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Abstract. Closed physical systems eventually come to rest, the reason being that
due to friction of some kind they continuously lose energy. The mathematical exten-
sion of this principle is the concept of a Lyapunov function. A Lyapunov function for
a dynamical system, of which the dynamics are modelled by an ordinary differential
equation (ODE), is a function that is decreasing along any trajectory of the system
and with exactly one local minimum. This implies that the system must eventu-
ally come to rest at this minimum. Although it has been known for over 50 years
that the asymptotic stability of an ODE’s equilibrium is equivalent to the existence
of a Lyapunov function for the ODE, there has been no constructive method for
non-local Lyapunov functions, except in special cases. Recently, a novel method to
construct Lyapunov functions for ODEs via linear programming was presented [5],
[6], which includes an algorithmic description of how to derive a linear program for
a continuous autonomous ODE, such that a Lyapunov function can be constructed
from any feasible solution of this linear program. We will show how to choose the
free parameters of this linear program, dependent on the ODE in question, so that
it will have a feasible solution if the equilibrium at the origin is exponentially sta-
ble. This leads to the first constructive converse Lyapunov theorem in the theory of
dynamical systems/ODEs.

1. Introduction. The Lyapunov theory of dynamical systems is the most useful
general theory for studying the stability of nonlinear systems. It is covered in
practically all textbooks on dynamical systems, on control theory, and in many
on ordinary differential equation. It was introduced by Alexandr M. Lyapunov in
1892 and includes two methods, Lyapunov’s indirect method and Lyapunov’s direct
method. An English translation of his work can be found in [4]

Lyapunov’s direct method is a mathematical extension of the fundamental phys-
ical observation, that an energy dissipative system must eventually settle down
to an equilibrium point. It states that if there is an energy-like function V for a
system that is strictly decreasing along its trajectories, then the trajectories are
asymptotically attracted to an equilibrium. The function V is then said to be a
Lyapunov function for the system. The region (basin, domain) of attraction of a
dynamical systems’ equilibrium is the set of those initial values that are attracted
to the equilibrium by the dynamics of the system. A Lyapunov function provides
through its preimages a lower bound of the region of attraction. This bound is
non-conservative in the sense that it extends to the boundary of the domain of the
Lyapunov function.
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There are several possibilities to formulate Lyapunov’s direct method. In this
work we follow [5] and only consider autonomous systems, where the dynamics of
the system are modelled by an ODE

ẋ = f(x), (1.1)

where f ∈ [C2(U)]n is a function from a domain U ⊂ R
n into R

n, of which every
component fi is two-times continuously differentiable, and such that 0 ∈ U and
f(0) = 0. We denote by φ the solution of (1.1), i.e., φ̇(t, ξ) = f(φ(t, ξ)) and
φ(0, ξ) = ξ for all ξ ∈ U and all (possible) t. In this case the direct method of
Lyapunov states (proved in Chapter 1 in [5]):

Proposition 1.1. Consider the ODE (1.1) and assume there is a domain M in
R

n, 0 ∈ M ⊂ U , and a locally Lipschitz and positive definite function V : M −→ R,
i.e. V (0) = 0 and V (x) > 0 for all x ∈ M \ {0}, such that

lim sup
s→0+

V (φ(t, ξ) + sf(φ(t, ξ))) − V (φ(t, ξ))
s

< 0

for all φ(t, ξ) ∈ M. Then every compact and connected component of every preim-
age V −1([0, c]), c > 0, that contains the origin is a subset of the region of attraction

{ξ ∈ U∣∣ lim sup
t→+∞

φ(t, ξ) = 0}

of the equilibrium at the origin.

The function V in Proposition 1.1 is called a Lyapunov function for the ODE
(1.1). For every ξ �= 0 in the domain of the Lyapunov function, the function
t �→ V (φ(t, ξ)) is strictly decreasing on its domain. This implies, that every solution
of (1.1) does either leave the boundary of the domain of the Lyapunov function
or it is asymptotically attracted to the origin. The latter is necessarily the case
if the initial value ξ is in a connected compact component of a set of the form
V −1([0, c]), c > 0, that contains the origin, for else there would be a contradiction
to t �→ V (φ(t, ξ)) being decreasing.

Proposition 1.1 is particularly useful when V ∈ C1(M) and f ∈ [C1(U)]n. Then

lim sup
s→0+

V (φ(t, ξ) + sf(φ(t, ξ))) − V (φ(t, ξ))
s

= [∇V ](φ(t, ξ)) · f(φ(t, ξ))

by the chain rule and the right-hand side of this equation can be checked for nega-
tivity without knowing the solution φ.

Although the direct method of Lyapunov is a powerful tool for stability analysis,
its main drawback has been the lack of a general constructive method to generate
non-local Lyapunov functions for nonlinear ODEs. A local Lyapunov function can
be constructed if the Jacobian A ∈ R

n×n of f at the origin is Hurwitz, i.e., if all
its eigenvalues have strictly negative real parts. Then, by the indirect method of
Lyapunov, V (x) = xTPx is a Lyapunov function for the system, where P ∈ R

n×n

is the unique positive definite solution to the matrix equation †

PA+ATP = −In.
However, the domain of this Lyapunov function depends on the approximation error
x �→ f(x) − Ax and, except when f is a linear function, almost certainly does not
give a good estimate of the region of attraction.

†AT and xT denote the transposes of the matrix A and the vector x respectively and In

denotes the n × n-identity matrix.
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Let us make this point more clear. The function V (x) = xTPx is a global
Lyapunov function for the linearized ODE ẋ = Ax. This follows by V (0) = 0,
V (0) > 0 for all x ∈ R

n \ {0}, and

d

dt
V (φlin) = φT

linP φ̇lin + φ̇
T

linPφlin

= φT
linPAφlin + φT

linA
TPφlin

= −‖φlin‖2
2 (< 0 for all φlin ∈ R

n \ {0}),
where φlin is the solution of the linear ODE. From this it deduces that

d

dt
V (φ) = −‖φ‖2

2 + φTP (f(φ) −Aφ) + (f(φ) −Aφ)TPφ

≤ −‖φ‖2
2 + 2‖φ‖2‖P‖2‖f(φ) −Aφ‖2

and because f is differentiable at the origin there is a neighborhood of the origin,
such that

‖f(x) −Ax‖2 <
‖x‖2

2‖P‖2
, (1.2)

for all x in this neighborhood. By these calculations, V is a Lyapunov function for
the ODE (1.1) too. However, its domain is not only restricted by the equilibrium’s
region of attraction, but also to the neighborhood in which (1.2) is satisfied, that
can be very small in comparison to the equilibrium’s region of attraction.

