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Abstract. In this article we describe a novel traffic in-

formation system for the freeway traffic in North Rhine -

Westphalia, the most populous German state. It consists

of more than 4,000 loop detectors, a simulator, and a mi-

croscopic and a macroscopic graphical interface. These

should be considered as ’data input’, ’data processing’,

and ’data output’ respectively. First, we discuss the loop

detectors. Their mode of operation, how and where they

are located, and the quality of their measurements. Next,

we describe the simulator, especially its high resolution

cellular automaton model of traffic flows, the abstraction

of the road network into tracks and nodes, how the data

from the loop detectors is integrated, and we give some

details on an efficient implementation of the dynamics.

Finally, we discuss the graphical interfaces, which display

the simulated traffic states, and we give some concluding

remarks. In particular, we present the traffic information

web page www.autobahn.nrw.de, where the simulated ac-

tual traffic state on the freeway network in North Rhine -

Westphalia can be sighted.

1 Introduction

Efficient vehicular transport of people and goods is of

vital importance to any modern society. In densely pop-

ulated areas the capacity of the road network is often at

its limits and frequent traffic jams and congestions cause

a significant economic damage. Moreover, in these areas,

it is usually hardly possible or socially untenable to build

more roads. An intelligent use of the resource ’traffic in-

frastructure’ is therefore economically crucial. The Ger-

man state North Rhine -Westphalia (NRW) is an example

of such a densely populated area, where the capacity of

the road network is not able to satisfy the traffic demand

during the rush-hours. Every day there are congestions

on the autobahns (the German freeways) in the Rhine-

Ruhr region (Dortmund, Duisburg, Düsseldorf, Essen,

etc.) and in the area around Cologne and Leverkusen.

To make things even worse, the traffic demand is still

growing. For this reason, reliable traffic information sys-

tems and traffic management concepts are needed.

The cornerstone of every information system is data.

In order to gather data regarding the traffic on the auto-

bahns the German federal Ministry of Transport, Build-

ing and Housing equips the autobahns with devices that
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measure traffic data characteristics. The state of the art

devices for such measurements are the so-called loop de-

tectors, which are described in more detail in the next

section. Loop detectors are locally installed and can only

make measurements on the vehicles that drive over them.

This implies that a closely meshed series of loop detectors

is needed to deliver accurate information on the traffic

state of a freeway. Because the installation and mainte-

nance of loop detectors is expensive, it is more economical

to install less loop detectors and then use an intelligent

method to derive the traffic state in less densely equipped

areas. Our approach is to use the loop detector data as a

feedback to control the traffic state of a microscopic traffic

simulator, which uses a high resolution cellular automa-

ton model of freeway traffic.

In 1992 Nagel and Schreckenberg proposed a stochas-

tic cellular automaton model of vehicular traffic [17],

which was able to reproduce some empirically observed

non-trivial traffic phenomena like spontaneous traffic jam

formation. This publication captured the interest of the

physicists community and ever since there has been a con-

tinuous progress in the development of cellular automata

models of vehicular traffic. The most recent models are

able to reproduce free flow, spontaneous jam formation,

synchronized traffic, and meta-stability. In Section 3 we

describe the cellular automaton model we use to simulate

the traffic on the autobahn network in NRW. Further,

we consider some algorithmic implementation details and

discuss some of the challenges that arise when using this

model to simulate the traffic on such a huge and topolog-

ically complex road network. This last point is of great

importance because the traffic model we use, like most or

all traffic models, was developed and tested on topolog-

ically simple road networks and the translation to large

and topologically complex real road networks, like the

autobahn network of NRW, is non-trivial.

