there is a feasible solution for all
" :¼ "� > 0 and � :¼ �� > 0. Just multiply all variables of a feasible solution with
maxf"�="0, ��=�0g: The objective of the linear programming problem is not needed.
It can, however, be used to optimize the Lyapunov function in some way.

Assume that the linear programming problem LPðf, d, y, k � kÞ has a feasible sol-
ution. Then we can define the functions  , g : ½0, þ1½�!R by using the values of
the variables �½x�,�½x� and the function VLya : ½�yN, yN�

n
�!R by using the values of

the variables V ½x� in the following way.
Let x1, x2, . . . , xK be the elements of Xk�k in an increasing order. We define the

piecewise affine functions

 ðyÞ :¼ �½xi� þ
�½xiþ1� ��½xi�

xiþ1 � xi
ð y� xiÞ

and

gðyÞ :¼ �½xi� þ
�½xiþ1� � �½xi�

xiþ1 � xi
ð y� xiÞ,

for all y 2 ½xi, xiþ1� and all i ¼ 1, 2, . . . ,K� 1. The values of  and g on �xK, þ1½
do not really matter, but to have everything properly defined, we set

 ðyÞ :¼ �½xK�1� þ
�½xK� ��½xK�1�

xK � xK�1
ð y� xK�1Þ

and

gð yÞ :¼ �½xK�1� þ
�½xK� � �½xK�1�

xK � xK�1
ð y� xK�1Þ

for all y > xK. Clearly, the functions  and g are continuous. The function
VLya

2 CPWA½PS, ½�N,N �n� is defined by assigning

VLyaðxÞ :¼ V ½x�
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for all x 2 G: In chapter 5 in [7] it is proved that  and g are convex and strictly
increasing and that

 ðkxkÞ � VLyaðxÞ

for all x 2 ½�yN, yN�
n
nð�yd, ydÞ

n, and

lim sup
s!0þ

VLyað�ðt, nÞ þ sfð�ðt, nÞÞÞ � VLyað�ðt, nÞÞ

s
�� gðk�ðt, nÞkÞ,

for all �ðt, nÞ 2 ð�yN, yNÞ
n
nð�yd, ydÞ

n. This implies that if d ¼ 0, then
VLya : ½�yN, yN�

n
�!R is a Lyapunov function for (1). Further, it is proved for

d>0, that for every c>0, such that the connected component of

x 2 ð�yN, yNÞ
n
n½�yd, yd�

n
jVLyaðxÞ � c

� 

[ ½�yd, yd�

n

containing the origin is compact, there is a t 0 � 0 for every n in this component such
that �ðt0, nÞ 2 ½�yd, yd�

n. It is not difficult to see that for every t � t 0 we have

�ðt, nÞ 2 x 2 R
n
jVLyaðxÞ � max

kyk1¼yd
VLyaðyÞ

� �
[ ½�yd, yd�

n:

Hence, the function VLya : ½�yN, yN�
n
nð�yd, ydÞ

n
�!R is essentially a Lyapunov

function for the ODE (1).

5. The constructive converse theorem

In this section we prove a constructive converse theorem on asymptotic stability for
(1). We will prove that if the origin is an asymptotically stable equilibrium point of
the ODE (1) and a>0 a real number such that ½�a, a�n is contained in its region of
attraction, then, for an arbitrary small neighbourhood N � R

n of the origin, we can
use the linear programming problem from the last section to parameterize a CPWA
Lyapunov function

VLya : ½�a, a�n n N�!R

for the system. Note, that it is not possible to prove such a theorem for N ¼ ;. The
reason is, that for a CPWA Lyapunov function VLya : ½�a, a�n�!R, there exist
constants b, c, d > 0, such that

bkxk � VLyaðxÞ � ckxk for all x 2 ½�a, a�n

and

Dþt V
Lyað�ðt, nÞÞ � �dk�ðt, nÞk for all �ðt, nÞ 2 ð�a, aÞn:

289Asymptotic stability of nonlinear autonomous ODEs



These inequalities imply that

Dþt V
Lyað�ðt, nÞÞ � �

d

c
VLyað�ðt, nÞÞ,

which in turn implies

Dþt VLyað�ðt, nÞÞeðd=cÞt
� 	

¼ Dþt V
Lyað�ðt, nÞÞ

� 	
eðd=cÞt þ

d

c
VLyað�ðt, nÞÞeðd=cÞt � 0,

that is

k�ðt, nÞk �
c

b
e�ðd=cÞtknk,

so the origin must be an exponentially stable equilibrium point.
We prove our constructive converse theorem by showing that the following

systematic scan of the parameters d and y of the linear programming problem
LPðf, d, y, k � kÞ will, in a finite number of steps, deliver a CPWA Lyapunov function
for (1).