The original Lyapunov theory did not secure the existence of non-local Lyapunov
functions for nonlinear systems with asymptotically stable equilibrium points. The
first results on this subject are due to K. P. Perdeskii in 1933 [2]. The general case
was resolved somewhat later. Theorems, which secure the existence of a Lyapunov
or a Lyapunov-like function for a system possessing an equilibrium, stable in some
sense, are called converse theorems in the theory of dynamical systems. Most of the
converse theorems are proved by actually constructing by a finite or a transfinite
procedure a Lyapunov(-like) function. Unfortunately, the trajectories of the respec-
tive systems are used by the construction methods. Hence, the converse theorems
have up-to-date been pure existence theorems.

In this work we will prove a constructive converse theorem on exponential sta-
bility. The origin is said to be an exponentially stable equilibrium of (1.1), if and
only if there is a neighborhood N of the origin and constants α > 0 and m ≥ 1,
such that ‖φ(t, ξ)‖2 ≤ me−αt‖ξ‖2 for all ξ ∈ N and all t ≥ 0. The concept of an
exponentially stable equilibrium point is mathematically more restrictive than the
concept of an asymptotically stable equilibrium, where it is only demanded that
there exists a neighborhood of the origin, such that all trajectories starting in this
neighborhood are attracted to the equilibrium by the dynamics of the system. Al-
though asymptotically stable equilibrium points that are not exponentially stable
are an interesting mathematical phenomena (bifurcations), most equilibrium points
are either exponentially stable or not asymptotically stable. If the real parts of all
eigenvalues of the Jacobian of f at the origin are strictly negative, then the origin
is exponentially stable, if one is strictly positive then it is unstable, and if all are
negative and some are equal to zero, then the origin might be asymptotically stable
but is not exponentially stable. In the last case the stability is usually not robust
to perturbations and is therefore not desirable in engineering applications. A well
known non-constructive converse theorem on exponential stability states:
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Proposition 1.2. Assume there is an open neighborhood N ⊂ U of the ori-
gin and constants α > 0 and m ≥ 1, such that the solution φ of (1.1) sat-
isfies ‖φ(t, ξ)‖2 ≤ me−αt‖ξ‖2 for all ξ ∈ N and all t ≥ 0. Suppose the set
{y ∈ R

n
∣∣‖y‖2 ≤ m supz∈N ‖z‖2} is a compact subset of U and let L be a Lips-

chitz constant for f on this compact set. Let T be a constant satisfying

T >
1
α

ln(m).

Then the function W : N −→ R,

W (ξ) :=
∫ T

0

‖φ(τ, ξ)‖2
2dτ

for all ξ ∈ N , satisfies the inequalities

1 − e−2LT

2L
‖ξ‖2

2 ≤W (ξ) ≤ m2 1 − e−2αT

2α
‖ξ‖2

2

and
∇W (ξ) · f(ξ) ≤ −(1 −m2e−2αT )‖ξ‖2

2

for all ξ ∈ N , and is therefore a Lyapunov function for (1.1).

This converse theorem is useful because it gives an explicit formula for a Lya-
punov function for the system. However, it is non-constructive because this formula
involves the solution of the ODE, which, in general, is not known. We will use this
Lyapunov function formula to prove that the linear program in the next section has
a feasible solution.

The Lyapunov theory is covered in numerous textbooks on dynamical systems,
e.g., [3], [7], [2], [9]. In [5] Proposition 1.1 (Theorem 1.16) and Proposition 1.2
(Theorem 1.18) are proved in the form stated here.

2. Lyapunov functions with linear programming. A linear programming
problem is a set of linear constraints, under which a linear function is to be mini-
mized. There are several equivalent forms for a linear programming problem, one
of them being

minimize g(x) := cT x, (2.3)
given Cx ≤ b, x ≥ 0,

where r, s > 0 are integers, A ∈ R
s×r is a matrix, b ∈ R

s and c ∈ R
r are vectors,

and x ≤ y denotes xi ≤ yi for all i. The function x �→ cTx is called the objective
of the linear program and the conditions Cx ≤ b and x ≥ 0 together are called
the constraints. A feasible solution of the linear program is a vector y ∈ R

s that
satisfies the constraints, i.e., y ≥ 0 and Cy ≤ b. There are numerous algorithms
known for solving linear programming problems, the most commonly used being the
simplex method [8] or interior point algorithms [10], e.g., Karmarkar’s algorithm.
Both need a starting feasible solution for initialization. A feasible solution to (2.3)
can be found by introducing slack variables y ∈ R

s and solving the linear program:

minimize g(
[
x
y

]
) :=

s∑
i=1

yi, (2.4)

given
[
C −Is

] [x
y

]
≤ b,

[
x
y

]
≥ 0,
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which has the feasible solution x = 0 and yT = (|b1|, |b2|, . . . , |bs|). If this linear
program has the solution g([x′ y′]T ) = 0, then x′ is a feasible solution to (2.3), if
the minimum of g is strictly larger than zero, then (2.3) has no feasible solution.

In order to construct a Lyapunov function with linear programming, one needs
a class of continuous functions that are easily parameterized. The class of the
continuous piecewise affine ‡ functions is an obvious candidate. In this section
we first introduce continuous piecewise affine (CPWA) functions R

n −→ R. The
advantage of this function space is, that it is isomorphic to a vector space where
the vectors are finite tuples of real numbers. Then we state a linear program,
where the components of the matrix C and the vector b above are calculated using
the function f from (1.1), that has the property, that every feasible solution to it
parameterizes a CPWA Lyapunov function for (1.1).

CPWA Lyapunov functions. Let N > 0 be an integer and 0 = y0 < y1 <
. . . < yN be real numbers. Let P : [0, N ] −→ [0, yN ] be the unique continuous
function, of which the restriction on every interval [i, i + 1], i = 0, 1, . . . , N − 1,
is affine, and such that P (i) = yi for all i = 0, 1, . . . , N . Define the function
PS : [−N,N ]n −→ [−yN , yN ]n through

PS(x) :=
n∑

i=1

sign(xi)P (|xi|)ei,

where ei is the i-th unit vector. Denote by Symn the set of the permutations of
{1, 2, . . . , n} and define for every σ ∈ Symn the set

Sσ := {y ∈ R
n
∣∣ 0 ≤ yσ(1) ≤ yσ(2) ≤ . . . ≤ yσ(n) ≤ 1}.