In Section 4 we describe the graphical interfaces we

have developed to visualize the traffic states generated by

the simulator. In order to see what is really happening in

the simulator we have a microscopic graphical interface,

in which all vehicles on an arbitrary autobahn segment

are drawn. Nowadays, powerful 3D graphics accelerators

are a commodity. For this reason we implemented it in

OpenGL as a true 3D world, in which the viewing angle

and the viewing position can be freely chosen. The per-

formance hit when run on top of the simulator is hardly

noticeable. The advantage of using 3D graphics is that

it looks realistic so potential artifacts in the modeling or

bugs in the dynamic part of the simulator code can easily

be identified. The microscopic graphical interface can be

viewed in Figure 1.

The microscopic graphical interface suits its purpose

very well, but is not practical when the macroscopic traf-

fic state is of interest. Therefore, we additionally imple-

mented a macroscopic graphical interface. In this inter-

face the autobahn network is drawn on a map of NRW

and the autobahns are partitioned in tracks. Every track

is then colored according to the current simulated traffic

state.

2 Data Input - Loop Detectors

Data regarding the traffic on the autobahns in NRW are

mainly provided by more than 4,000 loop detectors. Loop

detectors, or more exactly inductive loop detectors, have



become the most common vehicle detection systems since

their introduction in the early 1960’s. Inductance is a cir-

cuit element, usually a conducting coil, in which electrical

current is generated by electro-magnetic flux through the

circuit. The principal components of an inductive loop

detector system include one or more turn of loop wire

wound in a shallow slot sawed in the pavement, a lead-in

cable to a gate operator cabinet, and an electronic de-

tector unit housed in the cabinet. An ordinary detector

unit drives altering current through the loop system at

frequencies in the range of about 10 kHz to 200 kHz. The

loop system forms a tuned electrical circuit of which the

loop wire is the inductive element. Every time a vehicle

passes over or is stopped within the loop it decreases the

inductance of the loop. This decrease in inductance then

actuates the detector output relay (or circuit) which, in

turn, sends an impulse to the controller unit signifying

that it has detected the passage or presence of a vehi-

cle. Inductive loop detectors sense metal surfaces, not,

as often believed, heavy metal mass. The ferrous heavy

metal engine in the loop area increases the inductance

because of the ferromagnetic effect, but the peripheral

metal has the opposite effect and more than offsets the

increase from the mass of the engine and the net effect is

an overall reduction in inductance. By installing a detec-

tor consisting of two inductive loops with a short (known)

distance between them, it can measure the speed of a

passing vehicle. Because the occupancy, i.e., the time a

vehicle is within an inductive loop, can also be measured,

such a double loop detector can additionally measure the

lengths of passing vehicles.

The loop detectors that are installed on the autobahn

in NRW are subject to the technical delivery conditions

as laid down in [3]. Two double loop detector geometries

are designated, short and long. The exact geometries can

be extracted from Figure 2. The loop detectors on the

autobahns in NRW deliver aggregated measured data to

central servers every minute. The most important mea-

sured quantities include:

Jveh Total number of vehicles that passed the loop de-

tector in the last minute.

Jtru Total number of trucks that passed the loop detector

in the last minute.

vpac The average velocity of the passenger cars that passed

the loop detector in the last minute.

vtru The average velocity of the trucks that passed the

loop detector in the last minute.

The target accuracy of these data laid down by [3] can

be sighted in the following table.

Quantity Case Tolerance
Jveh ≤ 10 vehicles/min < 20%
Jveh > 10 vehicles/min < 10%
Jtru ≤ 10 vehicles/min < 35%
Jtru > 10 vehicles/min < 20%
vpac ≤ 100 km/h < 3 km/h
vpac > 100 km/h < 3%

Further, it is demanded that the fault tolerance of Jveh

is less than 3% and that of Jtru is less than 5% when

aggregated over one hour. A typical flow Jveh measured

by a single inductive loop detector on the autobahn A1

on a Friday and on a Sunday is shown in Figure 3. Note

the large fluctuations in the measured flow.

