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Abstract

Exponentially stable periodic orbits of ordinary differential equations and their basins’
of attraction are characterized by contraction metrics. The advantages of a contraction
metric over a Lyapunov function include its insensitivity to small perturbations of the
dynamics and the exact location of the periodic orbit. We present a novel algorithm to
rigorously compute contraction metrics, that combines the numerical solving of a first
order partial differential equation with rigorous verification of the conditions for a con-
traction metric. Further, we prove that our algorithm is able to compute a contraction
metric for any ordinary differential equation possessing an exponentially stable periodic
orbit. We demonstrate the applicability of our approach by computing contraction metrics
for three systems from the literature.
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1 Introduction

Consider an autonomous ordinary differential equation (ODE) of the form

ẋ = f(x), x ∈ Rn (1.1)

with a Cs-vector field f : Rn → Rn. In this paper we study the existence and stability of
periodic orbits and investigate their basins of attraction using a Riemannian contraction met-
ric. A contraction metric is a local criterion that does not require knowledge of the precise
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location of the periodic orbit. Moreover, it is robust to small perturbations of the system,
i.e. a contraction metric for (1.1) remains a contraction metric for a perturbed system, even
with a perturbed periodic orbit.
In [5] a contraction metric for a periodic orbit was characterized as the solution of a linear
matrix-valued PDE and an existence and uniqueness theorem was proved. Then in [4] a nu-
merical method to compute such a contraction metric was presented, however, the method
lacks a rigorous verification of the properties of a contraction metric. In this paper we will
present such a verification and, in addition, show that the verification can be combined with
the procedure from [4] to deliver a method that is able to compute a contraction metric for
any system with an exponentially stable periodic orbit. The main idea is similar to [8], in
which we have provided a computation and verification method for contraction metrics in
case of exponentially stable equilibrium points. As in [8] we show that our novel method is
successful in computing a metric if sufficiently many points are used in the collocation (as in
[4]) and sufficiently small simplices in the verification. However, in contrast to the case of
an equilibrium, the contraction condition involves the restriction to the (n − 1)-dimensional
subspace perpendicular to f(x) at each point x, which requires a more sophisticated argu-
mentation. Contraction metrics for periodic orbits have been considered by Borg [2] with the
Euclidean metric and Stenström [18] with a general Riemannian metric. They have also been
studied in [13, 14, 15, 16].

Computational methods for contraction metrics have been proposed in [6] for periodic or-
bits in time-periodic systems, where the contraction metric was a continuous piecewise affine
(CPA) function and the contraction conditions were transformed into constraints of a semidef-
inite optimization problem. In [17, Theorem 3] a contraction metric for periodic orbits was
constructed using Linear Matrix Inequalities and SOS (sum of squares). While both of these
methods also include a rigorous verification, similar to our approach, they are of higher
computational complexity because they require solving a semidefinite optimization problem,
whereas solving a system of linear equations is computationally the most demanding step in
our approach.
Let us give an overview of the contents: we first review the characterization of a unique stable
periodic orbit using a contraction metric in Section 2. In particular, we consider a contraction
metric which satisfies a certain PDE. Then we approximate the contraction metric satisfying
the PDE using mesh-free collocation with Radial Basis Functions (RBF) in Section 3. In or-
der to verify the conditions of the contraction metric we make a Continuous Piecewise Affine
(CPA) interpolation of the RBF approximation in Section 4. We show that if the CPA inter-
polation of the RBF approximation satisfies the constraints of Verification Problem 4.7, then
it is a contraction metric. Further, we show that in the basin of attraction of an exponentially
stable periodic orbit, the CPA-RBF construction method provides a function that satisfies the
constraints of Verification Problem 4.7 whenever the collocation points of the RBF method
are sufficiently dense and the triangulation of the CPA method is sufficiently fine. This is the
main result of this paper: an algorithm that can rigourously compute a contraction metric
for any system with an exponentially stable periodic orbit. In Section 5 we apply the method
to three examples.
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2 Riemannian Contraction Metric

In this section we review the definition of a Riemannian contraction metric and relax the
conditions on its smoothness in order to consider CPA metrics later. In particular, we do not
require the metric M to be a C1 function.

2.1 Definition (Riemannian metric)
Let G be an open subset of Rn. A Riemannian metric is a locally Lipschitz continuous matrix-
valued function M : G→ Sn×n, such that M(x) is positive definite for all x ∈ G, where Sn×n
denotes the symmetric n× n matrices with real entries.
Then 〈v,w〉M(x) := vTM(x)w, v,w ∈ Rn, defines a (point-dependent) scalar product for
each x ∈ G.

The forward orbital derivative M ′+(x) with respect to (1.1) at x ∈ G is defined by

M ′+(x) := lim sup
h→0+

M
(
Shx

)
−M(x)

h
(2.1)

where t 7→ Stx is the solution to (1.1) passing through x at time t = 0.

2.2 Remark Note that the forward orbital derivative (2.1) is formulated using a Dini deriva-
tive similar to [6, Definition 3.1] and always exists in R ∪ {∞}. This assumption is less
restrictive than [3, Definition 2.1], which is the existence and continuity of

M ′(x) =
d

dt
M(Stx)

∣∣∣∣
t=0

.

A sufficient condition for the existence and continuity of M ′+(x) is that M ∈ C1(G;Sn×n);
then (M ′+(x))ij = (M ′(x))ij = (∇Mij(x) · f(x))ij for all i, j ∈ {1, 2, . . . , n}.
It is also worth mentioning that if K ⊂ G is compact, then M in Definition 2.1 is uniformly
positive definite on K, i.e. there exists an ε > 0 such that vTM(x)v ≥ ε‖v‖2 for all v ∈ Rn
and all x ∈ K.

2.3 Remark It is useful to have a more accessible expression for the forward orbital deriva-
tive in terms of f , see (1.1). In fact we have

M ′+(x) := lim sup
h→0+

M
(
Shx

)
−M(x)

h
= lim sup

h→0+

M
(
x + hf(x)

)
−M(x)

h
,

because by [6, Lemma 3.3] an analogous formula holds true for each entry Mij of the matrix
M .

The function LM (x; v) in (2.3) below is negative for v with vT f(x) = 0, if for small δ > 0 the
distance between solutions through x and x + δv decreases with respect to the metric M(x).
For a heuristic explanation of this fact, see, e.g. [4, Section 1].

2.4 Definition (Riemannian contraction metric)
A contraction metric for a periodic orbit is a Riemannian metric M : G → Sn×n fulfilling a
contraction condition expressed by LM (x) ≤ −ν < 0 for all x ∈ K ⊂ G, where LM is defined
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in (2.3) below and K is a compact subset of the open set G ⊂ Rn such that f(x) 6= 0 holds
for all x ∈ K.

For the definition of LM we first define for all x ∈ Rn with f(x) 6= 0

V (x) = Df(x)− f(x)f(x)T (Df(x) +Df(x)T )

‖f(x)‖22
. (2.2)

For all x ∈ Rn with f(x) 6= 0 we define

LM (x) = max
v∈Rn,vTM(x)v=1,vT f(x)=0

LM (x; v) where (2.3)

LM (x; v) =
1

2
vT
(
M ′+(x) + V (x)TM(x) +M(x)V (x)

)
v .

We refer to M as a (Riemannian) contraction metric on K or a metric contracting in K.

It turns out to be beneficial for the numerical computation to consider a particular Riemannian
contraction metric, which is the solution to a (matrix-valued) PDE, see (2.7). We first define
for all x ∈ Rn with f(x) 6= 0 the linear differential operator L, acting on N : Rn → Sn×n by

LN(x) := N ′+(x) + V (x)TN(x) +N(x)V (x), (2.4)

where V was defined in (2.2). Moreover, we define the projection Px for all x ∈ Rn with
f(x) 6= 0 onto the (n− 1)-dimensional space perpendicular to f(x), i.e. P 2

x = Px, Pxf(x) = 0
and Pxv = v if vT f(x) = 0, by

Px := In×n −
f(x)f(x)T

‖f(x)‖22
. (2.5)

The next two theorems reveal the connection between periodic orbits and contraction metrics.
Theorem 2.5 shows that the existence of a contraction metric on a compact, forward invariant
set K asserts the existence of a unique exponentially stable periodic orbit Ω ⊂ K and that
K ⊂ A(Ω). Theorem 2.6 establishes the existence of a contraction metric for exponentially
stable periodic orbits, which is the solution to a matrix-valued PDE.

2.5 Theorem (existence, uniqueness and stability of a periodic orbit) Let K ⊂ Rn
be a compact, connected and positively invariant set that does not contain an equilibrium
of (1.1), i.e. for all x ∈ K we have f(x) 6= 0. Assume M : G → Sn×n, G ⊃ K open, is a
contraction metric fulfilling LM (x) ≤ −ν < 0 on K.

Then there exists a unique periodic orbit Ω ⊂ K, Ω is exponentially stable and the largest
real part of all non-trivial Floquet exponents is at most −ν. Moreover, K is a subset of the
basin of attraction A(Ω) of Ω.

Proof: This theorem is identical to [5, Theorem 2.1], except that we have reduced the
smoothness assumptions on M from C1 to locally Lipschitz. Since similar multiplication and
chain rules apply to the upper Dini derivative M ′+ as M ′, cf. e.g. [6, Lemma 3.2], the proof is
essentially replacing M ′ by M ′+ in the proof of [5, Theorem 2.1]. �
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The following theorem shows that a contraction metric can be characterized as the unique
solution to a PDE. After fixing a positive definite matrix B(x), the right-hand side −C(x)
of the PDE is the projection of B(x) onto the (n − 1)-dimensional subspace perpendicular
to f(x). Hence, the solution M(x) will be contracting in directions v perpendicular to f(x),
while staying constant in direction f(x). To guarantee that the solution M(x) is positive
definite in direction f(x), i.e. f(x)TM(x)f(x) > 0, we need the condition (2.8) at an arbitrary
point x0 in the basin of attraction.

2.6 Theorem (existence and uniqueness of the contraction metric) [5, Theorems
3.1, 4.2] Let Ω be an exponentially stable periodic orbit of ẋ = f(x), f ∈ Cs(Rn;Rn), where
s ≥ 2, with basin of attraction A(Ω). Fix x0 ∈ A(Ω) and c0 ∈ R+. Let B ∈ Cs−1(A(Ω);Sn×n)
be such that B(x) is positive definite for all x ∈ A(Ω) and define C ∈ Cs−1(A(Ω);Sn×n) by
(see (2.5))

C(x) = P Tx B(x)Px. (2.6)

Then there exists a unique solution M ∈ Cs−1(A(Ω);Sn×n) of the linear matrix-valued PDE
(see (2.4))

LM(x) = −C(x) for all x ∈ A(Ω) (2.7)

satisfying f(x0)TM(x0)f(x0) = c0‖f(x0)‖42. (2.8)

The solution M(x) is positive definite for all x ∈ A(Ω) and it is of the form

M(x) =

∫ ∞
0

Φ(t, 0; x)TC(Stx)Φ(t, 0; x) dt+ c0f(x)f(x)T ,

where Φ(t, 0; x) denotes the principal fundamental matrix solution of φ̇(t) = D(Stx)φ(t) with
Φ(0, 0; x) = In×n.