Denote by P({1, 2, . . . , n}) the power-set of {1, 2, . . . , n} and define the function
RJ : R

n −→ R
n for every J ∈ P({1, 2, . . . , n}) through

RJ (x) :=
n∑

i=1

(−1)χJ (i)xiei,

where χJ : {1, 2, . . . , n} −→ {0, 1} is the characteristic function of the set J . A
continuous function G : [−yN , yN ]n −→ R is an element of CPWA[PS, [−N,N ]n],
if and only if its restriction G|PS(RJ (z+Sσ)) to the set PS(RJ (z + Sσ)) is affine
for every J ∈ P({1, 2, . . . , n}) and every z ∈ {0, 1, . . . , N − 1}n. It is proved in
Chapter 4 in [5] that the mapping

CPWA[PS, [−N,N ]n] −→ R
(2N+1)n

, G �→ (az)z∈{−N,−N+1,...,N}n ,

where az = G(PS(z)) for all z ∈ {−N,−N + 1, . . . , N}n, is a vector space isomor-
phism. This means, that we can uniquely define a function in CPWA[PS, [−N,N ]n]
by assigning it values on the grid {−yN ,−yN−1, . . . , y0, y1, . . . , yN}n.

In Chapter 5 in [5] it is proved, that every feasible solution of the following linear
program § parameterizes a CPWA Lyapunov function for (1.1).

‡The popular term for piecewise affine is piecewise linear. In higher mathematics the term
linear is reserved for affine mappings that vanish at the origin, so we use the term affine to avoid
confusion.

§Actually, the linear program in [5] is more general than the linear program presented here.
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The linear program. Consider the system (1.1). Let N > 0 be an integer and
let 0 = y0 < y1 < . . . < yN be real numbers, such that [−yN , yN ]n ⊂ U . Let
PS : R

n −→ R
n be defined through the constants y0, y1, . . . , yN as above and let d

be an integer, 0 ≤ d < N . The linear program is constructed in the following way:
i) Define the sets

X ‖·‖2 := {‖x‖2

∣∣ x ∈ {y0, y1, . . . , yN}n}
and

G := {−yN ,−yN−1, . . . , y0, y1, . . . , yN}n \ {−yd−1,−yd−2, . . . , y0, y1, . . . , yd−1}n.

ii) Define for every σ ∈ Symn and every i = 1, 2, . . . , n+ 1, the vector

xσ
i :=

n∑
j=i

eσ(j).

iii) Define the set

Z := [{0, 1, . . . , N − 1}n \ {0, 1, . . . , d− 1}n] × P({1, 2, . . . , n}).
iv) For every (z,J ) ∈ Z define for every σ ∈ Symn and every i = 1, 2, . . . , n+1,

the vector
y(z,J )

σ,i := PS(RJ (z + xσ
i )).

v) Define the set

Y := {{y(z,J )
σ,k ,y(z,J )

σ,k+1}
∣∣(z,J ) ∈ Z and k ∈ {1, 2, . . . , n}}.

The set Y is the set of neighboring grid points in the grid G.
vi) For every (z,J ) ∈ Z and every r, s = 1, 2, . . . , n let B(z,J )

rs be a real constant,
such that

B(z,J )
rs ≥ max

i=1,2,...,n
sup

x∈PS(RJ (z+ ]0,1[n))

∣∣∣∣ ∂2fi

∂xr∂xs
(x)
∣∣∣∣ .

vii) For every (z,J ) ∈ Z, every k, i = 1, 2, . . . , n, and every σ ∈ Symn, define

A
(z,J )
σ,k,i := |ek · (y(z,J )

σ,i − y(z,J )
σ,n+1)|.

viii) Let ε > 0 and δ > 0 be arbitrary constants.
The variables of the linear program are:

Ψ[x], for all x ∈ X ‖·‖2 ,

Γ[x], for all x ∈ X ‖·‖2 ,

V [x], for all x ∈ G,
C[{x,y}], for all {x,y} ∈ Y.

The linear constraints of the linear program are:
LC1) Let x1, x2, . . . , xK be the elements of X ‖·‖2 in an increasing order. Then

Ψ[x1] = Γ[x1] = 0,

εx2 ≤ Ψ[x2],

εx2 ≤ Γ[x2],

and for every i = 2, 3, . . . ,K − 1:
Ψ[xi] − Ψ[xi−1]

xi − xi−1
≤ Ψ[xi+1] − Ψ[xi]

xi+1 − xi
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and
Γ[xi] − Γ[xi−1]
xi − xi−1

≤ Γ[xi+1] − Γ[xi]
xi+1 − xi

.

LC2) For every x ∈ G:
Ψ[‖x‖2] ≤ V [x].

If d = 0, then
V [0] = 0.

If d ≥ 1, then for every x ∈ G ∩ {−yd,−yd−1, . . . , y0, y1, . . . , yd}n:

V [x] ≤ Ψ[yN ] − δ.

LC3) For every {x,y} ∈ Y:

−C[{x,y}] · ‖x − y‖∞ ≤ V [x] − V [y] ≤ C[{x,y}] · ‖x− y‖∞.
LC4) For every (z,J ) ∈ Z, every σ ∈ Symn, and every i = 1, 2, . . . , n+ 1:

−Γ[‖y(z,J )
σ,i ‖2] ≥

n∑
j=1

V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
fσ(j)(y

(z,J )
σ,i )

+
1
2

n∑
r,s=1

B(z,J )
rs A

(z,J )
σ,r,i (A(z,J )

σ,s,i +A
(z,J )
σ,s,1 )

n∑
j=1

C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}].

Note that the values of the constants ε > 0 and δ > 0 do not affect whether there
is a feasible solution of the linear program or not. If there is a feasible solution for
ε := ε′ > 0 and δ := δ′ > 0, then there is a feasible solution for all ε := ε∗ > 0 and
δ := δ∗ > 0. Just multiply all variables with max{ε∗/ε′, δ∗/δ′}. Those familiar with
linear programming might wonder why there is no objective defined. The reason
is, that the objective of the linear program is not needed. It can, however, be used
to optimize the Lyapunov function in some way.