The quantities we use for the feed back control of the

simulator are the passenger car flow Jpac := Jveh − Jtru ,

the truck flow Jtru , and the vehicle density (vehicles per



km)

ρ :=
J2
veh

Jpacvpac + Jtruvtru
. (1)

It should be noted that relation (1) for the density ρ is

an approximation. It is only exact when all passenger

cars pass the loop detector with the velocity vpac and all

trucks with the velocity vtru . The true relation for the

temporally averaged density over the loop detector is

ρ =
∑

i

1
vi

[min],

where the index i represents the vehicles that pass the

detector and vi is the velocity of the i-th vehicle. How-

ever, because the loop detectors deliver aggregated data,

the relation (1) is used. For an overview of the different

estimations of the density see, e.g., [9].

3 Data Processing - Simulation

Our approach to generate the traffic state in the whole

autobahn network in NRW from the locally measured

traffic characteristics by the loop detectors is to feed the

data into a high resolution cellular automaton traffic sim-

ulator. The simulator does not only deliver information

about the traffic states in regions not covered by mea-

surement, but also delivers reasonable estimates for other

valuable quantities like travel times, a quantity that is not

directly accessible from the measurements of the detec-

tors. In this section we will first describe the microscopic

traffic dynamics model used by the simulator. Then we

discuss some details of the data structures and algorithms

we use for an efficient implementation of the simulator.

Finally, we demonstrate some additional rules that have

to be applied when simulating a real complex freeway

network.

3.1 Simulation Model

Because data is fed real-time into the simulator, it has to

be efficient, that is, at least real time. Due to their design

cellular automata models are very efficient in large-scale

network simulations [5, 19, 10, 20, 22]. The first cel-

lular automaton model for traffic flow that was able to

reproduce some characteristics of real traffic, like jam for-

mation, was suggested by Nagel and Schreckenberg [17]

in 1992. Their model has been continuously refined in

the last 10 years. The model we implemented in our

simulator uses smaller cells in comparison with the orig-

inal Nagel-Schreckenberg model, a slow-to-start rule, an-

ticipation, and brake lights. With these extensions the

cellular automaton traffic model is able to reproduce all

empirically observed traffic states. For the interpretation

of the different traffic phases in the fundamental diagram

of freeway traffic (flow in relation to density) see Figure

4. Further, we use two classes of different vehicles, pas-

senger cars and trucks, where the trucks have a lower

maximum velocity and are not allowed to drive on the

left-most lane.

Smaller cells allow a more realistic acceleration and

more speed bins. We are currently using a cell size of

1.5 m. Because the time-steps in the simulation model

are set to be 1 second, this corresponds to speed bins of

5.4 km/h and an acceleration of 1.5 m/s2 (0 − 100 km/h

in 19 s), in comparison to 7.5 m cells and an accelera-

tion of 7.5 m/s2 (0 − 100 km/h in 3.8 s), in the original

Nagel-Schreckenberg model. A passenger car occupies

2− 5 contiguous cells and a truck occupies 5 contiguous

cells. By using a slow-to-start rule [1] meta-stable traffic

flows are modeled by the simulator, a phenomenon ob-



served in empirical studies of real traffic flows [7, 11, 24].

By including anticipation and brake lights [2, 13] in the

modeling, the vehicles do not solely determine their ve-

locity in dependency of the distance to the next vehicle

in front, but also consider the speed and the deceleration

of the front vehicle.

In the Nagel-Schreckenberg model there is only one

global parameter, the probability constant (or dawdling

parameter) p. Further, the dynamical variables of the

model are dimensionless, i.e., lengths and positions are

expressed in terms of number of cells, velocities are in

terms of number of cells per second, and times are in

terms of number of seconds. Every vehicle, say vehicle n,

is completely determined by two parameters. Its position

xn(t) and its velocity vn(t) at time t. When the vehicle

n decides in the time-step t 7→ t + 1 how fast it should

drive, it does this by considering the distance dn,m(t),

i.e., the number of empty cells, to the next vehicle m

in front. The modifications of the Nagel-Schreckenberg

model mentioned above, imply that we have to add some

new parameters to the model. When the simulation al-

gorithm decides, whether a vehicle n should brake or not,

it does not only consider the distance to the next vehi-

cle m in front, but estimates how far the vehicle m will

move during this time-step (anticipation). Note, that the

moves are done in parallel, so the model remains free of

collision. This leads to the effective gap

deff
n,m(t) := dn,m(t) + max(vmin

m (t)− dS , 0)