Note that since LM (x; v) = 1
2vTLM(x)v, see (2.3), a function M satisfying (2.7) gives

LM (x; v) = −1
2vTP Tx B(x)Pxv and thus

LM (x) = −1

2
min

v∈Rn,vTM(x)v=1,vT f(x)=0
vTB(x)v,

which can be bounded above by a negative constant −ν for all x within a compact set K ⊂
A(Ω). Moreover, M satisfying (2.7) and (2.8) is positive definite and therefore a contraction
metric.

Although the previous theorem does not enable us to construct the contraction metric ana-
lytically in most cases, it provides a suitable way to approximate it by numerically solving
the PDE (2.7), see Section 3.

We will now recall some norm-related definitions and inequalities that will be used throughout
the paper. For an A ∈ Rn×n define

‖A‖max := max
i,j=1,2,...,n

|aij |,

‖A‖p := max
‖x‖p=1

‖Ax‖p for p = 1, 2,∞,

‖A‖F :=

 n∑
i,j=1

a2
ij

 1
2

.
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The following well-known relations will be used later:

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij |, ‖A‖1 = ‖AT ‖∞,

‖A‖max ≤ ‖A‖2 ≤ n ‖A‖max, ‖A‖2 ≤
√
n‖A‖∞, (2.9)

1√
n
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1,

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 .

For a symmetric and positive definite A, the largest singular value λmax of A, which equals
‖A‖2 and is the largest of its eigenvalues, is the smallest number such that λmaxIn×n − A is
positive semidefinite, written A � λmaxIn×n.
We recall that ‖M‖L∞(K) = ess sup

x∈K
‖M(x)‖2 for any measurable K ⊂ Rn. Further, if M is

continuous and K ⊂ Rn has the property, that every neighborhood (in K) of every x ∈ K
has a strictly positive measure, then the essential supremum is identical to the supremum.

For a function W ∈ Ck(D;R), where D ⊂ Rn is a non-empty open set and R is R,Rn,Sn×n,
or Rn×n, we define the Ck-norm as

‖W‖Ck(D;R) :=
∑
|α|≤k

sup
x∈D
‖DαW (x)‖2 , (2.10)

where α ∈ Nn0 is a multi-index and |α| :=
∑n

i=1 αi. When all DαW can be continuously
extended to D for all |α| ≤ k, the Ck-norm is also defined on D with the same formula.

The final statement of this section is a powerful tool that describes the effect of perturbations
on contraction metrics. It is an essential part of the error estimate statements that we provide
later.

2.7 Theorem (Robustness of contraction metrics) [4, Theorem 3.1] Let the assump-
tions of Theorem 2.6 hold. Let K ⊂ A(Ω) be a compact set with Ω ⊂ K◦, denote
γ+(K) =

⋃
t≥0 StK and let x0 ∈ K as well as c0 ∈ R+.

Then there is an ε > 0 such that for all M̃, C̃ ∈ C1(γ+(K);Sn×n) satisfying

LM̃(x) = −C̃(x) for all x ∈ γ+(K) (2.11)

f(x0)T M̃(x0)f(x0) = c0‖f(x0)‖42 (2.12)

‖C(x)− C̃(x)‖2 ≤ ε for all x ∈ γ+(K) (2.13)∥∥∥∥ d

dxi

(
C(x)− C̃(x)

)∥∥∥∥
2

≤ ε for all x ∈ γ+(K) and i = 1, . . . , n (2.14)

we have that M̃(x) is positive definite for all x ∈ K. Moreover, there is a constant ν̃ > 0
such that

L
M̃

(x) ≤ −ν̃

holds for all x ∈ γ+(K), where LM was defined in (2.3).
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3 Optimal Recovery by RBF

In this section we follow [5] and solve the PDE (2.7) numerically to obtain a contraction
metric. We review the appropriate setting in which the contraction metric can be recovered
or approximated knowing its values at finitely many points, hence called optimal recovery
problem. For this we introduce reproducing kernel Hilbert spaces and show an error estimate
for the approximated metric.

Let O ⊂ Rn be a domain with Lipschitz boundary and σ > n/2 be given. Then, the matrix-
valued Sobolev spaceHσ(O; Sn×n) consists of all symmetric matrix-valued functionsM having
each component Mij in Hσ(O) and it is a Hilbert space with inner product given by

〈M,S〉Hσ(O;Sn×n) :=
n∑

i,j=1

〈Mij , Sij〉Hσ(O),

where 〈·, ·〉Hσ(O) is the usual inner product on Hσ(O). It is also a reproducing kernel Hilbert
space, see below. On Sn×n we define the inner product

〈α,β〉Sn×n =

n∑
i,j=1

αijβij , α = (αij), β = (βij),

which renders it a Hilbert space. We denote by L(Sn×n) the linear space of all linear and
bounded operators Sn×n → Sn×n.

3.1 Definition (Reproducing Kernel Hilbert Space) A Hilbert space H(O; Sn×n) of
functions f : O → Sn×n is called reproducing kernel Hilbert space if there is a function
Φ : O ×O → L(Sn×n) with the following properties :

1. Φ(·,x)α ∈ H(O;Sn×n) for all x ∈ O and all α ∈ Sn×n.
2. 〈f(x), α〉Sn×n = 〈f,Φ(·,x)α〉H(O;Sn×n) for all f ∈ H(O; Sn×n), x ∈ O and α ∈ Sn×n.

The function Φ is called reproducing kernel of H(O;Sn×n).

A kernel Φ is thus a mapping Φ : O × O → L(Sn×n) and can be represented by a tensor of
order 4. We will write Φ = (Φijk`) and define its action on α ∈ Rn×n by

(Φ(x,y)α)ij =

n∑
k,`=1

Φ(x,y)ijk`αk`.

From [9, Lemma 3.2] we know that with φ : O×O → R as the reproducing kernel of Hσ(O),
the reproducing kernel of Hσ(O;Sn×n) is Φ defined by

Φ(x,y)ijk` := φ(x,y)δikδj` (3.1)

for x,y ∈ O and 1 ≤ i, j, k, ` ≤ n.

3.2 Definition (Optimal recovery of a function) Assume that we are given N linearly
independent functionals λ1, . . . , λN ∈ H(O;Sn×n)∗ of a reproducing kernel Hilbert space
H(O;Sn×n) and N values r1 = λ1(M), . . . , rN = λN (M) ∈ R generated by an element
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M ∈ H(O;Sn×n). The optimal recovery of M based on this information is defined to be the
unique element S ∈ H(O;Sn×n) which solves

min
{
‖S‖H(O;Sn×n) : S ∈ H(O; Sn×n) with λj(S) = rj , 1 ≤ j ≤ N

}
.

We choose Wendland functions as the radial basis functions, which will define the reproducing
kernel Φ needed for our optimal recovery problem. For more details on these functions and
their properties, see [19]. Let l ∈ N, k ∈ N0. Wendland functions are defined by recursion

ψl,0(r) = (1− r)l+,

and ψl,k+1(r) =

∫ 1

r
tψl,k(t) dt

for r ∈ R+
0 . Here we set x+ = x for x ≥ 0, x+ = 0 for x < 0, and xl+ := (x+)l.

With l := bn2 c + k + 1 the function Φ(x) := ψl,k(c‖x‖2) belongs to C2k(Rn) for any c > 0
and the reproducing kernel Hilbert space with reproducing kernel Φ given by a Wendland
function is norm-equivalent to the Sobolev space Hσ(O), where σ = k + n+1

2 .

We will denote by Hσ(O; Sn×n) the reproducing kernel Hilbert space with reproducing kernel
Φ : O × O → L(Sn×n) as in (3.1), φ(x,y) = ψl,k(c‖x − y‖2), where ψl,k is a Wendland
function with l := bn2 c+ k+ 1 and c > 0. We again have σ = k+ n+1

2 . Usually, this notation
is used for the Sobolev space, which contains the same functions and is norm-equivalent to
the reproducing kernel Hilbert space, but with a slight abuse of notation we denote both by
the same symbol – note that all estimates still hold with a different constant.

We fix the pairwise distinct collocation points X = {x1, . . . ,xN} ⊂ O as well as the point

x0 ∈ O. Define the linear functionals λ
(i,j)
k , λ0 : Hσ(O;Sn×n) → R for 1 ≤ i ≤ j ≤ n,

1 ≤ k ≤ N by

λ
(i,j)
k (M) := eTi LM(xk)ej , (3.2)

λ0(M) := f(x0)TM(x0)f(x0), (3.3)

where ei ∈ Rn denotes the vector (0, . . . , 0, 1, 0, . . . , 0) with the 1 at position i.

3.3 Theorem (Existence and uniqueness of the optimal recovery) [4, Theorem 4.2]
Let O ⊂ A(Ω) be a domain with Lipschitz boundary. Let σ > n/2 + 1, let Φ : O × O →
L(Sn×n) be the reproducing kernel of Hσ(O;Sn×n) and f ∈ Cs(Rn;Rn) with s = σ + 1. Let
X = {x1, . . . ,xN} ⊂ O be pairwise distinct points and x0 ∈ O such that f(xi) 6= 0 for all

i = 0, . . . , N . Let c0 ∈ R+, and let λ
(i,j)
k , λ0 ∈ Hσ(O; Sn×n)∗, 1 ≤ k ≤ N and 1 ≤ i ≤ j ≤ n

be defined by (3.2) and (3.3).

Then these functionals are linearly independent and there is a unique function S ∈
Hσ(O; Sn×n) solving

min

{
‖S‖Hσ(O;Sn×n) : λ

(i,j)
k (S) = −Cij(xk), 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ N

and λ0(S) = c0‖f(x0)‖42
}
,

where C(x) = P Tx B(x)Px and B(x) = (Bij(x))i,j=1,...,n is a symmetric, positive definite
matrix for each x ∈ O.
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The closed form formula for S and technical details for computations is given in Appendix
B. One can measure the error of the optimal recovery in terms of the so-called fill distance or
mesh norm

hX,O := sup
x∈O

min
xi∈X

‖x− xi‖2.

3.4 Theorem (Error estimates for the RBF approximation) [4, Theorem 4.4] Let
f ∈ Cs(Rn;Rn), N 3 s > n/2 + 3 and set σ = s − 1. Let Ω be an exponentially stable
periodic orbit of ẋ = f(x) with basin of attraction A(Ω).

Let B ∈ Cσ(Rn, Sn×n) such that B(x) is a positive definite matrix for all x ∈ Rn and let
C(x) = P Tx B(x)Px.

Let M ∈ Cσ(A(Ω),Sn×n) be the solution of (2.7) and (2.8). Let O ⊂ A(Ω) be a bounded
domain with Lipschitz boundary. Finally, let S be the optimal recovery from Theorem 3.3.
Then there exists a β > 0 such that we have the error estimates

‖LM − LS‖L∞(O;Sn×n) ≤ βh
σ−1−n/2
X,O ‖M‖Hσ(O;Sn×n), (3.4)

‖∂iLM − ∂iLS‖L∞(O;Sn×n) ≤ βh
σ−2−n/2
X,O ‖M‖Hσ(O;Sn×n),

for i = 1, 2, . . . , n and all X ⊂ O with sufficiently small fill distance hX,O.

By construction we have

f(x0)TS(x0)f(x0) = c0‖f(x0)‖42.