Assume that the linear program above has a feasible solution. Then we can define
the functions ψ, γ : [0,+∞[−→ R by using the values of the variables Ψ[x],Γ[x]
and the function V Lya : [−yN , yN ]n −→ R by using the values of the variables V [x]
in the following way:

Let x1, x2, . . . , xK be the elements of X ‖·‖2 in an increasing order. We define the
piecewise affine functions

ψ(y) := Ψ[xi] +
Ψ[xi+1] − Ψ[xi]

xi+1 − xi
(y − xi)

and

γ(y) := Γ[xi] +
Γ[xi+1] − Γ[xi]
xi+1 − xi

(y − xi),

for all y ∈ [xi, xi+1] and all i = 1, 2, . . . ,K − 1. The values of ψ and γ on ]xK ,+∞[
do not really matter, but to have everything properly defined, we set

ψ(y) := Ψ[xK−1] +
Ψ[xK ] − Ψ[xK−1]

xK − xK−1
(y − xK−1)

and

γ(y) := Γ[xK−1] +
Γ[xK ] − Γ[xK−1]
xK − xK−1

(y − xK−1)

for all y > xK . Clearly the functions ψ and γ are continuous. The function
V Lya ∈ CPWA[PS, [−N,N ]n] is defined by assigning

V Lya (x) := V [x]
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for all x ∈ G. In Chapter 5 in [5] it is proved, that ψ and γ are convex and strictly
increasing and that

ψ(‖x‖) ≤ V Lya(x)

for all x ∈ [−yN , yN ]n\ ] − yd, yd[n, and

lim sup
s→0+

V (φ(t, ξ) + sf(φ(t, ξ))) − V (φ(t, ξ))
s

≤ −γ(‖φ(t, ξ)‖2),

for all φ(t, ξ) ∈ ] − yN , yN [n\[−yd, yd]n. This implies that if d = 0, then V Lya is a
Lyapunov function for (1.1). Further, it is proved for d > 0, that for every c > 0,
such that the connected component of

{x ∈ ] − yN , yN [n\ [−yd, yd]n
∣∣V Lya(x) ≤ c} ∪ [−yd, yd]n

containing the origin is compact, there is a tξ ≥ 0 for every ξ in this component
such that φ(tξ, ξ) ∈ [−yd, yd]n.

3. The constructive converse theorem. In this section we prove the main re-
sults of this work, a constructive converse theorem on exponential stability for (1.1).
We do this by using the Lyapunov function from Proposition 1.2 to assign values to
the variables in the linear program, and then we prove that the linear constraints of
the linear program are satisfied with these values. Let us discuss this central point
of this work in detail.

We want to prove that the linear program presented in the last section always
succeeds in parameterizing a Lyapunov function on a domain [−a, a]n, a > 0, for
an ODE of the form (1.1) if:

• f is a class C2 function.
• There are constants m ≥ 1 and α > 0, such that the inequality ‖φ(t, ξ)‖2 ≤
me−αt‖ξ‖2 is satisfied for all ξ ∈ [−a, a]n and all t ≥ 0.

If we do this, then we have proved a constructive converse theorem on exponential
stability. To prove that the linear program always succeeds in parameterizing a
Lyapunov function, we show that it has at least one feasible solution. This is
sufficient, because there are algorithms, e.g., the simplex method, that find a feasible
solution if the set of feasible solutions is not empty. From the elementary theory of
ODEs, e.g., the theorem of Picard-Lindelöf, we know that the system (1.1) possesses
a unique solution φ and from Proposition 1.2 we know that the function

W (ξ) :=
∫ T

0

‖φ(τ, ξ)‖2
2dτ

is a Lyapunov function for the system on the domain [−a, a]n. Because this formula
for W involves the solution of the ODE (1.1) and its algebraic form, in general, is
not known, Proposition 1.2 is not constructive. However, if we can use W and
f to assign values to the variables of the linear program in the last section, e.g.,
V [x] := W (x), and then show, that the constraints of the linear program are
satisfied when the variables have these values, then we have proved that its set of
feasible solutions is not empty. Note, that we do not know the numeric values we
assign to the variables of the linear program. We only know their formulas, which
involve the (unknown) solution φ of the ODE (1.1).

First, we state a well known theorem that is useful for the proof of the construc-
tive converse theorem.
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Theorem 3.1. Let V ⊂ R
n be a domain, [t0, t1] be an interval, −∞ < t0 < t1 <

+∞, and g,h : V −→ R
n be continuously differentiable functions. Suppose there

are positive real constants M and L, such that

‖g(t,x) − h(t,x)‖2 ≤M

and

‖[∇xg](t,x)‖2 ≤ L

for all t ∈ [t0, t1] and all x ∈ V. Let t �→ y(t) be the solution of the initial value
problem

ẋ = g(t,x), x(t0) = y0

and t �→ z(t) be the solution of the initial value problem

ẋ = h(t,x), x(t0) = z0.

Then

‖y(t) − z(t)‖2 ≤ ‖y0 − z0‖2e
L(t−t0) +M

eL(t−t0) − 1
L

for all t ∈ [t0, t1].

Proof:
See, for example, Theorem 2.5 in [3].

�

We now state and prove the main theorem of this work.

Theorem 3.2 (Constructive converse theorem on exponential stability). Consider
the system (1.1) and assume there are constants α > 0, m ≥ 1, and a > 0 such
that [−ma,ma]n ⊂ U and the inequality ‖φ(t, ξ)‖2 ≤ me−αt‖ξ‖2 is satisfied for all
t ≥ 0 and all ξ ∈ [−a, a]n. Then, for every neighborhood N ⊂ U of the origin, we
can choose the constants d, N , and y0, y1, . . . , yN in the linear program in Section
2, such that yN = a, ]−yd, yd[n⊂ N , and such that the linear program has a feasible
solution, i.e., it will succeed in parameterizing a CPWA Lyapunov function for the
system.

More exactly, let T , η, aij, and b′ijk, be strictly positive real constants fulfilling

T >
1
α

ln(m),

η < 1 −m2e−2αT ,

aij ≥ sup
ξ∈[−ma,ma]n

∣∣∣∣ ∂fi

∂xj
(ξ)
∣∣∣∣ for i, j = 1, 2, . . . , n,

b′ijk ≥ sup
ξ∈[−ma,ma]n

∣∣∣∣ ∂2fi

∂xk∂xj
(ξ)
∣∣∣∣ for i, j, k = 1, 2, . . . , n,
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and set

A :=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
an1 an2 . . . ann

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

2

,

Brs := max
i=1,2,...,n

b′irs for r, s = 1, 2, . . . , n,

bij :=

(
n∑

k=1

b′ijk
2

) 1
2

for i, j = 1, 2, . . . , n,

and

B :=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝
b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

. . .
bn1 bn2 . . . bnn

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

2

.

Define the constants C, D, E, and F by

C := 2nmB

[
e(3A−α)T − 1

3A− α
− e(2A−α)T − 1

2A− α

]
,

D := n(e2AT − 1),

E := 1 −m2e−2αT ,

F := 2nm
e(A−α)T − 1

A− α

n∑
r,s=1

Brs,

and let c > 0 be a constant, such that ] − c, c[n⊂ N and

c < a

√
α

nm2A
· 1 − e−2AT

1 − e−2αT
.