seen by vehicle n at time t. In this formula dn,m(t) is

the number of free cells between the front of the vehicle

n and the back of the vehicle m, dS is a safety distance,

set equal to 6 cells (9 m) in our model, and

vmin
m (t) := min(dm,l(t), vm(t))− 1,

where dm,l(t) is the number of free cells between the ve-

hicle m and its next vehicle in front l, is a lower bound

of how far the vehicle m will move during this time-step.

Brake lights are a further component of the antici-

pated driving. They allow vehicles to react to distur-

bances in front earlier by adjusting their speed. Empir-

ical observations suggest [6, 16] that drivers react in a

temporal- rather than a spatial-horizon. For this reason

the velocity-dependent temporal interaction horizon

tSn(t) := min(vn(t), h)

is introduced to the model. The constant h determines

the temporal range of interaction with the brake light

bm(t) ∈ {on, off} of the next vehicle m in front. The

vehicle n does only react to bm(t) if the time to reach

the back of the vehicle m, assuming constant velocity

(vn = const .) and that the vehicle m stands still, is less

than tSn(t), that is,

thn(t) :=
dn,m(t)
vn(t)

< tSn(t).

In our model we take h equal to 7 s.

The third modification of the Nagel-Schreckenberg

model implemented in the simulator is a velocity depen-

dent randomization. It means that the probability con-

stant p is replaced with a probability function dependent

on the velocity of the vehicle. Further, the probability is

also a function of the brake light of the next vehicle in

front. In every time-step for every vehicle n with vehicle

m next in front, the probability that the vehicle n brakes



is

p = p(vn(t), bm(t)) :=


pb, if bm(t) = on

and thn(t) < tSn(t),
p0, if vn(t) = 0,
pd, default.

In our model we take pb equal to 0.96, p0 equal to 0.5,

and pd equal to 0.1. This formula for p, where p0 is signif-

icantly larger than pd, is the so-called slow-to-start rule.

It is needed for the empirically observed backward propa-

gation of traffic jam fronts and leads to meta stable traffic

flows. The constant pb controls the upstream propagation

of brake lights and is responsible for the correct mapping

of synchronized flows and the parameter pd is determines

the degree of fluctuations and thus determines the maxi-

mum flow and is the origin of spontaneous jam formation.

For a comparison of the fundamental diagram from the

model used by the simulator and from empirical data see

Figure 5. A detailed comparison of the fundamental di-

agrams, the time headway distributions, the lane usage,

and the autocorrelations and crosscorrelations of density,

velocity, and flow in the model presented here with em-

pirical data and earlier models would significantly extend

the scope of this paper. For a thorough discussion on

these we refer to [14].

To sum up, to move the vehicles forward in the net-

work, the algorithm executes the following steps in par-

allel for all vehicles n, i.e., every step is executed for all

vehicles in the network before moving to the next step:

• Step 0: Initialization:

For vehicle n find next vehicle in front m.

Set p := p(vn(t), bm(t)) and bn(t + 1) := off.

• Step 1: Acceleration:

vn(t +
1
3
) :=


vn(t), if bn(t) = on or

(bm(t) = on and
thn(t) < tSn(t)),

min(vn(t)+1, vmax), default.

• Step 2: Braking:

vn(t +
2
3
) := min(vn(t +

1
3
), deff

n,m(t)).

Turn brake light on if appropriate:

if vn(t +
2
3
) < vn(t), then bn(t + 1) := on.