Let K 3 x0 be a compact set such that γ+(K) ⊂ O. Then S, provided hX,O is sufficiently

small, is a Riemannian metric contracting in γ+(K), i.e. S(x) is positive definite for all x ∈ O
and LS(x) ≤ −ν̃ < 0 for all x ∈ γ+(K).

While this theorem provides a proof that S is a contraction metric if hX,O is small enough,
it does not quantify in a useful way how small hX,O must be because ‖M‖Hσ(O;Sn×n) is in
general unknown, cf. (3.4). This is why we need a verification method that allows us to check
whether S is a contraction metric or whether we need to make hX,O smaller. This is the topic
of Section 4.

3.5 Remark It is worth mentioning another useful norm estimate for S ∈ Hσ(O; Sn×n), the
optimal recovery of M from Theorem 3.3. Assume O ⊂ Rn is bounded and open with C1

boundary. Let k ≥ 2 if n is odd and k ≥ 3 if n is even. Let S be the optimal recovery of M
using the collocation points X ⊂ O and the Wendland function ψl,k with l = bn2 c + k + 1.
Note that with σ = k + n+1

2 and for a constant ζ > 0 independent of the collocation points
X we have

‖S‖C2(O;Sn×n) ≤ ζ ‖M‖Hσ(O;Sn×n) . (3.5)

This inequality is proved using that the optimal recovery S is norm-minimal, that is,
‖S‖Hσ(O;Sn×n) ≤ ‖M‖Hσ(O;Sn×n); for more details see [7, Lemma 3.8].

4 CPA Interpolation of the Solution

In this section we set the stage for a verification process, through which we will verify the
conditions of a computed contraction metric P , in particular that P (x) is positive definite
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and LP (x) is negative definite for all x (see Theorem 4.11). In order to do so, we introduce
a continuous piecewise affine (CPA) approximation of the RBF approximation metric. We
will provide error estimates and statements about the interpolation, and present criteria that
assert that the interpolation is a contraction metric itself. These criteria can easily be verified
numerically.

Let us review some basic preliminaries. Given vectors x0,x1, . . . ,xn ∈ Rn that are affinely
independent, i.e. the vectors x1−x0,x2−x0, . . . ,xn−x0 are linearly independent, the convex
hull

S = co(x0,x1, . . . ,xn) :=

{
n∑
k=0

λkxk : λk ∈ [0, 1] and
n∑
k=0

λk = 1

}
is called an n-simplex or simply a simplex. A set

co(xk0 ,xk1 , . . . ,xkj ) :=

{
j∑
i=0

λkixki : λki ∈ [0, 1] and

j∑
i=0

λki = 1

}

with 0 ≤ k0 < k1 < . . . < kj ≤ n and 0 ≤ j < n is called a j-face of the simplex S.

4.1 Definition (Triangulation) We call a set T = {Sν}ν of n-simplices Sν a triangulation
in Rn, if two simplices Sν ,Sµ ∈ T , µ 6= ν, intersect in a common face or not at all. For a
triangulation T we define its domain and vertex set as

DT :=
⋃

Sν∈T
Sν and VT := {x ∈ Rn : x is a vertex of a simplex in T }.

We also say that T is a triangulation of the set DT and we call the triangulation finite if the
set T is finite.

For a triangulation T = {Sν}ν and constants h, d > 0, we say that T is (h, d)-bounded if it
fulfills the following conditions:

(i) The diameter of every simplex Sν ∈ T is bounded by h, that is

hν := diam(Sν) := max
x,y∈Sν

‖x− y‖2 < h.

(ii) The degeneracy of every simplex Sν ∈ T is bounded by d in the sense that

hν‖X−1
ν ‖1 ≤ d,

where Xν := (xν1−xν0 ,x
ν
2−xν0 , · · · ,xνn−xν0)T is the so-called shape matrix of the simplex

Sν .

Note that we defined a simplex as the convex hull of an ordered set of vectors and the constant
d > 0 in the definition above depends on the order of the vertices of the simplices in T .

Given a triangulation, we can now define a continuous piecewise affine function, which is
affine on each simplex of the triangulation. In particular, we can interpolate a given function
by a CPA function by fixing its values at the vertices.
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4.2 Definition (CPA function, CPA interpolation) Let T be a triangulation in Rn and
assume some values P̃ij(xk) ∈ R are fixed for every xk ∈ VT and every i, j = 1, 2, . . . , n. A
CPA function P : DT → Rn×n, that is affine on each simplex Sν ∈ T , is uniquely defined by
its values at the vertices P̃ (xk) in the following way :

An x ∈ Sν = co(x0, . . . ,xn) can be written uniquely as x =
∑n

k=0 λkxk with λk ∈ [0, 1] and∑n
k=0 λk = 1 and we define

Pij(x) :=
n∑
k=0

λkP̃ij(xk)

and

P (x) :=


P11(x) P12(x) · · · P1n(x)
P21(x) P22(x) · · · P2n(x)

...
...

. . .
...

Pn1(x) Pn2(x) · · · Pnn(x)

 .

We refer to the functions Pij and P as the CPA interpolations of the values P̃ij(xk) and

P̃ (xk) = (P̃ij(xk))i,j=1,...,n, respectively. Note that the functions Pij are affine on every
simplex Sν ∈ T , i.e. there is a vector wν

ij ∈ Rn and a number bνij ∈ R, such that

Pij(x) = (wν
ij)

Tx + bνij

for all x ∈ Sν . For every simplex Sν ∈ T we define ∇P νij := ∇Pij |S◦ν = wν
ij .

Assume W is a matrix-valued function defined on DT , fix the values P̃ (xk) = W (xk) for
every vertex xk ∈ VT , and continue the procedure mentioned above to create a continuous
piecewise affine function P . Then we call P the CPA interpolation of the function W on T .

Note that if P̃ (xk) ∈ Sn×n for all xk ∈ VT , then P (x) ∈ Sn×n for all x ∈ DT .

The gradient ∇P νij can be computed directly from the values at the vertices, as explained in
the following remark.

4.3 Remark The gradient ∇P νij of the affine function Pij
∣∣
S◦ν

on the simplex Sν =

co(x0, . . . ,xn) is given by the expression

∇P νij = X−1
ν

 Pij(x1)− Pij(x0)
...

Pij(xn)− Pij(x0)

 ∈ Rn, (4.1)

where Xν = (x1 − x0,x2 − x0, . . . ,xn − x0)T ∈ Rn×n is the shape-matrix of the simplex Sν .

4.4 Remark (Orbital derivative) Let P (x) be as in Definition 4.2 and fix a point x ∈ D◦T .
As shown in the proof of [6, Lemma 4.7], there exists a Sν = co(x0, . . . ,xn) ∈ T and a number
θ∗ > 0 such that x + θf(x) ∈ Sν for all θ ∈ [0, θ∗]. Then the forward orbital derivative
(Pij)

′
+(x) defined by formula (2.1) (see Remark 2.3), is given by

(Pij)
′
+(x) = ∇P νij · f(x),

where ∇P νij was defined in Definition 4.2.

11



Let us now review an error estimate for the CPA interpolation of a function.

4.5 Remark [8, Lemma 4.5] Let T = {Sν} be an (h, d)-bounded triangulation in Rn and let
D ⊃ DT be an open set. Assume that S ∈ C2(D;Rn×n) with ‖S‖C2(D;Rn×n) <∞ and define

γ := 1 +
dn3/2

2
.

Denote by SC the CPA interpolation of S on T . Then the following estimates hold true for
all 1 ≤ i, j ≤ n :

‖SC(x)− S(x)‖2 ≤ nh2 ‖S‖C2(D;Rn×n) for all x ∈ DT , (4.2)

‖∇(SC)νij −∇Sij(x)‖1 ≤ hγ ‖S‖C2(D;Rn×n) for all Sν ∈ T and all x ∈ Sν , (4.3)

‖∇(SC)νij‖1 ≤ (1 + hγ) ‖S‖C2(D;Rn×n) for all Sν ∈ T . (4.4)

The following lemma is essential to deal with the contraction condition, which involves the
(n − 1)-dimensional subspace of vectors v perpendicular to f (first statement). The lemma
transforms the first statement, which is needed to show that the function LP (x) is negative,
into a second statement, which is easier to handle, since it refers to the negative definiteness
of a matrix.

4.6 Lemma (Evaluation method for contraction property) Let n ≥ 2, A ∈ Sn×n and
f ∈ Rn, f 6= 0. Then the two following statements are equivalent :

1. There exists a constant λ > 0 such that for every v ∈ Rn with vT f = 0 and ‖v‖2 = 1
we have vTAv ≤ −λ.

2. There exists a constant κ∗ > 0, such that for every κ ≥ κ∗ > 0 the matrix A− κ f fT is
negative definite.

Further, if K ⊂ Rn is compact, f : K → Rn and A : K → Sn×n are continuous, and there
exists a constant λ > 0 such that for every x ∈ K and every v ∈ Rn, vT f(x) = 0, we have
vTA(x)v ≤ −λ, then there exists a constant κ∗ > 0 such that for every κ ≥ κ∗ > 0 the
matrix A(x)− κ f(x) f(x)T is negative definite for every x ∈ K.

Proof: Statement 1 follows immediately from Statement 2 with

λ = −λmax(A− κ∗f fT ) > 0. (4.5)

Assume that statement 1 holds true; note that this implies ‖A‖2 > 0. Define t∗ ∈ [0, π/2)
and κ∗ by

t∗ = arccos

(
min

(
1,

λ

4‖A‖2

))
, (4.6)

κ∗ =

2 ‖A‖2
λ

√
max(0, 16 ‖A‖22 − λ2) + ‖A‖2 + λ

‖f‖22
. (4.7)
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We have

tan t∗ =
√

1/ cos2 t∗ − 1 =

√
max

(
1,

16‖A‖22
λ2

)
− 1 =

κ∗ ‖f‖22 − ‖A‖2 − λ
2‖A‖2

. (4.8)

Let u ∈ Rn, ‖u‖2 = 1, be arbitrary. Then, we can write u = ṽ + f̃ with f̃ := (uT f/‖f‖22)f
and ṽ = u − f̃ . In particular, f̃ is parallel to f and ṽT f = 0. Further, ‖ṽ‖22 + ‖f̃‖22 = 1. Let
t ∈ [0, π/2] be such that ‖ṽ‖2 = sin t and ‖f̃‖2 = cos t. By Statement 1 it follows that

uT (A− κ∗f fT )u = (ṽ + f̃)T (A− κ∗f fT )(ṽ + f̃)

= ṽTAṽ + 2f̃TAṽ + f̃TAf̃ − κ∗(fT f̃)2

≤ −λ sin2 t+ 2‖A‖2 cos t sin t+ (‖A‖2 − κ∗ ‖f‖22) cos2 t (4.9)

= −λ+ 2‖A‖2 cos t sin t+ (‖A‖2 + λ− κ∗ ‖f‖22) cos2 t

= −λ+ 2‖A‖2 cos t ·

(
sin t+

‖A‖2 + λ− κ∗ ‖f‖22
2‖A‖2

cos t

)
= −λ+ 2‖A‖2 cos t · (sin t− tan t∗ cos t) by (4.8) (4.10)

=: g(t).

