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MINIMIZATION WITH DIFFERENTIAL

INEQUALITY CONSTRAINTS APPLIED TO

COMPLETE LYAPUNOV FUNCTIONS

PETER GIESL, CARLOS ARGÁEZ, SIGURDUR HAFSTEIN, AND HOLGER WENDLAND

Abstract. Motivated by the desire to compute complete Lyapunov functions
for nonlinear dynamical systems, we develop a general theory of discretizing a
certain type of continuous minimization problems with differential inequality
constraints. The resulting discretized problems are quadratic optimization
problems, for which there exist efficient solution algorithms, and we show that

their unique solutions converge strongly in appropriate Sobolev spaces to the
unique solution of the original continuous problem. We develop the theory
and present examples of our approach, where we compute complete Lyapunov
functions for nonlinear dynamical systems.

A complete Lyapunov function characterizes the behaviour of a general
dynamical system. In particular, the state space is divided into the chain-
recurrent set, where the complete Lyapunov function is constant along so-
lutions, and the part characterizing the gradient-like flow, where the com-
plete Lyapunov function is strictly decreasing along solutions. We propose a
new method to compute a complete Lyapunov function as the solution of a
quadratic minimization problem, for which no information about the chain-
recurrent set is required. The solutions to the discretized problems, which can
be solved using quadratic programming, converge to the complete Lyapunov

function.

1. Introduction

Let us first motivate the concept of complete Lyapunov functions, before we
focus our attention on the minimization problem discussed in this paper.

We will consider a general autonomous ODE

ẋ = f(x), where x ∈ R
d.(1)

A complete Lyapunov function (CLF) is a function V : Rd → R, which is non-
increasing along trajectories as well as strictly decreasing along trajectories outside
the chain-recurrent set R, V (R) is a nowhere dense subset of R, and the level sets
of V in R, V −1(r)∩R �= ∅ for r ∈ R, are the chain-transitive components of R, see
[14, §6.4], [23, §4]. For the definition of the chain-recurrent set, see below.

We call a function that only fulfills the first property, namely that V is non-
increasing along trajectories, a CLF candidate. If V is sufficiently smooth, e.g. C1,
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then this can be expressed by V ′(x) ≤ 0, where V ′(x) = ∇V (x) · f(x) denotes the
orbital derivative, i.e. the derivative along solutions of (1); hence, we will refer to
any function fulfilling V ′(x) ≤ 0 for every x in a set U ⊆ R

d as a CLF candidate
on U .

A CLF candidate V on the state-space of the ODE (1) is a CLF for the dy-
namical system defined by the solution to the ODE, if and only if it is strictly
decreasing along solutions on the largest possible set. It can be shown that this
condition is equivalent to V being strictly decreasing along solution trajectories in
the complement of the chain-recurrent set, cf. [14, 23].

For defining the chain-recurrent set we need a little preparation. For convenience
let us assume that the solution to the ODE (1) defines a dynamical system on the
open set U ⊆ R

d, i.e. that solutions t 
→ φ(t, ξ) to the initial-value problems

φ̇(t, ξ) = f(φ(t, ξ)), φ(0, ξ) = ξ ∈ U,

are unique and defined for all t ∈ R (complete), that (t, ξ) 
→ φ(t, ξ) is continuous,
and that φ(t, ξ) ∈ U for all t ∈ R. For example, a sufficient condition for the unique-
ness of solutions is that f is locally Lipschitz continuous and then completeness can
always be achieved by considering the ODE (1) with f replaced by

f(x)√
1 + ‖f(x)‖2

· dist(x, UC)

1 + dist(x, UC)
,

where dist(x, UC) is the distance of x to the complement of U and dist(x, ∅) := 1,
cf. e.g. [28] and the references therein or [30]. Note that this does not change the so-
lution trajectories inside U , the movement of the system along solution trajectories
is just slowed down to make it complete.

A point ξ ∈ U is called chain-recurrent if for a constant T > 0 and any continuous
function ε : U → (0,∞) there exists an (ε, T )-chain, i.e. (ti, ηi) ∈ R × U for
i = 1, . . . , N , N ∈ N, with ti ≥ T and such that η0 = ηN = ξ and

‖φ(ti, ηi−1)− ηi‖2 < ε(φ(ti, ηi−1)) for all i = 1, . . . , N.