• Step 3: Randomization with probability p:

vn(t+1) :=


max(vn(t + 2

3 )− 1, 0), with proba-
bility p,

vn(t + 2
3 ), default.

Turn brake light on if appropriate:

if p = pb and vn(t + 1) < vn(t +
2
3
),

then bn(t + 1) := on.

• Step 4: Move (drive):

xn(t + 1) := xn(t) + vn(t + 1).

Free lane changes are needed so that vehicles can pass

slower driving passenger cars and trucks. When design-

ing rules for the free lane changes, one should take care

of that vehicles passing other vehicles do not disturb the

traffic on the lane that they use to pass to much. Fur-

ther, one has to take account of German laws, which ban

passing a vehicle to the left. Further, it is advantageous

to prohibit trucks to drive on the leftmost lane in the

simulation, because a truck passing another truck forces

all vehicles on the left lane to reduce their velocity and



produces a deadlock that may not resolve for a long time

[12].

One more variable, ln ∈ {left, right, straight}, is needed

for the free lane changes. The variable ln notes if the ve-

hicle n should change the lane during the actual time-step

or not. This variable is not needed if the lane changes

are executed sequentially, but we prefer a parallel up-

date of the lane changes for all vehicles and that renders

this variable necessary. The asymmetric lane changing

rules we implemented in the simulator follow those of

[14]. They lead to the empirically observed lane usage

inversion on the German autobahn [15, 23]. Although

there is a right lane preference, the distribution of the

flow becomes asymmetric and the flow is higher on the

left than on the right lane. The lane usage as a func-

tion of density in the model used by the simulator can be

sighted in Figure 6. For the free lane changes to the left

the simulator executes the following steps parallel for all

vehicles n:

Passing on the lane to the left:

• Step 0: Initialization:

For vehicle n find next vehicle in front m on the

same lane, next vehicle in front s on the lane left

to vehicle n and the next vehicle r behind vehicle

s. Set ln := straight.

• Step 1: Check lane change:

if bn(t) = off and dn,m(t) < vn(t)

and deff
n,s(t) ≥ vn(t) and dr,n(t) ≥ vr(t),

then set ln := left.

• Step 2: Do lane change:

if ln = left, then change lane for vehicle n

to the left.

The definition of the gaps deff
n,s(t) and dr,n(t) is an obvious

extensions of the definition above, one simply considers

a copy of the vehicle n on its left side. These passing

rules used by the simulator can verbally be summed up

as follows: First, a vehicle checks if it is hindered by the

predecessor on its own lane. Then it has to take into

account the gap to the successor and to the predecessor

on the lane to the left. If the gaps allow a safe change

the vehicle moves to the left lane. For the right free lane

changes the simulator executes the following steps paral-

lel for all vehicles n:

Return to a lane on the right:

• Step 0: Initialization:

For vehicle n find next vehicle in front s on the lane

right to vehicle n and next vehicle r behind vehicle

s. Set ln := straight.

• Step 1: Check lane change:

if bn(t) = off and thn,s(t) > 3 and

(thn,m(t) > 6 or vn(t) > dn,m(t))

and dr,n(t) > vr(t),

then set ln := right.

• Step 2: Do lane change:

if ln = right, then change lane for vehicle n

to the right.



Thus, a vehicle returns to the right lane if there is no

disadvantage in regard to its velocity and it does not

hinder any other vehicle by doing so.

It should be noted, that it is not possible to first check

for all lane changes to the left and to the right and then

perform them all in parallel without doing collision de-

tection and resolution. This would be necessary because

there are autobahns with three lanes and more. To over-

come this difficulty, the lane changes to the left, that is

passing, are given a higher priority than the lane changes

to the right. For a systematic approach to multi-lane traf-

fic, i.e., lane-changing rules, see, for example, [18]. For a

detailed discussion of the different models see [8, 21, 4]

and the references therein.