From (4.9) one sees that g(t) only becomes smaller on t ∈ [0, π/2] if κ∗ is replaced by a larger
number, hence, it suffices to show that g(t) < 0 for t ∈ [0, π/2] to prove statement 2. First
note that by (4.9) and (4.8)

g(0) = ‖A‖2 − κ∗ ‖f‖22 < ‖A‖2 + λ− κ∗ ‖f‖22 = −2‖A‖2 tan t∗ ≤ 0

and g(π/2) = −λ < 0.

If t∗ > 0, we have g(t) ≤ −λ for t ∈ (0, t∗) by (4.10) because cos t > 0 and tan t < tan t∗, i.e.

sin t− tan t∗ cos t = cos t (tan t− tan t∗) < 0.

For the case t ∈ [t∗, π/2) note that

sin t− tan t∗ cos t < 1− tan t∗ cos t < 1

and we have by (4.10) and (4.6)

g(t) = −λ+ 2‖A‖2 cos t · (sin t− tan t∗ cos t)

< −λ+ 2‖A‖2 cos t ≤ −λ+ 2‖A‖2 cos t∗

≤ −λ+ 2‖A‖2
λ

4‖A‖2
= −λ

2
.

Since u was arbitrary λmax(A− κ∗f fT ) < 0 and Statement 2 follows.

For the last proposition just note that the right-hand side of (4.7) depends continuously on
A and f and that minx∈K ‖f(x)‖2 > 0. Hence

κ∗ := max
x∈K

2 ‖A(x)‖2
λ

√
max(0, 16 ‖A(x)‖22 − λ2) + ‖A(x)‖2 + λ

‖f(x)‖22
> 0
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is well defined and
uT (A(x)− κf(x) f(x)T )u < 0

for every u ∈ Rn, with ‖u‖2 = 1, and κ ≥ κ∗ can be proved analogously to above.

�

We have now provided the essential ingredients to state our verification process as a
verification problem with constants, input data, and constraints described as follows.

4.1 Verification Problem

Our verification problem is a semidefinite feasibility problem and can in theory be solved as
such. However, as we will assign values to the variables of the problem using the optimal
recovery of the solution of (2.7) and (2.8) and then verify if the constraints of the feasibility
problem are fulfilled, we will refer to this feasibility problem as verification problem. Note
that it is much more efficient to verify the validity of a possible solution to a semidefinite
problem than to solve it.

4.7 Verification Problem Given is a system ẋ = f(x), f ∈ C3(Rn;Rn), and a finite trian-
gulation T of DT ⊂ Rn such that f(x) 6= 0 for all x ∈ DT . The verification problem has the
following constants, variables, and constraints.

Constants: The constants used in the problem are listed below. The first constant is a fixed,
chosen parameter, the rest are computed from the input data.

1. κ∗ν > 0 – quantities related to the matrices Aν(xk) (as defined in (4.17) below) on each
simplex Sν ∈ T .

2. The diameter hν of each simplex Sν ∈ T :

hν := diam(Sν) = max
x,y∈Sν

‖x− y‖2.

3. Upper bounds B0,ν on the components fl of f on each simplex Sν ∈ T :

B0,ν ≥ max
x∈Sν

l=1,2,...,n

|fl(x)| . (4.11)

4. Upper bounds B1,ν on the first-order derivatives of the components fl of f on each
simplex Sν ∈ T :

B1,ν ≥ max
x∈Sν

i,l=1,2,...,n

∣∣∣∣ ∂fl∂xi
(x)

∣∣∣∣ . (4.12)

5. Upper bounds B2,ν on the second-order derivatives of the components fl of f on each
simplex Sν ∈ T :

B2,ν ≥ max
x∈Sν

i,j,l=1,2,...,n

∣∣∣∣ ∂2fl
∂xi∂xj

(x)

∣∣∣∣ . (4.13)
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6. Upper bounds B3,ν on the third-order derivatives of the components fl of f on each
simplex Sν ∈ T :

B3,ν ≥ max
x∈Sν

i,j,k,l=1,...,n

∣∣∣∣ ∂3fl
∂xi∂xj∂xk

(x)

∣∣∣∣ . (4.14)

7. Upper bounds BV1,ν on the first-order derivatives of the components Vlj of V defined in
(2.2) on each simplex Sν ∈ T :

BV1,ν ≥ max
x∈Sν

r,l,j=1,2,...,n

∣∣∣∣∂Vlj∂xr
(x)

∣∣∣∣ . (4.15)

8. Upper bounds BV2,ν on the second-order derivatives of the components Vlj of V defined
in (2.2) on each simplex Sν ∈ T :

BV2,ν ≥ max
x∈Sν

r,s,j,l=1,2,...,n

∣∣∣∣ ∂2Vlj
∂xr∂xs

(x)

∣∣∣∣ . (4.16)

Input data: The input data of the problem are

1. Pij(xk) ∈ R for all 1 ≤ i ≤ j ≤ n and all vertices xk ∈ VT . For 1 ≤ i ≤ j ≤ n the value
Pij(xk) is the (i, j)-th entry of the (n×n) matrix P (xk). The matrix P (xk) is assumed
to be symmetric and therefore these components determine it.

Constraints:

(VP1) Positive definiteness of P

For each xk ∈ VT :
P (xk) � 0n,n.

(VP2) Negative definiteness of Aν − κ∗νf fT

For each simplex Sν = co(x0, . . . ,xn) ∈ T and each vertex xk of Sν :

Aν(xk)− κ∗νf(xk)f
T (xk) + h2

νEνIn×n ≺ 0n,n.

Here

Aν(xk) := P (xk)V (xk) + V (xk)
TP (xk) +

(
∇P νij · f(xk)

)
i,j=1,2,...,n

, (4.17)

where V is the function defined in (2.2), (∇P νij · f(xk))i,j=1,2,...,n denotes the symmetric
(n× n)-matrix with entries ∇P νij · f(xk) and ∇P νij is defined as in (4.1), and

Eν := n2 ·
(
(4
√
nBV1,ν +B2,ν)‖∇P νij‖1 + 2nBV2,νPν + 2κ∗ν B0,νB2,ν + 2κ∗ν B

2
1,ν

)
,

where
Pν := max

x∈Sν
‖P (x)‖2 = max

k=0,1,...,n
‖P (xk)‖2.
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4.8 Remark In order to implement the Verification Problem, one can formulate an equiv-
alent semidefinite feasibility problem: fix a small constant ε0 > 0 and replace � 0n,n by
� ε0In×n in (VP1) and ≺ 0n,n by � ε0In×n in (VP2). Further, introduce auxiliary variables
Cν , D

k
ν , Dν ∈ R+

0 , with 1 ≤ k ≤ n, for all simplices Sν ∈ T , that serve as upper bounds on
the eigenvalues of P and on the derivative of all Pij in Sν , respectively. The upper bounds
can then be implemented through the following constraints:

1. For each simplex Sν = co(x0, . . . ,xn) ∈ T and each vertex xk of Sν we must have :

P (xk) � CνIn×n.

This makes sure that Pν = max
k=0,1,...,n

‖P (xk)‖2 ≤ Cν .

2. For each simplex Sν ∈ T and all 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ n we must have :

−Dk
ν ≤

[
∇P νij

]
k
≤ Dk

ν ,

where
[
∇P νij

]
k

is the kth component of the gradient ∇P νij .

This ensures that ‖∇P νij‖1 ≤ Dν :=
∑n

k=1D
k
ν .

3. Finally, the constant Eν for each simplex in (VP2) is replaced by

Eν := n2 ·
(
(4
√
nBV1,ν +B2,ν)Dν + 2nBV2,νCν + 2κ∗ν B0,νB2,ν + 2κ∗ν B

2
1,ν

)
. (4.18)

Clearly a feasible solution to this semidefinite feasibility problem also fulfills the constraints
of the Verification Problem 4.7. Further, it is not difficult to see that if a CPA function
P : DT → Sn×n fulfills the constraints of Verification Problem 4.7, then αP is a feasible
solution to the semidefinite feasibility problem if α > 0 is large enough; just note that Cν ,
Dν , and Aν scale linearly with α and thus the conditions are satisfied if we replace κ∗ν by ακ∗ν .

We seek to show that a CPA function satisfying the Verification Problem 4.7 is a contrac-
tion metric in Theorem 4.11. This is based on estimates between a function and its CPA
interpolation.

4.9 Remark (Function estimates over a triangulation) Let x0,x1, . . . ,xk ∈ Rn be
affinely independent vectors, define S := co(x0,x1, . . . ,xk), h := diam(S) and consider a
convex combination

∑k
i=0 λixi ∈ S. If g ∈ C2(U ,R) with S ⊂ U ⊂ Rn, U open, then∣∣∣∣∣g

(
k∑
i=0

λixi

)
−

k∑
i=0

λig(xi)

∣∣∣∣∣ ≤ BHh2, (4.19)

where BH := max
z∈S
‖H(z)‖2 and H(z) is the Hessian of g at z, see [1, Proposition 4.1].

A similar result holds for a function h ∈ C2 (Rn;Rn), cf. [11, Lemma 4.8],∥∥∥∥∥h(x)−
n∑
k=0

λkh(xk)

∥∥∥∥∥
∞

≤ nB2h
2,
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where B2 is an upper bound on the second order derivatives of the components of h,

B2 ≥ max
x∈S

i,j,l=1,2,...,n

∣∣∣∣ ∂2hl
∂xi∂xj

(x)

∣∣∣∣ .
The following lemma will provide an estimate on the difference between the true value of
the mapping A of Verification Problem 4.7 (VP2) and the value approximated by a convex
combination of its values at vertices.

4.10 Lemma (Operator estimate over a triangulation) Assume P is defined as in Def-
inition 4.2 from a feasible solution Pij(xk) to the Verification Problem 4.7. Fix a point x ∈ D◦T
and a corresponding simplex Sν = co(x0,x1, . . . ,xn) ∈ T with x ∈ Sν . Set

Aν(y) := P (y)V (y) + V (y)TP (y) +
(
∇P νij · f(y)

)
i,j=1,2,...,n

for all y ∈ Sν .
Then we have the following estimate with fixed κ∗ν > 0, for any x =

∑n
k=0 λkxk ∈ Sν , λk ≥ 0

and
∑n

k=0 λk = 1 :∥∥∥∥∥[Aν(x)− κ∗νf(x)f(x)T
]
−

n∑
k=0

λk
[
Aν(xk)− κ∗νf(xk)f(xk)

T
]∥∥∥∥∥

2

≤ h2
νEν , (4.20)

in particular

Aν(x)− κ∗νf(x)f(x)T �
n∑
k=0

λk
[
Aν(xk)− κ∗νf(xk)f(xk)

T
]

+ h2
νEνIn×n,

where Eν = n2 ·
(

4
√
nBV1,ν‖∇P νij‖1 + 2nBV2,νPν +B2,ν‖∇P νij‖1 + 2κ∗ν B0,νB2,ν + 2κ∗ν B

2
1,ν

)
is defined as in (VP2).

Proof: We show this in several steps:

Step 1: Entry-wise bounds on P′+(x)
The estimate ∣∣∣∣∣∇P νij · f(x)−

n∑
k=0

λk∇P νij · f(xk)

∣∣∣∣∣ ≤ nB2,ν‖∇P νij‖1h2
ν (4.21)

follows by Hölder’s inequality and Remark 4.9:∣∣∣∣∣∇P νij ·
(

f(x)−
n∑
k=0

λkf(xk)

)∣∣∣∣∣ ≤ ‖∇P νij‖1
∥∥∥∥∥f(x)−

n∑
k=0

λkf(xk)

∥∥∥∥∥
∞

≤ ‖∇P νij‖1nB2,νh
2
ν .