The set of all chain-recurrent points is called the chain-recurrent set [14]. Note
that on noncompact state spaces it is necessary to use a function ε rather than
constants, cf. [23, 24]. There is a fundamental difference between the flow on the
chain-recurrent set and its complement. On the chain-recurrent set the dynam-
ics are (almost) repetitive, whereas on its complement the flow is gradient-like,
i.e. solutions pass through and are insensitive to infinitesimal perturbations. The
dynamics in the gradient-like part are similar to a gradient system, i.e. a system
(1) where the right-hand side f(x) = ∇W (x) is given by the gradient of a function
W : Rd → R.

A non-constant CLF (candidate) provides important information about the so-
lutions of (1): the area of the phase space, where V ′(x) = 0 contains the chain-
recurrent set, and the area, where V ′(x) < 0 holds, displays gradient-flow behaviour.
Note that a constant function trivially satisfies the condition V ′(x) ≤ 0 and is a
CLF candidate. Hence, the larger the area of the state space, where V is strictly
decreasing, the more information about the system and its chain-recurrent set can
be obtained from the CLF candidate.

The values and level sets of a CLF provide additional information about the
dynamics and the long-term behaviour of the system, e.g. an asymptotically stable
equilibrium is a local minimum of a CLF. Moreover, the (constant) values of a CLF
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on different connected components of the chain-recurrent set describe the dynamics
in between them.

Summarizing, a smooth complete Lyapunov function satisfies

V ′(x) < 0 for x ∈ G,

V ′(x) = 0 for x ∈ R,

where points in G display gradient-like flow and R denotes the chain-recurrent set.
The first proof of the existence of a prototype CLF for dynamical systems, a

CLF candidate with negative orbital derivative on a maximal set, was given by
Auslander [8] and later by Conley [14] for CLFs in the modern sense. Their proofs
hold for flows on compact metric spaces. Conley considers each corresponding
attractor-repeller pair and constructs a function which is 1 on the repeller, 0 on the
attractor and decreasing in between. Then these, countably many, functions are
weighted and summed up over all attractor-repeller pairs. Later, Hurley extended
these ideas to more general spaces [22–25]. These Lyapunov functions, however,
are merely continuous. The existence of smooth CLFs on compact state spaces was
shown in [16] and, in a different context, the existence of smooth time-functions,
which are closely related to CLFs, was established for cone-fields on noncompact
state spaces in [10]. In [30] it was shown that such time-functions can be modified
to CLFs for ODEs and thus the existence of C∞ CLFs on noncompact state spaces
was established.

Computational approaches to construct CLFs were proposed in [9, 20, 27]. The
state space was subdivided into cells, defining a discrete-time system given by the
multivalued time-T map between them, which was computed using the computer
package GAIO [15]. Hence, an approximate complete Lyapunov function was con-
structed using graph algorithms [9]. This approach requires a high number of cells,
even for low dimensions, and the approximation is good for the values of the CLF,
but not necessarily for its orbital derivative. Moreover, no convergence result was
obtained; we will present such a result in this paper.

In [11], a complete Lyapunov function was constructed as a continuous piecewise
affine (CPA) function on a fixed simplicial complex. However, it is assumed that
information on the location of local attractors is available, while such information
is not needed in our approach.

In [3–5] CLF candidates were computed by approximately solving the ill-posed
PDE

(2) V ′(x) = −1

using meshfree collocation, in particular using Radial Basis Functions (RBFs).
This was inspired by constructing classical Lyapunov functions for systems with
an asymptotically stable equilibrium [17, 19]. However, (2) cannot be fulfilled at
all points in the chain-recurrent set. Meshfree collocation still constructs an ap-
proximation, but the usual error estimates are not available, as they compare the
approximation to the solution of the problem (2), which does not exist in our case.
In practice, the method works well on the part of the state space where the flow is
gradient-like and it is able to detect the chain-recurrent set as the area of the state
space where the approximation fails.

The method has been improved in several ways, for example, by using the infor-
mation gained on the chain-recurrent set by an approximate solution to (2) for an
iteration using a different right-hand side for the PDE. This process can then be
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further iterated. Although the method works well in examples, so far no proof has
been given since the error estimates for meshfree collocation are always in terms of
the difference to a solution, and (2) has no solution. To ensure that we consider an
equation that has a solution, we need to know the location of the chain-recurrent
set.