Let hd > 0 be a real constant, such that

hd ≤ −(Cc+D) +
√

(Cc+D)2 + 4(E − η)c(1 +
√
n)F

2(1 +
√
n)F

and such that
d :=

c

hd

is an integer. Set
yi := ihd for i = 0, 1, . . . , d

and choose yi+1 for i = d, d+ 1, . . . , N − 1, such that

yi < yi+1 ≤ yi + min

{
yi,

−(Cyi +D) +
√

(Cyi +D)2 + 4(E − η)yi(1 +
√
n)F

2(1 +
√
n)F

}

and
yN = a,

where N is a large enough integer. Define the function

PS : [−N,N ]n −→ [−yN , yN ]n
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through the constants y0, y1, . . . , yN as in Section 2. Finally, set

B(z,J )
rs := Brs

for all (z,J ) ∈ Z and all r, s = 1, 2, . . . , n. Then the linear program in Section 2
has a feasible solution.

Proof:
Assign values to the constants ε and δ by the formulas

ε := hd · min
{
η,

1 − e−2AT

2A

}
and

δ :=
1 − e−2AT

2A
y2

N − nm2 1 − e−2αT

2α
c2.

If there is a feasible solution for these particular ε > 0 and δ > 0, then there is a
feasible solution for all ε > 0 and δ > 0. Let W : [−a, a]n −→ R be the Lyapunov
function from Proposition 1.2,

W (ξ) :=
∫ T

0

‖φ(τ, ξ)‖2
2dτ

for all ξ ∈ [−a, a]n. Then the inequalities

1 − e−2AT

2A
‖ξ‖2

2 ≤W (ξ) ≤ m2 1 − e−2αT

2α
‖ξ‖2

2 (3.5)

and
∇W (ξ) · f(ξ) ≤ −(1 −m2e−2αT )‖ξ‖2

2

are satisfied for all ξ ∈ [−a, a]n and all ξ ∈ ] − a, a[n respectively.
We assign values to the variables Ψ[xi], Γ[xi], and V [x], and we successively

show that the linear constraints LC1-LC4 of the linear program are satisfied when
the variables have these values.

Assign

Ψ[xi] :=
1 − e−2AT

2A
x2

i

and

Γ[xi] := ηx2
i

for i = 1, 2, . . . ,K, where x1, x2, . . . , xK are the elements of X ‖·‖2 in an increasing
order. Set

V [x] := W [x]

for all x ∈ G and set

C[{x,y}] := 2m
e(A−α)T − 1

A− α
max{‖x‖2, ‖y‖2}

for all {x,y} ∈ Y.
LC1: The equality Ψ[x1] = Γ[x1] = 0 is trivial. Because of x2 = hd and the
definition of ε, εx2 ≤ Ψ[x2] and εx2 ≤ Γ[x2] follow immediately. To see that

Ψ[xi] − Ψ[xi−1]
xi − xi−1

≤ Ψ[xi+1] − Ψ[xi]
xi+1 − xi
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and
Γ[xi] − Γ[xi−1]
xi − xi−1

≤ Γ[xi+1] − Γ[xi]
xi+1 − xi

just note that they are equivalent to

xi + xi−1 =
x2

i − x2
i−1

xi − xi−1
≤ x2

i+1 − x2
i

xi+1 − xi
= xi+1 + xi,

which is obvious.
LC2: By (3.5),

Ψ[‖x‖2] ≤ V [x]

for all x ∈ G. Let y ∈ G ∩ {−yd,−yd−1, . . . , y0, y1, . . . , yd}n. It follows from (3.5)
and the definition of c and δ, that

V [y] ≤ m2 1 − e−2αT

2α
‖y‖2

2 ≤ m2 1 − e−2αT

2α
nc2

=
1 − e−2AT

2A
y2

N − δ ≤ Ψ[yN ] − δ

LC3: Let {x,y} ∈ Y. From the definition of Y it follows, that there is a constant
h ∈ R and an i ∈ {1, 2, . . . , n}, such that x − y = hei. Further, there is a z on the
line segment between x and y, such that

V [x] − V [y]
‖x− y‖∞ = sign(h)

∂W

∂xi
(z).

Because f is a class C2 function, then so is φ (see, for example, Theorem 1.4 in [5])
and

∂

∂t

(
∂φ

∂ξi
(t, ξ)

)
=

∂

∂ξi

(
∂φ

∂t
(t, ξ)

)

=
∂

∂ξi
f(φ(t, ξ))

= [∇f ](φ(t, ξ)) · ∂φ

∂ξi
(t, ξ)

implies that the functions

τ �→ 0 and τ �→ ∂φ

∂ξi
(τ, z)

are the solutions of the initial value problems

ẋ = [∇f ](φ(t, z))x, x(0) = 0,

and

ẋ = [∇f ](φ(t, z))x, x(0) = ei,

respectively. Hence, we get by Theorem 3.1 that

‖∂φ

∂ξi
(τ, z)‖2 ≤ eAτ
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and then ∣∣∣∣V [x] − V [y]
‖x − y‖∞

∣∣∣∣ =
∣∣∣∣∂W∂ξi (z)

∣∣∣∣
=

∣∣∣∣∣2
∫ T

0

φ(τ, z) · ∂φ

∂ξi
(τ, z)dτ

∣∣∣∣∣
≤ 2
∫ T

0

‖φ(τ, z)‖2‖∂φ

∂ξi
(τ, z)‖2dτ

≤ 2
∫ T

0

me−ατ‖z‖2e
Aτdτ

= 2m‖z‖2
e(A−α)T − 1

A− α
≤ C[{x,y}].

LC4: Let (z,J ) ∈ Z, σ ∈ Symn, and define

h := max
i=1,2,...,n

‖y(z,J )
σ,i − y(z,J )

σ,i+1‖∞.
Note that

n∑
j=1

V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
fσ(j)(y

(z,J )
σ,i )

=
n∑

j=1

(
V [y(z,J )

σ,j ] − V [y(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W

∂ξσ(j)
(y(z,J )

σ,i )

)
fσ(j)(y

(z,J )
σ,i )

+ ∇W (y(z,J )
σ,i ) · f(y(z,J )

σ,i ).

Now, for every j = 1, 2, . . . , n there is a zj on the line segment between y(z,J )
σ,j and

y(z,J )
σ,j+1, such that

V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
=

∂W

∂ξσ(j)
(zj).