Algorithm 1: Consider the system (1) and let a>0 be a constant such that
½�a, a�n � U and let N � U be an arbitrary neighbourhood of the origin. Set D :¼ 0
and let m be the smallest positive integer, such that ð�a2�m, a2�mÞn � N . Then the
algorithm is as follows:

(i) Set y :¼ a2�mð0, 1, 2, . . . , 2mÞT.
(ii) If LPðf, d, y, k � kÞ possesses a feasible solution for some d ¼ 20, 21, . . . , 2D, then

go to step (iii). If LPðf, d, y, k � kÞ does not possess a feasible solution for any
d ¼ 20, 21, . . . , 2D, then set m :¼ mþ 1, D :¼ Dþ 1, and go back to step (i).

(iii) Use the feasible solution to parameterize a CPWA Lyapunov function for the
system.

We come to the main contribution of this work, a constructive converse theorem
on asymptotic stability.

Theorem 2 (Constructive converse theorem on asymptotic stability): Algorithm 1
terminates in a finite number of steps whenever the origin is an asymptotically stable
equilibrium point of the system (1) and ½�a, a�n is a subset of its region of attraction.

Proof: We split the proof into two parts. In part I we prove that there are positive
integers m and d, such that the linear programming problem LPðf, d, y, k � kÞ, where
y :¼ a2�mð0, 1, 2, . . . , 2mÞT, possesses a feasible solution. We do this by assigning
appropriate values to the constants ", � and Bðz,J Þrs and the variables �½x�, �½x�
V½x�, and C½fx, yg� of the linear programming problem and then we show that the
linear constraints (LC1), (LC2), (LC3) and (LC4) are fulfilled when the variables and
constants have these values. Then, in part II, we use the results from part I to prove
that Algorithm 1 terminates in a finite number of steps.

Part I: By Theorem 1 there are class K functions �, � and !, and a class C2

function W : ½�a, a�n�!R, such that

�ðkxkÞ �WðxÞ � �ðkxkÞ
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and

rWðxÞ � fðxÞ � �!ðkxkÞ

for all x 2 ð�a, aÞn. Further, without loss of generality, we can assume that � and !
are convex functions. With

x�min :¼ min
kxk1¼a

kxk

we set

� :¼
�ðx�minÞ

2

and denote by m* the smallest positive integer, such that

�
a

2m
� ,

a

2m
�

h in
� fx 2 R

n
j�ðkxkÞ � �g \ N :

Set

x� :¼ min
kxk1¼a2

�m�
kxk,

!� :¼
1

2
!ðx�Þ,

" :¼ minf!�,�ðx2Þ=x2g,

C :¼ max
i¼1, 2,..., n
x2½�a, a�n

@W

@xi
ðxÞ

����
����,

and determine a constant B such that

B � max
i, k, l¼1, 2,..., n
x2½�a, a�n

@2fi
@xk@xl

ðxÞ

����
����:

Assign

A� :¼ sup
x2½�a, a�n

x 6¼0

kfðxÞk2

kxk
,

B� :¼ n � max
k, l¼1, 2,..., n
x2½�a, a�n

@2W

@xk@xl
ðxÞ

����
����,

C� :¼ n3BC,

and denote by m � m� the smallest positive integer, such that

a

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�A�B �Þ2 þ 4x�!�C�

q
� x�A�B�

2C�
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and set

d :¼ 2m�m
�

:

With y :¼ a2�mð0, 1, . . . , 2mÞT we assign the following values to the variables and the
remaining constants of the linear programming problem LPðf, d, y, k � kÞ:

Bðz,J Þrs :¼ B, for all ðz,J Þ 2 Z and all r, s ¼ 1, 2, . . . , n,

�½x� :¼ �ðxÞ, for all x 2 Xk�k,

�½x� :¼ !�x, for all x 2 Xk�k,

V½x� :¼WðxÞ; for all x 2 G,

C½fx, yg� :¼ C, for all fx, yg 2 Y:

We now consequently show that the linear constraints of the linear programming
problem LPðf, d, y, k � kÞ are satisfied by these values.