Since the definition of a CLF is based on inequalities rather than equations, in
[18] the problem:

minimize ‖V ‖H
subject to V ′(x) = −1 for x ∈ Ω−,

V ′(x) ≤ 0 for x ∈ Ω \ Ω−,

was considered, where Ω ⊆ R
d is the area under consideration, Ω− ⊆ G lies in

the gradient-like set and H is an appropriate reproducing kernel Hilbert space of
functions. The advantage of this method is that a solution of this problem exists,
and we only need to know a subset of the state space where the flow is gradient-like.
In fact, the method was shown to work well, even if Ω− consists of just one point,
see [18]. The computation of an approximate solution was obtained as the norm-
minimal solution in a reproducing kernel Hilbert space after discretization. Note
that when choosing Ω− = ∅, which would require no information on the location of
the chain-recurrent set, the norm-minimal solution is the constant solution V ≡ 0
and thus does not provide any information about the dynamics.

In this paper we do not require any information about the chain-recurrent set
and consider a minimization problem, that has a unique solution. By choosing a
suitable cost function we will ensure that a constant solution V ≡ C cannot be the
minimizer, but instead a negative orbital derivative is favoured over a zero orbital
derivative. In particular, we will choose to minimize

(3) ‖V ‖2H +

∫
Ω

V ′(x) dx,

where Ω ⊆ R
d is the area of the phase space under consideration, andH is a Sobolev

space of functions g : Ω → R. The constraint

(4) V ′(x) ≤ 0

ensures that the function is a CLF candidate.
The reasons for the particular form of (3), where the orbital derivative enters

linearly and the norm is quadratic, are twofold: on the one hand, this leads to a qua-
dratic optimization problem (11), that can be solved efficiently. On the other hand,
it turns out that the solution to this problem is a non-constant CLF candidate, if
there exists a smooth, non-constant CLF, see Proposition 4.1.

Since the theory for our application only depends on the map V → V ′ being
linear, we will consider a general minimization problem of the form (8), with V ′

replaced by LV for a general linear differential operator L and we will show that it
has a unique solution. Moreover, we will propose a method to compute this solution:
by discretizing the problem, we obtain a corresponding quadratic programming
problem, which has itself a unique solution. We will show that the solutions of the
discretized problems strongly converge to the solution of the original problem.

When discretizing with a sequence of finer and finer sets of points, we obtain
a sequence of solutions of the quadratic programming problems, which converges
strongly to the solution of the original minimization problem. This establishes an
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efficient method for computing an approximation to the original problem. The
advantage compared to previous methods is that no information about the chain-
recurrent set, or indeed about solutions of the ODE, is required and we can prove the
strong convergence of the method. The advantage compared to methods mentioned
earlier is that no triangulation of the space, or finite-dimensional subspace of the
function space, needs to be considered; only scattered data points are required.

Let us give an overview over the contents: In Section 2 we recall reproducing
kernel Hilbert spaces. In the main Section 3 we introduce the general version of
the minimization problem, see (8). We first show that the discretized problem has
a unique solution, which can be computed by solving a quadratic programming
problem, and then we prove that the original problem has a unique solution, which
is the limit of discretized problems. In Section 4 we apply the general theory to the
problem of computing a complete Lyapunov function and in Section 5 we apply the
method to a planar example and the three-dimensional Lorenz attractor; moreover,
we discuss the numerically computed rate of convergence for one example.

2. Reproducing kernel Hilbert spaces

We start with a short introduction to reproducing kernel Hilbert spaces. Details
and proofs can, for example, be found in [7]. We follow here mainly Chapters 10
and 16 of [32].

Definition 2.1. Let Ω ⊆ R
d. A Hilbert space H = H(Ω) of continuous functions

f : Ω → R is called a reproducing kernel Hilbert space, abbreviated RKHS, if there
is a function K : Ω× Ω → R with

(1) K(·, x) ∈ H for all x ∈ Ω,
(2) g(x) = 〈g,K(·, x)〉H for all g ∈ H and all x ∈ Ω.

The function K is called the reproducing kernel of H.
The reproducing kernel is called positive definite, if for any set of pairwise distinct

points {x1, . . . , xN} ⊆ Ω the matrix (K(xi, xj))i,j=1,...,N is positive definite.