Step 2: Entry-wise bounds on P(x)V(x) and V(x)TP(x)
We show that∣∣∣∣∣[P (x)V (x)]ij −

n∑
k=0

λk [P (xk)V (xk)]ij

∣∣∣∣∣ ≤ nh2
ν(2
√
nBV1,ν‖∇P νij‖1 + nBV2,νPν). (4.22)
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Consider two scalar-valued functions g, h ∈ C2(Sν ;R). We apply Remark 4.9 to gh, yielding∣∣∣∣∣g(x)h(x)−
n∑
k=0

λkg(xk)h(xk)

∣∣∣∣∣ ≤ max
y∈Sν

‖H(y)‖2h2
ν , (4.23)

where the matrix H(y) is defined by [H(y)]rs := ∂2(gh)
∂xr∂xs

(y). Set g(y) := Pil(y). Since

Pil(y) = ∇P νil · y + bνil, we obtain ∂g
∂xs

(y) = [∇P νil ]s and ∂2g
∂xr∂xs

(y) = 0 for all y ∈ Sν . Hence,

∂

∂xs
(gh)(y) =

∂g

∂xs
(y)h(y) + g(y)

∂h

∂xs
(y) = [∇P νil ]sh(y) + g(y)

∂h

∂xs
(y)

and then

∂2

∂xr∂xs
(gh)(y) = [∇P νil ]s

∂h

∂xr
(y) +

∂g

∂xr
(y)

∂h

∂xs
(y) + g(y)

∂2h

∂xr∂xs
(y)

= [∇P νil ]s
∂h

∂xr
(y) + [∇P νil ]r

∂h

∂xs
(y) + Pil(y)

∂2h

∂xr∂xs
(y).

Now set h(y) := Vlj(y), then
∣∣∣ ∂h∂xs (y)

∣∣∣ ≤ BV1,ν , and
∣∣∣ ∂2h
∂xr∂xs

(y)
∣∣∣ ≤ BV2,ν . Thus

|[H(y)]rs| =
∣∣∣∣ ∂2(gh)

∂xr∂xs
(y)

∣∣∣∣ ≤ |[∇P νil ]s|BV1,ν + |[∇P νil ]r|BV1,ν + |Pil(y)|BV2,ν .

Using in succession for any H1, H2, H3 ∈ Rn×n that

‖H1 +H2 +H3‖2 ≤ ‖H1‖2 + ‖H2‖2 + ‖H3‖2

and
‖H2‖2 ≤

√
n‖H2‖1, ‖H1‖2 ≤

√
n‖H1‖∞, and ‖H3‖2 ≤ n‖H3‖max,

this delivers

‖H(y)‖2 ≤
√
n‖∇P νil‖1BV1,ν +

√
n‖∇P νil‖1BV1,ν + nBV2,ν max

x∈Sν
max

1≤i≤l≤n
|Pil(x)|

≤ 2
√
nBV1,ν‖∇P νij‖1 + nBV2,νPν , (4.24)

for all y ∈ Sν , because we have |Pil(y)| ≤ ‖P (y)‖2 ≤ Pν .

Hence, (4.23) and (4.24) establish∣∣∣∣∣[P (x)V (x)]ij −
n∑
k=0

λk[P (xk)V (xk)]ij

∣∣∣∣∣
=

∣∣∣∣∣
n∑
l=1

Pil(x)Vlj(x)−
n∑
l=1

n∑
k=0

λkPil(xk)Vlj(x)

∣∣∣∣∣
≤

n∑
l=1

∣∣∣∣∣Pil(x)Vlj(x)−
n∑
k=0

λkPil(xk)Vlj(x)

∣∣∣∣∣
≤ n · (2

√
nBV1,ν‖∇P νij‖1 + nBV2,νPν) · h2

ν .
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Step 3: Bounds on f(x)f(x)T

Similarly to the previous steps, we obtain∣∣∣∣∣∣
[
f(x)f(x)T −

n∑
k=0

λkf(xk)f(xk)
T

]
ij

∣∣∣∣∣∣ ≤ 2n
(
B0,νB2,ν +B2

1,ν

)
h2
ν . (4.25)

In detail, consider the following∣∣∣∣∣∣
[
f(x)f(x)T −

n∑
k=0

λkf(xk)f(xk)
T

]
ij

∣∣∣∣∣∣ =

∣∣∣∣∣fi(x)fj(x)−
n∑
k=0

λkfi(xk)fj(xk)

∣∣∣∣∣ .
Let g(x) = fi(x)fj(x), and apply Remark 4.9 to g to get

∂g

∂xs
(y) =

∂fi(y)

∂xs
fj(y) + fi(y)

∂fj(y)

∂xs
,

∂2g

∂xr∂xs
(y) =

∂2fi
∂xr∂xs

(y)fj(y) +
∂fi
∂xs

(y)
∂fj
∂xr

(y) +
∂fi
∂xr

(y)
∂fj
∂xs

(y) + fi(y)
∂2fj
∂xr∂xs

(y).

Thus, we get
∣∣∣ ∂2g
∂xr∂xs

(y)
∣∣∣ ≤ 2B0,νB2,ν + 2B2

1,ν .

Step 4: Bounds on matrices
From the definition of Aν(y) we get∥∥∥∥∥Aν(x)−

n∑
k=0

λkAν(xk)

∥∥∥∥∥
2

≤

∥∥∥∥∥P (x)V (x)−
n∑
k=0

λkP (xk)V (xk)

∥∥∥∥∥
2

+

∥∥∥∥∥V (x)TP (x)−
n∑
k=0

λkV (xk)
TP (xk)

∥∥∥∥∥
2

+

∥∥∥∥∥(∇P νij · f(x))i,j=1,...,n −
n∑
k=0

λk(∇P νij · f(xk))i,j=1,...,n

∥∥∥∥∥
2

.

The first two norms on the right-hand side are equal because P is symmetric and therefore
the matrices in the norms are conjugate and ‖B‖2 = ‖BT ‖2 for any matrix B ∈ Rn×n.

The entry-wise bounds (4.21), (4.22) and (4.25) together with ‖H‖2 ≤ n‖H‖max for any
H ∈ Rn×n now deliver (4.20). �

Note that upper bounds on the auxiliary function V , cf. (2.2), can be obtained directly form
the data of the problem, i.e. from f . The formulas are derived in Appendix A. However, these
bounds are in general more conservative than when working directly with V .

We are now ready to prove the first main result, which shows that a CPA matrix-valued
function which fulfills the constraints of Verification Problem 4.7 is a contraction metric.

4.11 Theorem (CPA contraction metric)
Let f ∈ C3(Rn,Rn). Assume that the constraints of Verification Problem 4.7 are satisfied for
some values Pij(xk). Then the matrix-valued function P , where P (x) is interpolated from
the values Pij(xk) as in Definition 4.2, is a Riemannian metric, contracting in any compact

set K̃ ⊂ D◦T .
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Proof: Let x ∈ DT be an arbitrary point. Then there exists a Sν = co(x0,x1, . . . ,xn) ∈ T
with x =

∑n
k=0 λkxk, λk ≥ 0 and

∑n
k=0 λk = 1. The symmetry of P (x) follows directly from

Pij(xk) = Pji(xk) assumed in Input Data 1. of Verification Problem 4.7:

Pij(x) = Pij

(
n∑
k=0

λkxk

)
=

n∑
k=0

λkPij(xk) =
n∑
k=0

λkPji(xk) = Pji(x).

For positive definiteness, we have P (xk) � 0n×n for each xk ∈ VT by (VP1), so

P (x) =

n∑
k=0

λkP (xk) �
n∑
k=0

λk 0n,n = 0n,n.

Now let x ∈ K̃ ⊂ D◦T . Then there is a simplex Sν ∈ T with x ∈ Sν as well as x+θf(x) ∈ Sν

for all θ ∈ [0, θ∗] with θ∗ > 0. Then we have (P ′+)ij(x) = ∇P νij · f(x), see Remark 4.4. Since
(VP2) consists of finitely many constraints, there exists ε0 > 0 such that

Aν(xk)− κ∗νf(xk)f(xk)
T + h2

νEνIn×n � −ε0In×n

for all Sν ∈ T and all xk of Sν . Hence, for an arbitrary z ∈ Rn we get from Lemma 4.10
that

zT
(
Aν(x)− κ∗νf(x)f(x)T

)
z ≤ zT

(
n∑
k=0

λk[Aν(xk)− κ∗νf(xk)f(xk)
T + h2

νEνIn×n]

)
z

≤ −ε0
n∑
k=0

λk ‖z‖22

= −ε0 ‖z‖22 ,

that is,

λmax

(
Aν(x)− κ∗νf(x)f(x)T

)
≤ −ε0. (4.26)

Moreover, we have

vTP (x)v =

n∑
k=1

λkv
TP (xk)v ≤

n∑
k=1

λk‖P (xk)‖2 ‖v‖22 ≤
n∑
k=1

λkPν ‖v‖22 = Pν ‖v‖22.

Hence, if vTP (x)v = 1, then

1

Pν
≤ ‖v‖22. (4.27)
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Now we have with (4.26)

LP (x) = max
v∈Rn,vT P (x)v=1,

vT f(x)=0

LP (x; v)

= max
v∈Rn,vT P (x)v=1,

vT f(x)=0

1

2
vT [P (x)V (x) + V (x)TP (x) + P ′+(x)]v

= max
v∈Rn,vT P (x)v=1,

vT f(x)=0

1

2
vTAν(x)v

= max
v∈Rn,vT P (x)v=1,

vT f(x)=0

1

2
‖v‖22

vT

‖v‖2
[Aν(x)− κ∗νf(xk)f(xk)

T ]
v

‖v‖2

≤ max
v∈Rn,vTP (x)v=1

1

2
‖v‖22 λmax

(
Aν(x)− κ∗νf(x)f(x)T

)
≤ −ε0

2
min

v∈Rn,vTP (x)v=1
‖v‖22

≤ − ε0
2Pν

< 0,

using (4.27). �

4.12 Remark The following observation is useful for the application of the next theorem
with D = K◦: Given an open set D, a compact set K̃ ⊂ D, and d = 2

√
n, one can always

construct an (h, d)-bounded triangulation T such that K̃ ⊂ D◦T ⊂ DT ⊂ D. Indeed, [12,
Remark 2] shows that the so-called scaled standard triangulation T std

ρ is (h, 2
√
n)-bounded

for any h > ρ/
√
n. By setting 3ε := dist(K̃,Rn\D) = min{‖x−y‖2 : x ∈ K̃,y ∈ Rn\D} and

Kε := {x ∈ Rn : dist(x, K̃) < ε}, it is easy to see that with 0 < ρ ≤ ε/
√
n the triangulation

S := {Sν ∈ T std
ρ : Sν ∩Kε 6= ∅} fulfills K̃ ⊂ D◦T ⊂ DT ⊂ D.

So, fixing the sets D and K̃ as above, we can choose (h, d)-bounded triangulations with
d = 2

√
n and arbitrarily small h > 0 that satisfy K̃ ⊂ D◦T ⊂ DT ⊂ D.

Next, we prove that a CPA interpolation of a contraction metric satisfies the constraints of
Verification Problem 4.7.