3.2 Some Details on an Efficient Implementation

A crucial point in the design of a large scale traffic simu-

lator is the software-engineering part. On the one hand,

the chosen data structures have to be abstract enough

to model the occurrences in the whole autobahn network

and it should be reasonably easy to generalize and make

changes in the design. The latter is particulary of great

importance, because there is a continuous progress in the

theory of traffic flows and traffic flow modeling and the

desire for some extensions in the simulator in the future

is a certainty. On the other hand, an efficient algorithmic

implementation of the dynamics is a necessity for such a

large road network. A simulator that is not able to sim-

ulate the traffic flow in at least real time during the rush

hours is of little value and if it is intended to use the

simulator for traffic forecast, it has to be multiple real

time.

Let us start with the representation of the road net-

work in the simulator. Like in other simulators (e.g.,

[5, 26]) the network consists of basic elements, tracks and

nodes. A track is a directed bundle of parallel lanes or,

more casually, simply a piece of autobahn. A vehicle on

a track has local coordinates (cell and lane) with respect

to the track. A node is a connection between two tracks.

It stores information about where the position of the exit

is on the track to be left, about how to leave the track

(lane change, drive out of it), and how to calculate the

new local coordinates on the target track (cell offset, lane

offset). Every track contains pointers to all nodes rele-

vant to it. Further, a track keeps information in every cell

relevant to the vehicles. The vehicles have a fast access

to this information through their position (cell and lane).

A track stores the vehicles on it in a doubly linked list of

pointers to the vehicles, see Figure 7. This list is sorted

with regard to the cell positions of the vehicles in every

time-step of the simulation. Note, that this is necessary,

because the relative order of the vehicles can change due

to vehicles passing. By doing this, the vehicles have a

fast access to their neighbors, which is essential for the

efficiency of the simulator.

By combining tracks and nodes, one is able to build

the complex structures of the autobahn network. Exam-

ples for these structures are:

• junctions, where vehicles enter or leave the auto-

bahn,

• intersections, at which two autobahns are connected,

and,

• triangular intersections, where two autobahns meet,



but one ends.

Other geometries are rarely found in the autobahn net-

work in NRW. The complexity of an intersection can be

derived from Figure 8. However, they can be constructed

easily with the elements used here. Using these tracks

and nodes the autobahn network of NRW was recon-

structed. It comprises 3,988 links, 830 on- and off-ramps,

and 67 intersections. The overall length of the lanes is

approximately 12,200 km, corresponding to more than 8

million 1.5 m cells. The data used for the network were

extracted from the NW-SIB, a Geographic Information

System (GIS) database provided by the state of NRW.

The concept of a vehicle is implemented as a C++

class. The vehicle contains its position (cell and lane), the

node it is heading to, a pointer to the track it is on, and

various other bookkeeping data. To keep the simulator

flexible the most important functions, CheckLaneChange

and CalculateVelocity (see last section), are imple-

mented as static function pointers. An alternative would

be to use class inheritance, but this would imply the over-

head of virtual functions (every vehicle would carry a

pointer to a virtual table where the addresses of the func-

tions to be used is stored), so we decided against it. For

efficiency reasons it is crucial to use a custom memory

allocation for the vehicles, i.e., redefine operator new and

delete for the vehicles class.

The simulation performs multiple real-time on a mod-

ern personal computer and in regard to the ever growing

computational power it looks promising to combine the

simulation with historical data for a traffic forecast. We

are currently working on this and the preliminary results

look promising. A further application for the simulator

is to research the influence of new roads or construction

areas on the global traffic flow.

3.3 Additional Rules for Real Traffic Simulation

The cellular automaton model for traffic flow used by

the simulator was designed to be able to reproduce the

main aspects of the fundamental diagram for real traffic

flows (vehicle flow as a function of vehicles per km) and

the most important microscopic properties, like the time

headway distribution. This ability was verified by testing

it on topologically simple networks. When simulating the

traffic on a large and topologically complex network, like

the autobahn network in NRW, some extensions to the

cellular automaton model have to be introduced. One

is the guidance of vehicles and another is a strategy to

integrate the loop detectors data into the simulation.