It is easy to see that the reproducing kernel of a RKHS is symmetric and uniquely
determined by the Hilbert space. However, if it is possible to define a different inner
product on the same space, equipping the space with an equivalent norm, then it
is possible to have different reproducing kernels. Moreover, a Hilbert space H(Ω)
is a RKHS if and only if point evaluations δx : H → R, f 
→ δx(f) = f(x) are
continuous. The kernel is always positive semi-definite in the sense that the above
mentioned matrices are symmetric and positive semi-definite. The kernel is positive
definite if and only if all point evaluations δx, x ∈ Ω are linearly independent.
Finally, if K : Ω × Ω → R is a positive definite kernel, then there exists a unique
Hilbert space, for which K is the reproducing kernel. This space can be constructed
by completing the linear space, which is spanned by the functions K(·, x), x ∈ Ω.

In a RKHS, the Riesz representative of a functional λ ∈ H∗ is given by applying
it to one argument of the kernel, i.e., for every x ∈ Ω we apply λ to K(x, ·) and
obtain a function we denote by λyK(·, y), where the superscript in λy indicates
that the functional λ is applied to the second variable, i.e. we have

(5) λ(f) = 〈f, λyK(·, y)〉H , f ∈ H,λ ∈ H∗,
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see for example [32, Theorem 16.7]. This also means that we have for λ, μ ∈ H∗

the identity

(6) λxμyK(x, y) = 〈λxK(·, x), μyK(·, y)〉H .

In this paper, we are particularly interested in Sobolev spaces H = Hσ(Ω). If
σ = k ∈ N0 then Hσ(Ω) consists of all functions u ∈ L2(Ω) having weak derivatives
Dαu ∈ L2(Ω) up to order |α| ≤ k = σ. The norm is defined in the usual way. If
σ is not an integer, we use operator interpolation theory to define the space and
norm, for details see for example [1, 13].

If Ω ⊆ R
d is a bounded domain with a Lipschitz boundary, then there exists

a continuous linear extension operator E : Hσ(Ω) → Hσ(Rd), i.e. E satisfies par-
ticularly Eu|Ω = u and ‖Eu‖Hσ(Rd) ≤ C‖u‖Hσ(Ω) for all u ∈ Hσ(Ω) with a fixed
constant C > 0 (see [13, 29]). One immediate consequence of the existence of such
an extension operator is the Sobolev embedding theorem for Hσ(Ω), which states
that Hσ(Ω) ⊆ C(Ω)∩L∞(Ω) if σ > d/2. As this embedding is continuous, we have
that Hσ(Ω) is a RKHS provided σ > d/2.

Unfortunately, for general domains Ω ⊆ R
d, an explicit form of the reproducing

kernel of Hσ(Ω) is usually unknown. To circumvent this problem, we will proceed
as follows. We start on all of Rd and choose a reproducing kernel Kσ : Rd×R

d → R

that delivers an equivalent norm to the standard norm on Hσ(Rd). According to
[32, Corollary 10.13], we can choose the kernel as a translation-invariant function
Kσ(x, y) = Φσ(x− y) as long as Φσ : Rd → R has a Fourier transform

Φ̂σ(ω) =

∫
Rd

Φσ(x)e
−ixTωdx

that decays like (1 + ‖ · ‖22)−σ, i.e. there are two constants c1, c2 > 0 such that

(7) c1(1 + ‖ω|22)−σ ≤ Φ̂σ(ω) ≤ c2(1 + ‖ω‖22)−σ, ω ∈ R
d.

It is also often possible to choose the function Φσ to be radial, i.e. Φσ = φσ(‖ · ‖2)
with a function φσ : [0,∞) → R. For example, Wendland’s compactly supported
radial basis function ψl,k : [0,∞) → R, see [31], with l = �d

2�+k+1, k ∈ N, define a
translation-invariant reproducing kernel by Kσ(x, y) = Φσ(x− y) = ψl,k(‖x− y‖2);
the corresponding RKHS is norm equivalent to Hσ(Rd) with σ = k + d+1

2 .

Next, given a bounded domain Ω ⊆ R
d with a Lipschitz boundary, we can define

the kernel kσ : Ω × Ω → R by setting kσ := Kσ|Ω × Ω. As the restriction of a
positive definite kernel, kσ is a positive definite kernel itself and it is hence the
reproducing kernel of a Hilbert space H(Ω). We now have the following result.

Lemma 2.2. Assume Φσ ∈ L1(R
d)∩C(Rd) has a Fourier transform Φ̂σ satisfying

(7) with σ > d/2. Let Ω ⊆ R
d be a bounded domain with a Lipschitz boundary.