4.13 Theorem (RBF-CPA contraction metric) Let k ∈ N with k ≥ 2 if n is odd and
k ≥ 3 if n is even. Define σ = k+dn+1

2 e and assume that Ω is an exponentially stable periodic
orbit of ẋ = f(x) where f ∈ Cσ+1(Rn;Rn). Let B ∈ Cσ(Rn;Sn×n), such that B(x) is positive
definite for all x ∈ Rn, define C(x) as in (2.6); assume M ∈ Cσ(A(Ω);Sn×n) is the solution
of PDE (2.7) from Theorem 2.6, and S is the optimal recovery of M from Theorem 3.3 with
kernel given by the Wendland function ψl,k with l = bn2 c + k + 1 and the collocation points
X. Let O ⊂ Rn be a bounded domain with C1 boundary and O ⊂ A(Ω). Let K ⊂ O be a
positively invariant compact set, such that Ω ⊂ K◦.

21



Fix constants

d ≥ 2
√
n, B∗0 ≥ max

x∈K
l=1,2,...,n

|fl(x)| , B∗1 ≥ max
x∈K

i,l=1,2,...,n

∣∣∣∣ ∂fl∂xi
(x)

∣∣∣∣ ,
B∗2 ≥ max

x∈K
i,j,l=1,2,...,n

∣∣∣∣ ∂2fl
∂xi∂xj

(x)

∣∣∣∣ , B∗3 ≥ max
x∈K

i,j,k,l=1,...,n

∣∣∣∣ ∂3fl
∂xi∂xj∂xk

(x)

∣∣∣∣ .
B∗V1 ≥ max

x∈K
r,l,j=1,2,...,n

∣∣∣∣∂Vlj∂xr
(x)

∣∣∣∣ , B∗V2 ≥ max
x∈K

r,s,j,l=1,2,...,n

∣∣∣∣ ∂2Vlj
∂xr∂xs

(x)

∣∣∣∣ .
Then there exist constants h∗X,O, h

∗, κ∗ > 0, such that for any set of collocation points X ⊂ O
with fill distance hX,O ≤ h∗X,O and any (h, d)-bounded triangulation T with DT ⊂ K◦ and
h < h∗ the following holds:
Fix the constants and variables of Verification Problem 4.7 as follows for all Sν ∈ T , xk ∈ VT ,
and 1 ≤ i ≤ j ≤ n :

Pij(xk) = Sij(xk),
1

h
≥ κ∗ν ≥ κ∗, B∗0 ≥ B0,ν ≥ max

x∈Sν
l=1,2,...,n

|fl(x)| ,

B∗1 ≥ B1,ν ≥ max
x∈Sν

i,l=1,2,...,n

∣∣∣∣ ∂fl∂xi
(x)

∣∣∣∣ , B∗2 ≥ B2,ν ≥ max
x∈Sν

i,j,l=1,2,...,n

∣∣∣∣ ∂2fl
∂xi∂xj

(x)

∣∣∣∣ ,
B∗3 ≥ B3,ν ≥ max

x∈Sν
i,j,k,l=1,...,n

∣∣∣∣ ∂3fl
∂xi∂xj∂xk

(x)

∣∣∣∣ ,
B∗V1 ≥ BV1,ν ≥ max

x∈Sν
r,l,j=1,2,...,n

∣∣∣∣∂Vlj∂xr
(x)

∣∣∣∣ , B∗V2 ≥ BV2,ν ≥ max
x∈Sν

r,s,j,l=1,2,...,n

∣∣∣∣ ∂2Vlj
∂xr∂xs

(x)

∣∣∣∣ .
Then the constraints of Verification Problem 4.7 are fulfilled by these values.
In particular, we can assert that the CPA interpolation P of S on T is a contraction metric
on any compact set K̃ with K̃ ⊂ D◦T ⊂ DT ⊂ K◦.

Proof: First note that by the construction method of Theorem 3.3, we know that the S(xk)
and hence the P (xk) are symmetric matrices. Since O is compact and M is positive definite
by Theorem 2.6, there are constants λ0,Λ0 > 0 such that for all x ∈ O we have

λ0In×n �M(x) � Λ0In×n. (4.28)

Moreover, since B(x) is also positive definite for all x ∈ A(Ω), there is a constant λ1 > 0 such
that for all x ∈ O and v ∈ Rn with ‖v‖2 = 1, and vT f(x) = 0 we have

4λ1 ≤ vTB(x)v = vTC(x)v. (4.29)

Since vT (−C(x) + 3λ1In×n) v ≤ −λ1 < 0 for all x ∈ O, by Lemma 4.6 there exists a κ∗ > 0
such that

−C(x) + 3λ1In×n − κ f(x)f(x)T ≺ 0n,n (4.30)
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for every x ∈ K and every κ ≥ κ∗. Define

C∗ := Λ0 +
1

2
λ0,

D∗ := (1 + γ)ζ‖M‖Hσ(O;Sn×n),

E∗ := n2 ·
(
4
√
nB∗V1D

∗ + 2nB∗V2C
∗ +B∗2D

∗ + 2B∗0B
∗
2 + 2 (B∗1)2

)
.

Now set

h∗ := min

(
1,

λ1

nγζ‖f‖C0(O;Rn)‖M‖Hσ(O;Sn×n) + E∗

)
,

h∗X,O := min

(
λ0

2β‖M‖Hσ(O;Sn×n)
,

λ1

β‖M‖Hσ(O;Sn×n)

)1/(σ−1−n/2)

.

Error estimates

Note that the assumptions of Theorem 3.4 hold true with σ = s − 1 and thus so does
the error estimate (3.4). Following the idea of [10, Theorem 2.4], we derive upper bounds
on the approximation error ‖M(x)− S(x)‖2 for all x ∈ K. The starting point is that for
C1, C2 ∈ Cs−1(A(Ω), Sn×n) the unique solutions Mi ∈ Cs−1(A(Ω),Sn×n), i = 1, 2 to the
linear matrix-valued PDEs

LMi(x) = −Ci(x) for all x ∈ A(Ω)

satisfying f(x0)TMi(x0)f(x0) = c0‖f(x0)‖42,

exist by Theorem 2.6 and are of the form

Mi(x) =

∫ ∞
0

Φ(t, 0; x)TCi(Stx)Φ(t, 0; x) dt+ c0f(x)f(x)T .

Thus, we obtain

‖M1(x)−M2(x)‖2 =

∥∥∥∥∫ ∞
0

Φ(t, 0; x)T [C1(Stx)− C2(Stx)] Φ(t, 0; x) dt

∥∥∥∥
2

≤
∫ ∞

0
‖Φ(t, 0; x)‖22 ‖C1(Stx)− C2(Stx)‖2 dt

≤ ‖C1 − C2‖L∞(K;Sn×n)

∫ ∞
0
‖Φ(t, 0; x)‖22 dt.

Using [10, Theorem 2.4] one can show that there are constants ρ and c1 such that
‖Φ(t, 0; x)‖2 ≤ c1e

−ρt for all x ∈ K and all t ≥ 0. And by Theorem 3.4 we get

sup
x∈K
‖M(x)− S(x)‖2 ≤ βh

σ−1−n/2
X,O ‖M‖Hσ(O;Sn×n) . (4.31)

(VP1) We have for all xk ∈ VT with (4.31) that

P (xk) = M(xk)−M(xk) + P (xk)

� λ0In×n −M(xk) + S(xk)

�
(
λ0 −

(
β h

σ−1−n/2
X,Ω

)
‖M‖Hσ(O;Sn×n)

)
In×n �

λ0

2
In×n � 0n,n.
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(VP2) We have for all xk ∈ VT , similarly to above, that

P (xk) = M(xk)−M(xk) + S(xk)

�
(

Λ0 + β h
σ−1−n/2
X,Ω ‖M‖Hσ(O;Sn×n)

)
In×n

�
(

Λ0 +
λ0

2

)
In×n = C∗In×n.

This shows for all simplices Sν ∈ T that

Pν := max
x∈Sν

‖P (x)‖2 ≤ C∗.

Consider a simplex Sν ∈ T and let 1 ≤ i ≤ j ≤ n. We show that ‖∇P νij‖1 ≤ D∗.

‖∇P νij‖1 ≤ (1 + hγ)‖S‖C2(O;Sn×n)

≤ (1 + γ)ζ‖M‖Hσ(O;Sn×n) = D∗,

where we used inequalities (4.4), (3.5), h ≤ h∗ ≤ 1, and the definition of D∗. Thus, we
have, using hν ≤ h ≤ h∗ ≤ 1 and κ∗ν ≤ 1

h ≤
1
hν

, that

h2
νEν ≤ hν n

2 ·
(
4
√
nBV1,ν‖∇P νij‖1 + 2nBV2,νPν +B2,ν‖∇P νij‖1

+2hν κ
∗
ν B0,νB2,ν + 2hν κ

∗
ν B

2
1,ν

)
≤ h∗ n2 ·

(
4
√
nBV1,νD

∗ + 2nBV2,νC
∗ +B2,νD

∗ + 2B0,νB2,ν + 2B2
1,ν

)
≤ h∗ n2 ·

(
4
√
nB∗V1D

∗ + 2nB∗V2C
∗ +B∗2D

∗ + 2B∗0B
∗
2 + 2 (B∗1)2

)
= h∗E∗. (4.32)

Fix a simplex Sν ∈ T and let xk be one of its vertices. Then xk ∈ DT ⊂ K. Since
P (xk) = S(xk) we get by (4.3)

Aν(xk) = P (xk)V (xk) + V (xk)
TP (xk) + (∇P νij · f(xk))i,j=1,2,...,n

= S(xk)V (xk) + V (xk)
TS(xk) + (∇Sij(xk) · f(xk))i,j=1,2,...,n

+((∇P νij −∇Sij(xk)) · f(xk))i,j=1,2,...,n

� LS(xk) + n · max
i,j=1,...,n

‖∇P νij −∇Sij(xk)‖1 sup
x∈O
‖f(x)‖∞In×n

� LM(xk) + LS(xk)− LM(xk) + nhγ‖S‖C2(K;Sn×n)‖f‖C0(O;Rn)In×n

� −C(xk) +
(
β h

σ−1−n/2
X,O + nhγζ‖f‖C0(O;Rn)

)
‖M‖Hσ(O;Sn×n)In×n,

where the last inequality follows by (3.4) and (3.5). Using hX,O ≤ h∗X,O, hν ≤ h ≤ h∗,
(4.32), we have with the definitions of h∗ and h∗X,O

Aν(xk) + h2
νEνIn×n − κ∗νf(xk)f(xk)

T � −C(xk) + β h∗
σ−1−n/2
X,O ‖M‖Hσ(O;Sn×n) In×n

+ nh∗γζ‖f‖C0(O;Rn) ‖M‖Hσ(O;Sn×n) In×n

+ h∗E∗In×n − κ∗νf(xk)f(xk)
T

� −C(xk) + 2λ1In×n − κ∗νf(xk)f(xk)
T

� −λ1In×n ≺ 0n×n

by (4.30) and the definition of κ∗ > 0, since κ∗ν ≥ κ∗. This completes the proof.
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�

In the next section we demonstrate the applicability of our theoretical results to three exam-
ples. Note that the periodic orbit is displayed in the figures through a numerical approxima-
tion for comparison in orange, but the methods verify rigorously that it exists, is exponentially
stable and they determine a subset of its basin of attraction.