This means that∣∣∣∣∣ V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W

∂ξσ(j)
(y(z,J )

σ,i )

∣∣∣∣∣ =
∣∣∣∣ ∂W∂ξσ(j)

(zj) − ∂W

∂ξσ(j)
(y(z,J )

σ,i )
∣∣∣∣

= 2

∣∣∣∣∣
∫ T

0

[
φ(τ, zj) · ∂φ

∂ξσ(j)
(τ, zj) − φ(τ,y(z,J )

σ,i ) · ∂φ

∂ξσ(j)
(τ,y(z,J )

σ,i )
]
dτ

∣∣∣∣∣
= 2

∣∣∣∣∣
∫ T

0

[
φ(τ,y(z,J )

σ,i ) ·
(

∂φ

∂ξσ(j)
(τ, zj) − ∂φ

∂ξσ(j)
(τ,y(z,J )

σ,i )
)

+
∂φ

∂ξσ(j)
(τ, zj) ·

(
φ(τ, zj) − φ(τ,y(z,J )

σ,i )
)]
dτ

∣∣∣∣
≤ 2
∫ T

0

[
‖φ(τ,y(z,J )

σ,i )‖2‖ ∂φ

∂ξσ(j)
(τ, zj) − ∂φ

∂ξσ(j)
(τ,y(z,J )

σ,i )‖2

+‖ ∂φ

∂ξσ(j)
(τ, zj)‖2‖φ(τ, zj) − φ(τ,y(z,J )

σ,i )‖2

]
dτ.
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By the exponential stability

‖φ(τ,y(z,J )
σ,i )‖2 ≤ me−ατ‖y(z,J )

σ,i ‖2.

By Theorem 3.1

‖φ(τ, zj) − φ(τ,y(z,J )
σ,i )‖2 ≤ ‖zj − y(z,J )

σ,i ‖2e
Aτ ≤ h

√
neAτ .

Because
τ �→ 0, τ �→ ∂φ

∂ξσ(j)
(τ, zj), and τ �→ ∂φ

∂ξσ(j)
(τ,y(z,J )

σ,i )

are the solutions of the initial value problems

ẋ = [∇f ](φ(t, zj))x, x(0) = 0,

ẋ = [∇f ](φ(t, zj))x, x(0) = eσ(j),

and

ẋ = [∇f ](φ(t,y(z,J )
σ,i ))x, x(0) = eσ(j),

respectively, we get by the same theorem, that

‖ ∂φ

∂ξσ(j)
(τ, zj)‖2 ≤ eAτ

and

‖ ∂φ

∂ξσ(j)
(τ, zj) − ∂φ

∂ξσ(j)
(τ,y(z,J )

σ,i )‖2

≤ sup
‖x‖2≤eAτ

t∈[0,τ]

‖([∇f ](φ(t, zj)) − [∇f ](φ(t,y(z,J )
σ,i )))x‖2

eAτ − 1
A

≤ sup
t∈[0,τ ]

‖[∇f ](φ(t, zj)) − [∇f ](φ(t,y(z,J )
σ,i ))‖2e

Aτ e
Aτ − 1
A

= eAτ e
Aτ − 1
A

sup
t∈[0,τ ]

∥∥∥∥∥
(
∂fr

∂xs
(φ(t, zj)) − ∂fr

∂xs
(φ(t,y(z,J )

σ,i ))
)

(r,s)∈{1,2,...,n}2

∥∥∥∥∥
2

≤ eAτ e
Aτ − 1
A

sup
t∈[0,τ ]

∥∥∥∥(brs‖φ(t, zj)) − φ(t,y(z,J )
σ,i )‖2

)
(r,s)∈{1,2,...,n}2

∥∥∥∥
2

≤ eAτ e
Aτ − 1
A

B sup
t∈[0,τ ]

‖φ(t, zj)) − φ(t,y(z,J )
σ,i )‖2

≤ hB
√
ne2Aτ

eAτ − 1
A

.

Hence, ∣∣∣∣∣ V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W

∂ξσ(j)
(y(z,J )

σ,i )

∣∣∣∣∣
≤ 2
∫ T

0

(
me−ατ‖y(z,J )

σ,i ‖2hB
√
ne2Aτ

eAτ − 1
A

+ eAτh
√
neAτ
)
dτ

= 2h
√
n

(
mB

A
‖y(z,J )

σ,i ‖2

[
e(3A−α)T − 1

3A− α
− e(2A−α)T − 1

2A− α

]
+
e2AT − 1

2A

)

=
h

A
√
n

(C‖y(z,J )
σ,i ‖2 +D),
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from which
n∑

j=1

V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
fσ(j)(y

(z,J )
σ,i )

≤ ‖
n∑

j=1

(
V [y(z,J )

σ,j ] − V [y(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W

∂ξσ(j)
(y(z,J )

σ,i )

)
eσ(j)‖2‖f(y(z,J )

σ,i )‖2

− (1 −m2e−2αT )‖y(z,J )
σ,i ‖2

2

≤ h

A
(C‖y(z,J )

σ,i ‖2 +D)A‖y(z,J )
σ,i ‖2 − E‖y(z,J )

σ,i ‖2
2

= h(C‖y(z,J )
σ,i ‖2 +D)‖y(z,J )

σ,i ‖2 − E‖y(z,J )
σ,i ‖2

2

follows.
Because
1
2

n∑
r,s=1

B(z,J )
rs A

(z,J )
σ,r,i

(
A

(z,J )
σ,s,1 +A

(z,J )
σ,s,i

) n∑
j=1

C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}]

≤ 1
2

n∑
r,s=1

Brsh(h+ h)
n∑

j=1

2m
e(A−α)T − 1

A− α
max{‖{y(z,J )

σ,j ‖2, ‖y(z,J )
σ,j+1‖2}

≤ h22nm
e(A−α)T − 1

A− α

(
‖y(z,J )

σ,i ‖2 + h
√
n
) n∑

r,s=1

Brs

≤ h2F
(
‖y(z,J )

σ,i ‖2 + h
√
n
)
,

−Γ[‖y(z,J )
σ,i ‖2] ≥

n∑
j=1

V [y(z,J )
σ,j ] − V [y(z,J )

σ,j+1]

eσ(j) · (y(z,J )
σ,j − y(z,J )

σ,j+1)
fσ(j)(y

(z,J )
σ,i ) (3.6)

+
1
2

n∑
r,s=1

B(z,J )
rs A

(z,J )
σ,r,i

(
A

(z,J )
σ,s,1 +A

(z,J )
σ,s,i

) n∑
j=1

C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}],

if

− η‖y(z,J )
σ,i ‖2

2 ≥
h(C‖y(z,J )

σ,i ‖2 +D)‖y(z,J )
σ,i ‖2 − E‖y(z,J )

σ,i ‖2
2 + h2F

(
‖y(z,J )

σ,i ‖2 + h
√
n
)
.