(LC1): The constraints LC1 are trivially fulfilled.
(LC2): Clearly,

�½kxk� ¼ �ðkxkÞ �WðxÞ ¼ V ½x�

for all x 2 G and for every x 2 G such that kxk1 ¼ yd, we have

V ½x� � �ðkxkÞ � � ¼ �ðx�minÞ � � � �ðxminÞ � � ¼ �½xmin� � �:

(LC3): Follows directly by the Mean-value theorem.
(LC4): Let ðz,J Þ 2 Z and � 2 Symn be arbitrary. We have to show that

��½ky
ðz,J Þ
�, i k� �

Xn
j¼1

V ½y
ðz,J Þ
�, j � � V ½y

ðz,J Þ
�, jþ1�

e�ð jÞ � ðy
ðz,J Þ
�, j � y

ðz,J Þ
�, jþ1Þ

f�ð jÞðy
ðz,J Þ
�, i Þ

þ
1

2

Xn
r, s¼1

Bðz,J Þrs A
ðz,J Þ
�, r, i ðA

ðz,J Þ
�, s, i þ A

ðz,J Þ
�, s, 1Þ

Xn
j¼1

C½fy
ðz,J Þ
�, j , y

ðz,J Þ
�, jþ1g�:

ð4Þ

With the values we have assigned to the variables and the constants of the linear
programming problem, the inequality (4) holds true if

�!�kyðz,J Þ�, i k �
Xn
j¼1

W ½y
ðz,J Þ
�, j � �W ½y

ðz,J Þ
�, jþ1�

e�ð jÞ � ðy
ðz,J Þ
�, j � y

ðz,J Þ
�, jþ1Þ

f�ð jÞðy
ðz,J Þ
�, i Þ þ h2C �

with h :¼ a2�m. Now, by Theorem 1, the Mean-value theorem, and because
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!ðxÞ � 2!�x for all x � x�,

Xn
j¼1

W ½y
ðz,J Þ
�, j � �W ½y

ðz,J Þ
�, jþ1�

e�ð jÞ � ðy
ðz,J Þ
�, j � y

ðz,J Þ
�, jþ1Þ

f�ð jÞðy
ðz,J Þ
�, i Þ þ h2C �

¼
Xn
j¼1

W ½y
ðz,J Þ
�, j � �W ½y

ðz,J Þ
�, jþ1�

e�ð jÞ � ðy
ðz,J Þ
�, j � y

ðz,J Þ
�, jþ1Þ

�
@W

@��ð jÞ
ðy
ðz,J Þ
�, i Þ

 !
f�ð jÞðy

ðz,J Þ
�, i Þ

þ rWðy
ðz,J Þ
�, i Þ � fðy

ðz,J Þ
�, i Þ þ h2C�

�
Xn
j¼1

W ½y
ðz,J Þ
�, j � �W ½y

ðz,J Þ
�, jþ1�

e�ð jÞ � ðy
ðz,J Þ
�, j � y

ðz,J Þ
�, jþ1Þ

�
@W

@��ð jÞ
ðy
ðz,J Þ
�, i Þ

 !
ej

�����
�����
2

k f�ð jÞðy
ðz,J Þ
�, i Þk2

� !ðkyðz,J Þ�, i kÞ þ h2C �

� B�hA�ky
ðz,J Þ
�, i k � 2!�kyðz,J Þ�, i k þ h2C �:

Hence, if

�!�kyðz,J Þ�, i k � hA�B�ky
ðz,J Þ
�, i k � 2!�kyðz,J Þ�, i k þ h2C �,

the inequality (4) follows. But, this last inequality follows from

h :¼
a

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�A�B�Þ2 þ 4x�!�C �

q
� x�A�B�

2C �
,

which implies

0 � hA�B� � !� þ h2
C �

x�
,

and that

hA�B� � !� þ h2
C �

x�
� hA�B� � !� þ h2

C �

ky
ðz,J Þ
�, i k

:

Part II: Now, consider Algorithm 1. It will start with D ¼ 0 and m ¼ m0,
where m0 is the smallest integer such that

�
a

2m0
,

a

2m0


 �n
� N :

Then, in the worst case, the algorithm will fail to find a feasible solution to the
linear programming problems until m is so large that m � m� and

a

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�A�B�Þ2 þ 4x�!�C�

q
� x�A�B�

2C�
:
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We showed in part I of the proof that the linear programming problem
LPðf, d, y, k � kÞ, where y :¼ a2�mð0, 1, 2, . . . , 2mÞT and d ¼ 2m�m

�

, possesses a feasible
solution. The only fact remaining to be shown is that 2m�m

�

2 f20, 21, . . . , 2Dg.
But this follows from D ¼ m�m0 and m0 � m� and we have completed the
proof. œ

As an example of the use of Theorem 2 we consider the system (1) with

fðx, yÞ :¼

x3ð y� 1Þ

�
x4

ð1þ x2Þ2
�

y

1þ y2

0
@

1
A: ð5Þ

This system is taken from Example 65 in section 5.3 in [8]. The Jacobian of f at the
origin has the eigenvalues 0 and �1. Hence, the origin is not an exponentially stable
equilibrium point. We initialize Algorithm 1 with

a :¼
8

15
and N :¼ �

2

15
,
2

15

� �2

:

Further, with

xz :¼ e1 � PSðzþ e1Þ and yz :¼ e2 � PSðzþ e2Þ,

we set

B
ðz,J Þ
11 :¼ 6xzð1þ yzÞ,

B
ðz,J Þ
12 :¼ 3x2z ,

B
ðz,J Þ
22 :¼

6yz

ð1þ y2zÞ
2
�

8y3z
ð1þ y2zÞ

3
, if yz �

ffiffiffi
2
p
� 1,

1:46, else,

8><
>:

for all ðz,J Þ 2 Z in the linear programming problems. This is more effective than
using one constant B larger than all Bðz,J Þrs for all ðz,J Þ 2 Z and all r, s ¼ 1, 2, . . . , n,
as done to shorten the proof of Theorem 2. Algorithm 1 succeeds in finding a
feasible solution to the linear programming problem with m ¼ 4 and D ¼ 2. The
corresponding CPWA Lyapunov function is drawn in figure 1. We used
this Lyapunov function as a starting point for parameterizing a CPWA Lyapunov
function with a larger domain and succeeded with

y :¼ ð0, 0:033, 0:067, 0:1, 0:133, 0:18, 0:25, 0:3, 0:38, 0:45, 0:55, 0:7, 0:85, 0:93, 1ÞT:

It is drawn in figure 2. In figure 3 the sets discussed at the end of section 4 are drawn
for this particular Lyapunov function. Every solution to the ODE with an initial
value n in the largest set will reach the square ½�0:133, 0:133�2 in a finite time t0 and
will stay in the smaller set containing the square for all t � t0.

The stability of switched systems has been under focus recently, see, for example,
[15–17]. Therefore, the second example we present is a switched system under

294 S. F. Hafstein



arbitrary switching. A switched system under arbitrary switching is a non-empty
set P equipped with the discrete metric d ðp, qÞ :¼ 1 if p 6¼ q and a collection of
systems

_xx ¼ fpðxÞ, p 2 P: ð6Þ

Figure 1. A CPWA Lyapunov function for (5) generated by Algorithm 1.