5 Examples

We implemented our methods in C++ and ran the examples on an AMD Ryzen 2700X pro-
cessor with 8 cores at 3.7 GHz and with 64GB RAM. Appendix B details how we numerically
solve the generalized interpolation problem from Theorem 3.4 to compute the approximation
S to the contraction metric M from Theorem 2.6 using RBF.

In order to compute a positively invariant set K for the dynamical systems ẋ = f(x) we use
a procedure motivated by [7]. First we solve numerically the PDE

n∑
i=1

∂V

∂xi
(x)fi(x) = ∇V (x) · f(x) = −

√
δ2 + ‖f(x)‖22, δ = 10−8, (5.1)

using RBF. Then we use CPA interpolation VP of the numerical solution and verify where
∇VP (x) · f(x) < 0 holds true. In this area the function VP is decreasing along solution
trajectories and a sublevel set {x ∈ Rn : VP (x) ≤ c} is necessarily forward invariant, if its
boundary is wholly contained in this area. Note that we only need ∇VP (x) · f(x) < 0 in a
neighbourhood of the boundary; not on the whole sublevel set. We refer to VP as Lyapunov-
like function.
The failing points of the Lyapunov-like function (see for example Figure 2) are the points
where the function VP is not decreasing along solution trajectories. In order to obtain a
positively invariant set, we need to find a sublevel set of VP with boundary (level set) that
does not pass through these points.
In the following we apply our method to find a periodic orbit and its basin of attraction
to three examples. The parameters c for the Wendland function and the density of the
collocation grids X and the verification grids were determined by trial and error.

5.1 Unit Circle Periodic

As a first example, we consider the following system{
ẋ = x(1− x2 − y2)− y
ẏ = y(1− x2 − y2) + x

(5.2)

of which the unit circle is an exponentially stable periodic orbit and the origin is an unstable
equilibrium.

We choose B(x) = I2×2 and the collocation points X = 1.6
15 Z

2 ∩ {(x, y) ∈ R2 : 0.25 <√
x2 + y2 < 1.5} as well as the point x0 = (1, 0) with c0 = 1. We use a kernel as in (3.1),

where φ(x,y) = ψ6,4(‖x − y‖2) is given by the Wendland function ψ6,4(r) = (1 − r)10
+ [25 +

250r + 1, 050r2 + 2, 250r3 + 2, 145r4] and x+ = x for x ≥ 0 and x+ = 0 for x < 0. The
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Figure 1: Example (5.1). The black dots show the collocation points and the orange curve is the periodic

orbit. We plot the area where the constraints of Verification Problem 4.7 fail to be fulfilled; in blue if (VP1)

is violated and in red if (VP2) is violated. Where neither is violated the CPA interpolation P fulfills the

properties of a contraction metric.

corresponding Sobolev space is H5.5(O;S2×2). The grid X has N = 600 collocation points,
black dots in Figure 1. We mark the area where the constraints of Verification Problem 4.7
fail to be fulfilled; in blue if (VP1) is violated and in red if (VP2) is violated. We used the
scaled down standard triangulation, cf. [7], of the area [−1.6, 1.6] × [−1.6, 1.6] with 15002

vertices for the CPA interpolation.

Figure 2: Example (5.1). The orange curve indicates the periodic orbit. The yellow areas (left) denote the

simplices, where the Lyapunov-like function is not decreasing along solution trajectories. The green curves are

the level set of the Lyapunov-like function, which thus indicate the boundary of a positively invariant set. The

right figure shows the positively invariant set (green), the collocation points (black dots) as well as the blue

area, where (VP1), is not fulfilled and the red area, where (VP2) is not satisfied. The positively invariant set

(bounded by the green curves) is thus a subset of the basin of attraction of a unique periodic orbit within it.

In order to obtain a positively invariant set, we computed a Lyapunov-like function solving
numerically (5.1) and interpolating the solution. We used the same collocation grid X but an-
other Wendland function ψ5,3(cr) with parameter c = 0.9 and a triangulation of [−1.65, 1.65]2

with 10002 vertices. In the left-hand side plot of Figure 2, the failing points for the Lyapunov-
like function are marked as yellow dots, and the level set is the curve in green. The periodic
orbit is the curve in orange. In the right-hand side figure, the level set of the Lyapunov-like
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function and the area suggested by our method suitable for the contraction metric are put
together. Then by Theorem 2.5, the sublevel set is a subset of the basin of attraction of a
unique periodic orbit.

5.2 Van der Pol Oscillator

We consider the van der Pol system, given by{
ẋ = y
ẏ = −x+ (1− x2)y

(5.3)

which has an exponentially stable periodic orbit; the origin is an unstable equilibrium.

Figure 3: Example (5.2). The yellow areas denote the simplices, where the Lyapunov-like function is not

decreasing along solution trajectories. The green curves are the level set of the Lyapunov-like function, which

thus indicate the boundary of a positively invariant set.

In this example, we first compute a Lyapunov-like function using the collocation points
XL =

(
2.3
35 Z×

3.1
45 Z

)
∩ ([−2.3, 2.3]× [−3.1, 3.1]) ∩ {(x, y) ∈ R2 : 0.8 <

√
x2 + y2}, and

the kernel given by the Wendland function ψ5,3, with parameter c = 0.7. This results in
N = 6, 022 collocation points. Similar to the other example, in Figure 3, the failing points of
the Lyapunov-like function are marked as yellow dots, and an appropriate level set is given
in green. The periodic orbit is presented in orange.

In the next step we use another sublevel set of the Lyapunov-like function to create an
appropriate set of collocation points, namely a hexagonal grid which lies in a slightly larger
sublevel set than the one shown in Figure 3 intersected within the area [−4, 4] × [−4, 4], see
black dots in Figure 4. This results in N = 14, 922 collocation points for the calculation of the
contraction metric. Then we use a triangulation of the area [−4, 4] × [−3.9, 3.9] with 40012

vertices for the CPA interpolation. We choose B(x) = I2×2 as well as the point x0 = (2, 0),
and c0 = 1. We use the kernel given by the Wendland function ψ6,4 with parameter c = 0.55.

In Figure 4, the left-hand side figure illustrates in blue the vertices at which Constraints (VP1)
are not fulfilled, while the right-hand side figure shows in red the vertices of any simplex at
which Constraints (VP2) are not satisfied. In both figures, the black dots represent the set
of collocation points and the periodic orbit is displayed in orange.

In Figure 5 we present all results together, showing that inside the compact, connected,
and positively invariant set, bounded by the green curves, the constraints of the verification
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Figure 4: Example (5.2). The black dots show the collocation points. The blue (left) indicate the area where

(VP1) is not satisfied, and the red (right) indicate the area where (VP2) is not satisfied. The triangulation is

over the area [−4, 4] × [−3.9, 3.9] with 40012 vertices. The orange curve indicates the periodic orbit.

problem are satisfied. Hence, it is a subset of the basin of attraction of a unique periodic
orbit within it.

Figure 5: Example (5.2). The figure shows the collocation points (black dots) as well as the areas where

(VP1) and (VP2) are not fulfilled in blue and red, respectively. The orange curve indicates the periodic orbit.

The positively invariant set (bounded by the green curves) is thus a subset of the basin of attraction of a

unique periodic orbit within it.

5.3 A Three-dimensional example

We consider the following three-dimensional system from [4, Section 5.3]
ẋ = x(1− x2 − y2)− y + 0.1yz
ẏ = y(1− x2 − y2) + x
ż = −z + xy

(5.4)

which has an exponentially stable periodic orbit.

We choose the parameters of the method in the following way: B(x) = I3×3 and the collocation
points X =

(
13.98
100 Z2 × 0.09Z

)
∩ {(x, y, z) ∈ R3 : 0.75 <

√
x2 + y2 < 1.55, |z| < 0.45} as well
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Figure 6: Example (5.3). The black dots show the collocation points. The blue area (left) indicates the

boundary of simplices where (VP1) is not fulfilled. The red area (right) indicates the boundary of simplices

where (VP2) is not satisfied. The orange curve indicates the periodic orbit.

as the point x0 = (1, 0, 0) with c0 = 1. We use again the kernel given by the Wendland
function ψ6,4 with parameter c = 0.55, the corresponding Sobolev space is H6(O;S3×3). This
results in N = 3, 256 collocation points. In Figure 6, the black dots are the set of collocation
points, the orange curve is the periodic orbit, the blue area in the left hand-side represents
the boundary of area where (VP1) is not satisfied and the red surface on the right hand-
side is the boundary of area where (VP2) is not fulfilled. We have triangulated the area
[−1.67, 1.67]× [−1.67, 1.67]× [−0.67, 0.67] with 6013 vertices.

Figure 7: Example (5.3). The yellow area (left) denotes the boundary of the area where the Lyapunov-like

function is not decreasing along solution trajectories. The green surface is the level set of the Lyapunov-like

function, which thus indicates the boundary of a positively invariant set. The right figure shows the collocation

points (black dots) as well as the boundary of the area where (VP1) is not fulfilled (blue) and the boundary

of the area where (VP2) is not satisfied (red). The positively invariant set (bounded by the green surface in

the middle) is thus a subset of the basin of attraction of a unique periodic orbit within it.

For the Lyapunov-like function we use X =
(

1.3
9 Z2 × 0.1Z

)
∩ {(x, y, z) ∈ R3 : 0.75 <√

x2 + y2 < 1.25, |z| < 0.45} as the set of collocation points, and the kernel given by the
Wendland function ψ5,3 with parameter c = 0.6. In Figure 7, a suitable level set of the Lya-
punov function is presented in green, while its failing points are in yellow (left), and the last
figure (right) combines all the calculations, showing that the conditions of the verification
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problem are satisfied within a compact and positively invariant set.

6 Conclusion

In this paper we presented a method to compute and rigorously verify a contraction metric
for exponentially stable periodic orbits. Having a PDE characterization of the contraction
metric, we first used Radial Basis Functions to approximate the solution of the PDE and then
used Continuous Piecewise Affine functions to interpolate that approximation. The conditions
for a contraction metric are then rigorously verified for the interpolation by checking some
constraints at a finite number of points.

Vice versa, we proved that using this method the conditions of the verification problem are
fulfilled, whenever the collocation points are sufficiently dense and the triangulation is suffi-
ciently fine. Thus, our method is able to compute a contraction metric for any system with an
exponentially stable periodic orbit. We demonstrated the applicability of our method by com-
puting contraction metrics for three examples showing different aspects of the computation
and verification process.
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Appendices

A Upper bounds on V

We derive upper bounds on the components of V in Verification Problem 4.7, Constants 7
and 8, in terms of f . The constants Bi,ν , i = 0, 1, 2, 3, are upper bounds on the ith order
derivatives of the components of f defined in Verification Problem 4.7. Further we need the
lower bounds

0 < b0,ν ≤ min
x∈Sν

‖f(x)‖2.