A real driver usually has the intention to reach some

goal with his driving. This makes it necessary to incor-

porate routes in the modeling. In principle, there are two

different strategies to solve this problem. One can assign

an origin and a destination to each vehicle, choose a route

between the origin and the destination, and then guide it

through the network according to this route [19, 20]. For

the autobahn network in NRW origin-destination infor-

mation with a sufficient temporal and spatial resolution

is not available. Therefore, the vehicles are guided in the

network according to the probabilities calculated on the

basis of the measured data. This means that a vehicle

is not guided through the whole network, but every time

it reaches a new track it will decide in accordance with

the measured probabilities how it leaves the tracks, i.e.,

which node it chooses.

To implement this we use forced lane changes. Forced



lane changes are necessary so that the vehicles can drive

from on-ramps onto the autobahn, from the autobahn

onto off-ramps, when the autobahn narrows, and when

vehicles drive from one particular section of the auto-

bahn onto another over an intersection. Forced lane

changes differ from free lane changes in a fundamental

way. While free lane changes give vehicles the oppor-

tunity to pass slower driving vehicles and thus reduce

disturbances, forced lane changes stem from the need to

reach a node and are obviously a source for disturbances.

The simulator uses gradually increasing harsh mea-

sures to force lane changes. At the beginning of an area

where a vehicle could change to the target lane, it does

so if the gap is sufficiently large and no vehicle is severely

hindered. At the end of the area it will bully into any

gap regardless of velocity differences. Further, a vehicle

driving on its target lane should not leave the lane to

pass another vehicle. An efficient implementation of this

strategy is to store the lane change information in the

cells. This gives a fast access through the coordinates of

a vehicle. Of course this information depends on the node

chosen and whether the vehicle is a truck or a passenger

car. Because of this, every track has several versions of

the lane change information.

To incorporate the real world measurements from the

loop detectors into the simulation, vehicle-moving, insert-

ing, and removing algorithms have to be applied. This

is done at the so-called checkpoints, which are located

at those places in the network where a complete cross-

section is available, i.e., all lanes are equipped with a

loop detector. Every time, when checkpoint-data is pro-

vided, the simulator uses the measured values to adjust

the traffic state in the simulation. The first step is to

try to move vehicles behind the checkpoint in front of it

and vice versa. If this is not enough to adjust the traf-

fic state, vehicles are inserted or removed. This should

be preferred to pure insert/removal strategies, because

these can completely fail due to positive feedback if a

non-existing traffic jam is produced by the simulator. In

this case the simulator measures a much lower flow than

the loop detectors, so vehicles are added periodically to

the ever growing traffic jam leading to a total breakdown.

For realistic results it is further important to min-

imize the perturbation of the dynamics present in the

network due to the data integration. Therefore, we pro-

pose a method which follows the idea to add the vehicles

to the network “adiabatically”, i.e., without disturbing

the system. If the number of vehicles crossing the check-

point is lower than measured by the detector, vehicles are

inserted with regard to the measured mean velocity and

mean gap, so that the system is not disturbed, i.e., no

vehicle has to brake due to the insertion. This method is

therefore called “Tuning of the Mean Gap” [10].

4 Data Output - Visualization of the

Simulated Traffic

As mentioned in the introduction we have two different

graphical interfaces to the simulated traffic, microscopic

and macroscopic. In the microscopic graphical interface

the individual vehicles are drawn in 3D and in the macro-

scopic the tracks are colored according to their current

traffic state. The microscopic graphical interface was im-

plemented for internal use. It is a valuable tool to verify

the (visual) correctness of the dynamics. It is possible



to choose an arbitrary position in the autobahn network

as a viewpoint or to follow an individual vehicle includ-

ing all its dynamical variables. It was implemented in

OpenGL using the open source OpenGL Utility Toolkit

(GLUT), which is a system independent window pro-

gramming toolkit for 3D graphics. Although the micro-

scopic graphical interface is very useful for its purpose, it

is not dedicated to visualize the macroscopic traffic state

in a large area.