The last inequality is equivalent to

E − η ≥ h

(
C +

D

‖y(z,J )
σ,i ‖2

)
+

h2F

‖y(z,J )
σ,i ‖2

(
1 +

h
√
n

‖y(z,J )
σ,i ‖2

)

and because for every component zl of z,

‖y(z,J )
σ,i ‖2 ≥ yzl

for all i = 1, 2, . . . , n+ 1, (3.6) is satisfied if

E − η ≥ h

(
C +

D

yzk

)
+
h2F

yzk

(
1 +

h
√
n

yzk

)
for some k ∈ {1, 2, . . . , n}.

Now, let k ∈ {1, 2, . . . , n} be such that

h = yzk+1 − yzk
.
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There are two cases that must be considered.
The case zk ≥ d. Then

h = yzk+1 − yzk

≤ min

{
yzk

,
−(Cyzk

+D) +
√

(Cyzk
+D)2 + 4(E − η)yzk

(1 +
√
n)F

2(1 +
√
n)F

}
.

Because h ≤ yzk
,

E − η ≥ h

(
C +

D

yzk

)
+
h2F

yzk

(
1 +

h
√
n

yzk

)
is satisfied if

E − η ≥ h

(
C +

D

yzk

)
+
h2F

yzk

(
1 +

√
n
)
.

That this inequality is satisfied, follows from

h ≤ −(Cyzk
+D) +

√
(Cyzk

+D)2 + 4(E − η)yzk
(1 +

√
n)F

2(1 +
√
n)F

.

The case zk < d. Then h = hd and because at least one component of z must be
larger than or equal to d, (3.6) is satisfied if

E − η ≥ h

(
C +

D

c

)
+
h2F

c

(
1 +

h
√
n

c

)
,

which follows from

h = hd ≤ −(Cc+D) +
√

(Cc+D)2 + 4(E − η)c(1 +
√
n)F

2(1 +
√
n)F

.

�
The proof does not work for d = 0, but because N can be taken arbitrary small

no information is lost. Every solution of (1.1) that starts in a compact connected
component of a set of the form {x ∈ U∣∣V Lya(x) ≤ c} ∪ [−yd, yd]n, where c > 0
is an arbitrary positive constant, is driven into the set N by the dynamics of the
system. This means that if N is contained in the region of attraction, which can
always be taken care of by Lyapunov’s indirect method, then every such a solution
is asymptotically attracted to the equilibrium. Further, it should be noted that
there is no need to a-priori calculate the constants d, N , and the grid steps (the
yi). It makes more sense to initially try some values for d (d = 0 inclusive), the yi,
and set N := d + 1, and then, in case the linear program has no feasible solution,
make the yi smaller and d larger. After having found a feasible solution, one can
experiment with N := d + 2 and so on. Theorem 3.2 secures the success of such
a procedure in a finite number of steps. In the next section we give examples of
Lyapunov functions generated with the linear program.

4. Examples. In this section we give three examples of CPWA Lyapunov functions
generated by the linear program. The open source linear solver GLPK ¶ was used
to solve the linear programs with the simplex method. We choose∑

x∈G
(V [x] − Ψ[‖x‖2])

¶GNU Linear Programming Kit, available at http://www.gnu.org/software/glpk/glpk.html.
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as the (optional) objective in all the examples. It does not optimize the Lyapunov
function in any specific way, but it leads to reasonable looking ones.

In these examples, we want to compare the basins of attraction secured by the
CPWA Lyapunov functions parameterized by the linear program in Section 2 with
the Lyapunov functions from the indirect method of Lyapunov, presented in Section
1. To do this we first derive a general formula for the size of a cubic region, in which
the inequality (1.2) holds. Let r > 0 be a constant and let bijk, i, j, k = 1, 2, . . . , n,
be upper bounds of the second-order partial derivatives of the components fi of the
function f from the system (1.1) on the set [−r, r]n,

bijk ≥ sup
ξ∈[−r,r]n

∣∣∣∣ ∂2fi

∂xk∂xj
(ξ)
∣∣∣∣ .

Assume a is a constant such that 0 ≤ a ≤ r and consider the right-hand side of the
inequality (1.2) for ‖x‖∞ = a. Then, by Taylor’s theorem,

‖f(x) −Ax‖2 ≤ ‖1
2

n∑
i,j,k=1

xjxkbijkei‖2

≤ a2

2

√√√√√ n∑
i=1

⎛
⎝ n∑

j,k=1

bijk

⎞
⎠

2

.

Because a = ‖x‖∞ ≤ ‖x‖2, it follows that the inequality (1.2) is satisfied for all
‖x‖∞ = a if

a <
1

‖P‖2

√∑n
i=1

(∑n
j,k=1 bijk

)2 . (4.7)

This means that the inequality (1.2) is satisfied for all x in the set

L := ]
−1

‖P‖2

√∑n
i=1

(∑n
j,k=1 bijk

)2
,

1

‖P‖2

√∑n
i=1

(∑n
j,k=1 bijk

)2 [n ∩[−r, r]n,

so L it is a valid domain for the Lyapunov function V (x) := xTPx for the system
(1.1). By these calculations the set L′ := {y ∈ R

n
∣∣ yTPy < c}, where c > 0 is

(uniquely) chosen such that L′ ⊂ L and ∂L′ ∩ ∂L �= ∅, is the best lower bound of
the region of attraction of the equilibrium this Lyapunov function delivers.

Example 1. The first example is a CPWA Lyapunov function

V Lya : [−1.056, 1.056]2 −→ R

for (1.1), where

f(x, y) =
( −y
x− y(1 − x2 + 0.1x4)

)
, (4.8)

d = 0, N = 8, and y0 = 0, y1 = 0.078, y2 = 0.280, y3 = 0.510, y4 = 0.696,
y5 = 0.842, y6 = 0.961, y7 = 1.024, y8 = 1.056. It is drawn in Figure 1.

The indirect method of Lyapunov delivers V Lya
ind (x) = xTPx, where

P =
(

3
2 − 1

2− 1
2 1

)
.
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Figure 1. CPWA Lyapunov function for (4.8).

The only non-zero second-order partial derivatives of the components of f are

∂2f2
∂x∂x

(x, y) = 2y − 1.2x2y and
∂2f2
∂x∂y

(x, y) = 2x− 0.4x3,

so, with r = y8, the only non-zero bijk are b211 = 2.112 and b212 = b221 = 1.641.
The formula (4.7) gives

a <
1

5+
√

5
4

√
(2.112 + 1.641 + 1.641)2

= 0.1025.