Let kσ : Ω × Ω → R be defined by kσ(x, y) = Φσ(x − y), x, y ∈ Ω. Then, there
exists an inner product 〈·, ·〉kσ

: Hσ(Ω)×Hσ(Ω) → R on Hσ(Ω) such that kσ is the
reproducing kernel of Hσ(Ω) with respect to this inner product. The norm ‖ · ‖kσ

induced by this inner product is equivalent to the standard norm on Hσ(Ω), i.e.
there are constants C1, C2 > 0 such that

C1‖u‖kσ
≤ ‖u‖Hσ(Ω) ≤ C2‖u‖kσ

, u ∈ Hσ(Ω).

Proof. For σ ∈ N, this is Corollary 10.48 from [32]. For real σ > d/2 this follows
then by interpolation theory. �
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3. Minimization problem

Let Ω ⊆ R
d be a bounded domain with Lipschitz boundary and σ > d/2+m+1,

where m ∈ N. Let L be a linear differential operator of order m defined by

Lv =
∑

|α|≤m

cαD
αv,

where v ∈ Hσ(Ω) and all cα ∈ Cσ−m(Ω). Let H be a RKHS that consists of the
functions Hσ(Ω), but not necessarily equipped with the same inner product. We
consider the problem:{

minimize ‖v‖2H +
∫
Ω
Lv(x) dx

subject to Lv(x) ≤ b(x), x ∈ Ω
(8)

with a continuous function b : Ω → R. We will show that this minimization problem
has a unique solution v and that this solution can be approximated arbitrarily
closely by considering a discretized version and an associated finite dimensional
quadratic programming problem.

We will first consider the discretized version: subdivide the set Ω into finitely

many, pairwise disjoint measurable sets Ωi ⊆ Ω, i = 1, . . . , N , with
⋃N

i=1 Ωi = Ω
and wi := |Ωi| �= 0. Furthermore, choose points xi ∈ Ωi and define λi ∈ H∗

by λi(v) = Lv(xi) for i = 1, . . . , N . Finally, let bi = b(xi), i = 1, . . . , N . The
connection between (8) and the optimization problem (9) below is that for this
choice of functionals λi and weights wi the second term in the cost function in (9)
is arbitrarily close to the integral

∫
Ω
Lv(x) dx if the wi are small enough. We will

discuss the discretized problem in Section 3.1 and the strong convergence of its
solution to the solution of (8) in Section 3.2.

3.1. Discretized problem. We consider a general Hilbert space H with inner
product 〈·, ·〉H and the associated norm ‖·‖H . Let λi ∈ H∗ be linearly independent,
bi ∈ R and wi > 0 for all i = 1, . . . , N , N ∈ N. Consider the problem for v ∈ H:{

minimize ‖v‖2H +
∑N

i=1 λi(v)wi,
subject to λi(v) ≤ bi, i = 1, . . . , N.

(9)

The goal of this section is to show that (9) has a unique solution which can be
determined by solving a quadratic programming problem. We start by showing
that the solution is unique if it exists.

Lemma 3.1. Problem (9) has at most one solution in H.

Proof. First assume that s ∈ H is a minimizer and v ∈ H satisfies the constraints
of (9).

We show that

m := 2〈s, v − s〉H +

N∑
j=1

λj(v − s)wj ≥ 0.

For a contradiction, assume that m < 0, in particular that v �= s, and set

α := min

(
−m

2‖v − s‖2H
, 1

)
> 0.
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Note that t = αv + (1− α)s satisfies the constraints and we have

‖t‖2H +
N∑
j=1

λj(t)wj = ‖s+ α(v − s)‖2H +
N∑
j=1

λj(s+ α(v − s))wj

= ‖s‖2H + 2α〈s, v − s〉H + α2‖v − s‖2H

+

N∑
j=1

λj(s)wj + α

N∑
j=1

λj(v − s)wj

= ‖s‖2H +
N∑
j=1

λj(s)wj + α(α‖v − s‖2H +m)

< ‖s‖2H +
N∑
j=1

λj(s)wj ,

because

α‖v − s‖2H +m ≤ m

2
< 0.

Thus s is not a minimizer in contradiction to the initial assumptions.
Now assume s1, s2 ∈ H are minimizers. Then by the above argument we have

2〈s1, s2 − s1〉H +

N∑
j=1

λj(s2 − s1)wj ≥ 0

and

2〈s2, s1 − s2〉H +
N∑
j=1

λj(s1 − s2)wj ≥ 0.