Figure 2. A CPWA Lyapunov function for (5) with a larger domain.
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For every right-continuous function � : R�0�!P, such that the discontinuity-points
of � form a discrete set in R�0, the solution t 7!��ðt, nÞ of the switched system
_xx ¼ f�ðxÞ is defined by gluing together the solution-trajectories of the corresponding
systems, using _xx ¼ f�ð0ÞðxÞ for t between 0 and the first discontinuity-point t1 of �,
_xx ¼ f�ðt1ÞðxÞ between t1 and the second largest discontinuity-point t2 of �, and so on.
The origin is said to be an asymptotically stable equilibrium of the switched system
(6) under arbitrary switching, if and only if there exist continuous functions
	, ‘ : R�0�!R�0, such that 	ð0Þ ¼ 0, 	 is strictly monotonically increasing, ‘ is
strictly monotonically decreasing, and limx!þ1 ‘ðxÞ ¼ 0, and, for all n in some
neighbourhood of the origin, all t� 0, and all � : R�0�!P as described above, we
have

k��ðt, nÞk � 	ðknkÞ‘ðtÞ:

It is not difficult to show, that if the systems (6) possess a common Lyapunov
function, that is, a function that is a Lyapunov function for all of the systems
individually, then the equilibrium at the origin is an asymptotically stable equilib-
rium of the switched system.

Consider the switched system _xx ¼ fpðxÞ, p 2 f1, 2, 3g, with

f1ðx, yÞ :¼
�y

x� yð1� x2 þ 0:1x4Þ

 !
,

f2ðx, yÞ :¼
�yþ xðx2 þ y2 � 1Þ

xþ yðx2 þ y2 � 1Þ

 !

Figure 3. The sets discussed at the end of section 4 for the Lyapunov function
generated for (5).
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and

f3ðx, yÞ :¼
�1:5y

x

1:5
þ y

x

1:5


 �2
þ y2 � 1

� �
:

0
@

1
A

A closer look at the linear programming problem in section 4 reveals that a feasible
solution to an adapted linear programming problem, which incorporates (LC1),
(LC2) and (LC3) once and (LC4) for each of the functions f1, f2 and f3, parame-
terizes a common Lyapunov function for the systems _xx ¼ fpðxÞ, p 2 f1, 2, 3g.

We succeeded in parameterizing a Lyapunov function V : ½�0:648, 0:648�2n�
�0:01, 0:01½2�!R�0 for the switched system. This Lyapunov function is plotted in
figure 4.

In figure 5 the region of attraction secured by the Lyapunov function on figure 4 is
plotted. Every solution starting in the region will reach the square at the origin in a
finite time, regardless of the switching.

6. Conclusions

A constructive converse theorem on asymptotic stability is proved for class C2

autonomous ODEs. The Lyapunov function from Theorem 1, which is a non-
constructive converse theorem, is used to assign values to the variables of the
linear programming problem LPðf, d, y, k � kÞ introduced in [7, 14] and defined in
section 4 here. We prove that the linear constraints of LPðf, d, y, k � kÞ are satisfied

Figure 4. A common CPWA Lyapunov function for the systems
_xx ¼ fpðxÞ, p 2 f1, 2, 3g.
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by these values. It follows that Algorithm 1 can be used to generate a Lyapunov
function, which can be used to estimate the basin of attraction of the corresponding
equilibrium point.

It is the belief of the author, that this general method to numerically generate
Lyapunov functions for (nonlinear) ODEs might lead to advantages in the stability
theory of ODEs, the stability theory of continuous dynamical systems, and control
theory. However, there are a few open problems regarding the numerics that should
be addressed first. The numerical experience in using this method is limited to several
two-dimensional systems [6, 7, 14]. Higher dimensional systems are certainly of
interest, inclusive of a reasonable method to visualize and extract information
from the Lyapunov function generated. Sometimes, especially when the grid G in
LPðf, d, y, k � kÞ is regular like in Algorithm 1, numerical instability of the simplex
method implementation (Gnu Linear Programming Kit 3.2.2 by Andrew Makhorin)
used in the search for a feasible solution is an issue. It is not clear whether this is a
fundamental drawback of the linear programming problem LPðf, d, y, k � kÞ or an
artefact of the simplex algorithm or its implementation in the liner solver used.

Software, written in the Cþþ programming language, to generate arbitrary
dimensional CPWA Lyapunov functions is available for free on the Internet at the
URL http://www.traffic.uni-duisburg.de/	hafstein. It was used for the examples
presented in this work. The interested user is encouraged to download the software
and apply it to some other ODEs.
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