We set h(y) := Vlj(y) = ∂fl
∂xj

(y) − h2
h1

(y), with functions h1(y) := ‖f(y)‖22 = f(y)T f(y), and

h2(y) :=

n∑
m=1

fl(y)fm(y)

(
∂fm
∂xj

(y) +
∂fj
∂xm

(y)

)
. Then

∂h

∂xs
=

∂2fl
∂xs∂xj

−
∂h2
∂xs

h1 − ∂h1
∂xs

h2

h2
1

,

∂2h

∂xr∂xs
=

∂3fl
∂xr∂xs∂xj

− 1

h1

∂2h2

∂xr∂xs
+
h2

h2
1

∂2h1

∂xr∂xs
+

1

h2
1

∂h2

∂xs

∂h1

∂xr
+

1

h2
1

∂h2

∂xr

∂h1

∂xs
− 2h2

h3
1

∂h1

∂xr

∂h1

∂xs
.
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The detailed calculations and estimates for h1 are

∂h1

∂xs
(y) = 2fT (y)

∂f

∂xs
(y),

∣∣∣∣∂h1

∂xs
(y)

∣∣∣∣ ≤ 2nB0,νB1,ν ,

∂2h1

∂xr∂xs
(y) = 2fT (y)

∂2f

∂xr∂xs
(y) + 2

(
∂f

∂xr
(y)

)T ∂f

∂xs
(y),∣∣∣∣ ∂2h1

∂xr∂xs
(y)

∣∣∣∣ ≤ 2n
(
B0,νB2,ν +B2

1,ν

)
and the detailed calculations and estimates for h2 are (where we skip the sum over m for
brevity)

∂h2
∂xs

=
∂fl
∂xs

fm

(
∂fm
∂xj

+
∂fj
∂xm

)
+ fl

∂fm
∂xs

(
∂fm
∂xj

+
∂fj
∂xm

)
+ flfm

(
∂2fm
∂xs∂xj

+
∂2fj

∂xs∂xm

)
∂2h2
∂xr∂xs

=
∂2fl

∂xr∂xs
fm

(
∂fm
∂xj

+
∂fj
∂xm

)
+
∂fl
∂xs

∂fm
∂xr

(
∂fm
∂xj

+
∂fj
∂xm

)
+
∂fl
∂xs

fm

(
∂2fm
∂xr∂xj

+
∂2fj

∂xr∂xm

)
+
∂fl
∂xr

∂fm
∂xs

(
∂fm
∂xj

+
∂fj
∂xm

)
+ fl

∂2fm
∂xr∂xs

(
∂fm
∂xj

+
∂fj
∂xm

)
+ fl

∂fm
∂xs

(
∂2fm
∂xr∂xj

+
∂2fj

∂xr∂xm

)
+
∂fl
∂xr

fm

(
∂2fm
∂xs∂xj

+
∂2fj

∂xs∂xm

)
+ fl

∂fm
∂xr

(
∂2fm
∂xs∂xj

+
∂2fj

∂xs∂xm

)
+ flfm

(
∂3fm

∂xr∂xs∂xj
+

∂3fj
∂xr∂xs∂xm

)
Thus,

∣∣∣∣∂h2

∂xs
(y)

∣∣∣∣ ≤ 2n
(
2B0,νB

2
1,ν +B2

0,νB2,ν

)
and∣∣∣∣ ∂2h2

∂xr∂xs
(y)

∣∣∣∣ ≤ 2n
(
6B0,νB1,νB2,ν + 2B3

1,ν +B2
0,νB3,ν

)
.

Finally, ∣∣∣∣ ∂h∂xs (y)

∣∣∣∣ ≤ B2,ν +
4nB0,νB

2
1,ν + 2nB2

0,νB2,ν

b20,ν
+

4n2B3
0,νB

2
1,ν

b40,ν
(A.1)∣∣∣∣ ∂2h

∂xr∂xs
(y)

∣∣∣∣ ≤ B3,ν +
12nB0,νB1,νB2,ν + 4nB3

1,ν + 2nB2
0,νB3,ν

b20,ν

+
4n2B2

0,νB1,ν(5B2
1,ν + 3B0,νB2,ν)

b40,ν
+

16n3B4
0,νB

3
1,ν

b60,ν
(A.2)

Therefore, we should have BV1,ν and BV2,ν greater than the right-hand side of (A.1), and
(A.2), respectively.

B Computation of S using mesh-free collocation

In this section, we provide some details about the algorithm, following [4]. To derive explicit
formulas, let us choose a radially symmetric kernel of the form φ(x,y) = ψ0(‖x − y‖2)
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and denote ψi+1(r) = 1
r
dψi
dr (r) for i = 0, 1 and r > 0. We assume that ψ1 and ψ2 can

be continuously extended to r = 0; this is, e.g. the case for sufficiently smooth Wendland
functions. We use the kernel Φ of the form (3.1), hence

Φ(·,x)ijµν = ψ0(‖ · −x‖2)δiµδjν . (B.1)

We define Esµµ to be the matrix with value 1 at position (µ, µ) and value zero everywhere

else. For µ < ν, we define Esµν to be the matrix with value 1/
√

2 at positions (µ, ν) and
(ν, µ) and value zero everywhere else. It is easy to see that {Esµν : 1 ≤ µ ≤ ν ≤ n} is an
orthonormal basis of Sn×n. We also define Eµν ∈ Rn×n to be the matrix with value 1 at
position (µ, ν) and value zero everywhere else. With the operator L defined as in (2.4) we
define LkM := LM(x)

∣∣
x=xk

.

From Theorem 3.3 or [4, Theorem 4.2], we obtain that S has the form

S(x) =
N∑
k=1

∑
1≤i≤j≤n

γ
(i,j)
k

[ n∑
µ=1

Lk(Φ(·,x)·,·,µ,µ)ijEµµ

+
1

2

n∑
µ,ν=1
µ6=ν

[Lk(Φ(·,x)·,·,µ,ν)ij + Lk(Φ(·,x)·,·,ν,µ)ij ]Eµν

]

+γ0

n∑
i,j=1

fi(x0)fj(x0)

[ n∑
µ=1

Φ(x0,x)i,j,µ,µEµµ

+
1

2

n∑
µ,ν=1
µ6=ν

[Φ(x0,x)i,j,µ,ν + Φ(x0,x)i,j,ν,µ]Eµν

]
. (B.2)

where the coefficients γk = (γ
(i,j)
k )1≤i≤j≤n and γ0 ∈ R are determined by λ

(i,j)
` (S) = −Cij(x`)

for 1 ≤ i ≤ j ≤ n, 1 ≤ ` ≤ N and λ0(S) = c0‖f(x0)‖42.

If the kernel Φ is given by (3.1), then S is given by

S(x) =

N∑
k=1

n∑
i,j=1

β
(i,j)
k

n∑
µ,ν=1

Lk(Φ(·, x)·,·,µ,ν)ijEµν

+β0φ(x0,x)f(x0)f(x0)T (B.3)

where the coefficients βk = (β
(i,j)
k )1≤i,j≤n ∈ Sn×n and β0 ∈ R are given by β0 = γ0, β

(i,i)
k =

γ
(i,i)
k and β

(i,j)
k = β

(j,i)
k = 1

2γ
(i,j)
k for i < j.

Using (B.3), we can compute S(x) with

S(x) =
N∑
k=1

[
ψ0(‖xk − x‖2)

[
V (xk)βk + βkV (xk)

T
]

+ψ1(‖xk − x‖2)〈xk − x, f(xk)〉βk
]

+β0ψ0(‖x0 − x‖2)f(x0)f(x0)T . (B.4)
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In order to compute the coefficients βk, let us first calculate the coefficients b(`,i,j),(k,µ,ν),
b0,(k,µ,ν), b(`,i,j),0 and b0,0 for 1 ≤ k, ` ≤ N , 1 ≤ i, j, µ, ν ≤ n

b0,(k,µ,ν) = ψ0(‖xk − x0‖2)

[ n∑
p=1

Vpµ(xk)fp(x0)fν(x0) +

n∑
p=1

Vpν(xk)fp(x0)fµ(x0)

]
+ψ1(‖xk − x0‖2)〈xk − x0, f(xk)〉fµ(x0)fν(x0) (B.5)

b0,0 = ψ0(0)‖f(x0)‖42. (B.6)

b(`,i,j),(k,µ,ν) = ψ0(‖xk − x`‖2)

[ n∑
p=1

Vpi(x`)Vpµ(xk)δνj + Vµi(x`)Vjν(xk)

+Viµ(xk)Vνj(x`) + δiµ

n∑
p=1

Vpν(xk)Vpj(x`)

]
+ψ1(‖xk − x`‖2)〈xk − x`, f(xk)〉 [Vµi(x`)δνj + δiµVνj(x`)]

+ψ1(‖xk − x`‖2)〈x` − xk, f(x`)〉 [Viµ(xk)δνj + δiµVjν(xk)]

−ψ1(‖xk − x`‖2)〈f(x`), f(xk)〉δiµδjν
+ψ2(‖xk − x`‖2)〈xk − x`, f(xk)〉〈x` − xk, f(x`)〉δiµδjν (B.7)

and b(`,i,j),0 = ψ0(‖x0 − x`‖2)

[ n∑
p=1

Vpi(x`)fp(x0)fj(x0) +
n∑
p=1

Vpj(x`)fp(x0)fi(x0)]

+ψ1(‖x0 − x`‖2)〈x` − x0, f(x`)〉fi(x0)fj(x0). (B.8)

It is now easy to see that

b(`,i,j),(k,µ,ν) = b(`,j,i),(k,ν,µ), (B.9)

b(`,i,j),(k,µ,ν) = b(k,µ,ν),(`,i,j), (B.10)

b0,(`,i,j) = b0,(`,j,i), (B.11)

b(`,i,j),0 = b0,(`,i,j). (B.12)

We now compute the γ
(µ,ν)
k , which solve the (smaller) linear system

N∑
k=1

∑
1≤µ≤ν≤n

c(`,i,j),(k,µ,ν)γ
(µ,ν)
k + c(`,i,j),0γ0 = LS(x`)i,j

= λ
(i,j)
` (S)

= −Cij(x`) (B.13)

N∑
k=1

∑
1≤µ≤ν≤n

c0,(k,µ,ν)γ
(µ,ν)
k + c0,0γ0 = c0‖f(x0)‖42 (B.14)

for 1 ≤ ` ≤ N , 1 ≤ i ≤ j ≤ n. The coefficients c·,· form a symmetric (see below) matrix of size

N n(n+1)
2 +1. Let us express the c(`,i,j),(k,µ,ν) in terms of the previously calculated b(`,i,j),(k,µ,ν).

we have from the first equation for all (`, i, j)

c(`,i,j),0 = b(`,i,j),0, (B.15)

c(`,i,j),(k,µ,ν) =
1

4

(
b(`,i,j),(k,µ,ν) + b(`,j,i),(k,ν,µ) + b(`,i,j),(k,ν,µ) + b(`,j,i),(k,µ,ν)

)
(B.16)
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where we assume µ < ν and i < j.

c0,0 = b0,0 (B.17)

c0,(k,µ,ν) =
1

2

(
b0,(k,µ,ν) + b0,(k,ν,µ)

)
= b0,(k,µ,ν), (B.18)

where we assume µ < ν. The matrix c·,· is symmetric due to (B.10) and (B.12).

Then we determine γ
(µ,ν)
k and γ0 by solving (B.13) and (B.14) and compute βk ∈ Sn×n from

γk; recall that β
(j,i)
k = β

(i,j)
k = 1

2γ
(i,j)
k if i < j and β

(i,i)
k = γ

(i,i)
k as well as β0 = γ0. S(x) is

then given by (B.4).
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