The design of the simulator was financially supported

by the Ministry of Transport, Energy and Spatial Plan-

ning of North Rhine - Westphalia, the reason being, that

it wanted a novel web-based traffic information system

for the public. This information system is provided by

a Java applet at the URL http://www.autobahn.nrw.de,

which was implemented in a collaboration with TraffGo

GmbH. The Java applet draws a map of NRW, where the

autobahns are colored according to the simulated traffic

state, from light green for free flow, over dark green and

dark yellow for dense and very dense synchronized flow,

to red for a traffic jam. In Figure 9 the macroscopic traf-

fic state as displayed by the applet can be sighted. In

Figure 10 the connection between the microscopic and

macroscopic graphical interfaces is shown.

The Java applet displays some other information of

use to the drivers, the most important being construc-

tion areas and lane blockages. Construction areas are

drawn at the appropriate positions on the map and their

estimated influence on the traffic is shown through red

construction signs for a high risk of a traffic jam and

green construction signs for a low risk. Lane blockages

are drawn at the appropriate positions and their cause is

written in a window at the bottom. For both construc-

tion areas and lane blockades, the estimated duration is

available too. The response to this novel information sys-

tem has been very positive and TV-stations, newspapers,

and magazines have made positive tests where they com-

pare the actual traffic state to the traffic state presented

by our simulator. At the moment we are working on an

extended information system, where not only the actual

traffic state is graphically available, but also a prognosis

for the traffic state in 30 minutes.

5 Summary

In this paper we present a novel traffic information system

for the autobahn network in North Rhine -Westphalia,

the most populous German state. This information sys-

tem consists of three parts: data input, data processing,

and data output. The data input are the measurements of

more than 4,000 loop detectors that are installed locally

on the autobahn and deliver data minute by minute to

central servers. The data processing is done by an micro-

scopic traffic simulator. The simulator uses an advanced

cellular automaton model of traffic flow and adjusts the

traffic state in accordance with measurements of the real

traffic flow provided by the loop detectors. The cellu-

lar automaton model, the abstraction of the network, the

guidance of the vehicles, and the data integration strate-

gies to periodically adjust the traffic flow in the simula-

tion in accordance with the measured flow on the auto-

bahn were discussed, as well as some details on an effi-

cient implementation of the dynamics. The data output

is provided by a microscopic and a macroscopic graphical

interface. The microscopic graphical interface draws the



vehicles on an arbitrary piece of the autobahn in 3D. The

macroscopic graphical interface colors the autobahn on a

map of NRW according to the simulated current traffic

state. It is available at www.autobahn.nrw.de.

We are working on several extension of this traffic

information system, the most important being the gen-

eration of a high quality traffic prognosis based on the

actual simulated traffic and historical data. Further, we

are extending the simulator so that it can be used for the

research of traffic flow control. This is not as simple as it

might seem, because any information about the current

traffic state available to the public is likely to influence

the strategy of the drivers [25].
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Figure 1: Part of the autobahn in the simulator.

Figure 2: The double inductive loop detector geometries from [3].



Figure 3: The flow measured by an inductive loop detector on a Friday (the solid line) and on a Sunday (the dashed
line).

Figure 4: The different traffic states in the fundamental diagram.



Figure 5: Fundamental diagrams from the traffic model (B) and from empirical data (A).

Figure 6: Lane usage as a function of density for the asymmetric lane change rules used by the simulator.



Figure 7: The tracks in the simulator store its vehicles as sorted doubly linked lists.

Figure 8: The complex structure of an intersection.



Figure 9: The simulated traffic state on the autobahns in NRW on the 13th January 2003. Due to bad weather
conditions all major autobahns were jammed.



Figure 10: In the Java applet the macroscopic simulated traffic state is presented graphically.