From this, it follows that V Lya
ind is a Lyapunov function for the system (1.1) on the

domain [−0.102, 0.102]2 and {x ∈ R
2
∣∣ xTPx < 0.00867} is its best lower bound of

the equilibrium’s region of attraction. In Figure 2 the regions of attraction secured
by the CPWA Lyapunov function V Lya and the Lyapunov function V Lya

ind from
Lyapunov’s indirect method are compared graphically.

Example 2. The second example is a CPWA Lyapunov function

V Lya : [−1.686, 1.686]2 −→ R

for ẋ = f(x), where

f(x, y) =
(

y
−x+ 1

3x
3 − y

)
, (4.9)

d = 0, N = 8, and y0 = 0, y1 = 0.156, y2 = 0.513, y3 = 0.880, y4 = 1.204,
y5 = 1.427, y6 = 1.580, y7 = 1.662, y8 = 1.686. It is drawn in Figure 3. This
systems has further equilibria at (−√

3, 0) and (
√

3, 0). It is interesting to compare
this Lyapunov function to Figure 3.9 in [3], which contains a phase portrait of
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Figure 2. Lower bounds of the region of attraction for (4.8) se-
cured by V Lya

ind (the small ellipse) and the CPWA Lyapunov func-
tion V Lya .

Figure 3. CPWA Lyapunov function for (4.9).

the same system. The indirect method of Lyapunov delivers the same Lyapunov
function V Lya

ind (x) = xTPx as in Example 1. The only non-zero second-order partial
derivative of the components of f is

∂2f2
∂x∂x

(x, y) = 2y,

so the formula (4.7) gives

a <
1

5+
√

5
4

√
(2a)2

,

i.e., we can set a = 0.52, where we improved the estimate given by (4.7) by taking
advantage of the simple algebraic forms of the bijk. ¿From this it follows that
V Lya
ind is a Lyapunov function for the system (1.1) on the domain [−0.52, 0.52]2 and
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{x ∈ R
2
∣∣ xTPx < 0.225} is its best lower bound of the equilibrium’s region of

attraction. In Figure 4 the regions of attraction secured by the CPWA Lyapunov
function V Lya and the Lyapunov function V Lya

ind from Lyapunov’s indirect method
are compared graphically.

Figure 4. Lower bounds of the region of attraction for (4.8) se-
cured by V Lya

ind (the ellipse) and the CPWA Lyapunov function
V Lya .

Example 3. The last example is a little different to the first two. It is a CPWA
Lyapunov function

V Lya :
(
[−23.967, 23.968]2 \ R

2
>0

)⋃
[0, 1.647]2 −→ R

for (1.1), where

f(x, y) =
(−2x+ xy

−y + xy

)
, (4.10)

d = 0, N = 17, and y0 = 0, y1 = 0.353, y2 = 0.755, y3 = 1.131, y4 = 1.437, y5 =
1.647, y6 = 2.600, y7 = 3.732, y8 = 5.164, y9 = 6.820, y10 = 8.734, y11 = 10.903,
y12 = 13.072, y13 = 15.241, y14 = 17.410, y15 = 19.579, y16 = 21.748, y17 = 23.917.
It is drawn in Figure 5. It is a simple task to generalize the linear program from
Section 2 for such a domain. For the details see [5]. Note, that it is not possible to
use the linear program to parameterize a Lyapunov function on [−23.967, 23.968]2

because the system has a further equilibrium (saddle point) at the point (1, 2).
The indirect method of Lyapunov delivers V Lya

ind (x) = xTPx, where

P :=
(

1
4 0
0 1

2

)
.

Instead of using the formula (4.7) to estimate its domain, we refer to Example 3.21
in [3] where a better estimate, {x ∈ R

2
∣∣ xTPx ≤ 0.79} instead of {x ∈ R

2
∣∣ xTPx <

0.5} by formula (4.7), is derived on the lower bound of the region of attraction
for the equilibrium at the origin for this particular ODE. In Figure 6 the regions
of attraction secured by the CPWA Lyapunov function V Lya and the Lyapunov
function V Lya

ind from Lyapunov’s indirect method are compared graphically. It is
interesting to compare the lower bound of the region of attraction delivered by the
CPWA Lyapunov function in Figure 6 with Figure 3.12 in [3], where the trajectory-
reversing method [1] is used to estimate the region of attraction for the same system.



A CONSTRUCTIVE CONVERSE LYAPUNOV THEOREM 677

Figure 5. CPWA Lyapunov function for (4.10).

Figure 6. Lower bounds of the region of attraction for (4.10) se-
cured by V Lya

ind (the small ellipse) and the CPWA Lyapunov func-
tion V Lya .

The lower bound delivered by the CPWA Lyapunov function is by far better than
the best estimate from the trajectory-reversing method.

5. Conclusions. In this paper a constructive converse theorem on exponential
stability is proved for class C2 autonomous ODEs. The Lyapunov function from
Proposition 1.2, which is a non-constructive converse theorem, is used to assign
values to the variables of the linear programming problem introduced in [5] and
[6] and defined in Section 2 here. We prove that the linear constraints of the
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linear programming problem are satisfied by these values. It follows that the linear
programming problem can be used to generate a Lyapunov function, which can be
used to estimate the basin of attraction of the corresponding equilibrium point.

Software, written in the C++ programming language, to generate arbitrary
dimensional CPWA Lyapunov functions is available on the internet at the URL
http://www.traffic.uni-duisburg.de/∼hafstein. It was used for the examples pre-
sented in this work. The complexity of this method to generate Lyapunov functions
via linear programming is determined by the complexity of finding a feasible so-
lution of the associated linear programming problem. We consider the complexity
as a function of the number of elements |G| in G, i.e., the number of the points,
at which we calculate the value of the Lyapunov function (see Section 2), and
the dimension n of the domain of f from (1.1). It is easy to see that for every
point in G the number of variables introduced to the linear programming problem
is O(n) (the C[{x,y}]) and the number of constraints introduced is O(n!) (LC4).
Because we have to solve the linear program (2.4) to find a feasible solution to our
original problem, we are interested in the complexity of solving (2.3) when C is a
O(|G|n!) × O(|G|n!)-matrix. The complexity of solving linear programming prob-
lems is not a closed problem. However, the average running time of our problem
should be O((|G|n!)4) when solved with the simplex method according to [8]. The
CPWA Lyapunov functions in the examples presented here were generated in a few
seconds (examples 1 and 2) and approximately 2 minutes (Example 3) on a PC
with a 2GHz CPU.

It is the belief of the author, that this general method to numerically generate
Lyapunov functions for (nonlinear) ODEs might lead to advantages in the stability
theory of ODEs, the stability theory of continuous dynamical systems, and control
theory.
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