This implies

0 ≤ 2‖s1 − s2‖2H
= −2〈s1, s2 − s1〉H − 2〈s2, s1 − s2〉H
= −2〈s1, s2 − s1〉H − 2〈s2, s1 − s2〉H

−
N∑
j=1

λj(s2 − s1)wj −
N∑
j=1

λj(s1 − s2)wj

≤ 0,

which shows s1 = s2. �

Now let H be a RKHS with a positive definite reproducing kernel K, see Def-
inition 2.1. We show that then the solution s∗ to (9) lies in a finite-dimensional
subspace of H, spanned by the Riesz representers of the λj , namely λy

jK(x, y),
see Lemma 3.3. The proof uses a similar property for generalized interpolation
problems, see [32, Theorem 16.1].

In particular, we will show that the solution s∗ to (9) is of the form

(10) s∗(x) =
N∑
j=1

βjλ
y
jK(x, y),
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where the coefficient vector (β1, . . . , βN ) = β ∈ R
N is the unique solution to the

quadratic optimization problem for β ∈ R
N :

(11)

{
minimize βTAβ + cTβ
subject to Aβ ≤ b.

Here the matrix A = (aij)i,j=1,...,N is defined by

aij = λx
i λ

y
jK(x, y), i, j = 1, . . . , N,

the vector c = (cj)j=1,...,N is defined by c = ATw = Aw, i.e. by

cj =

N∑
i=1

aijwi, j = 1, . . . , N,

and the inequality Aβ ≤ b is to be read componentwise. Since the functionals λi are
linearly independent, the matrix A is symmetric and positive definite. Note that
since problem (11) is a quadratic programming problem, it can be solved efficiently.

We first show that the problem (11) has a unique solution.

Lemma 3.2. Problem (11) has a unique solution.

Proof. We can rewrite problem (11), using the variable r = Aβ instead of β, as a
minimization problem for r ∈ R

N

(12)

{
minimize rTA−1r + wT r
subject to r ≤ b.

Since the objective function is a quadratic form with positive definite matrixA−1,
it is strictly convex and thus problem (12) has a unique solution, if its (convex)
feasibility set is not empty. Since r = b is feasible, the proposition follows. �

Now we show that the minimizer of (9) is of the form s∗, see (10), where the
coefficients β are uniquely defined as the solution of the minimization problem (11).

Lemma 3.3. Let H be a RKHS with positive definite reproducing kernel K. Then
there exists a unique minimizer of the problem (9) in H and it is of the form (10),
where the coefficients β = (β1, . . . , βN ) are uniquely defined as the solution of the
minimization problem (11).

Proof. Define s∗ by (10), where the coefficient β is uniquely defined as the solution
of the minimization problem (11), see Lemma 3.2. Let s ∈ H be any fixed function
satisfying the constraints in (9). We will show that

‖s∗‖2H +
N∑
j=1

λj(s
∗)wj ≤ ‖s‖2H +

N∑
j=1

λj(s)wj ,

from which the result follows.
The function s satisfies

λi(s) =: ti ≤ bi, i = 1, . . . , N,

for certain values (ti)i=1,...,N = t ∈ R
N . Now consider the generalized interpolation

problem for v ∈ H, using the parameters t = (tj):{
minimize ‖v‖2H +

∑N
j=1 tjwj

subject to λj(v) = tj , j = 1, . . . , N.
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Since the term
∑N

j=1 tjwj in the objective function is a constant independent of v,
we can equivalently consider the generalized interpolation problem for v ∈ H{

minimize ‖v‖2H
subject to λj(v) = tj , j = 1, . . . , N.

By classical arguments, see [32, Theorem 16.1], the unique minimizer of this
problem is given by

s̃(x) =

N∑
j=1

β̃jλ
y
jK(x, y),

where Aβ̃ = t and λj(s̃) = tj , j = 1, . . . , N . But then

‖s̃‖2H +
N∑
j=1

λj(s̃)wj ≤ ‖s‖2H +
N∑
j=1

λj(s)wj ,(13)

because ‖s̃‖2H ≤ ‖s‖2H and
∑N

j=1 λj(s̃)wj =
∑N

j=1 tjwj =
∑N

j=1 λj(s)wj .

Now both s∗ and s̃ are of the form (10) and the coefficients β, β̃ both satisfy the
constraints of problem (11), namely

(14) Aβ̃ = t ≤ b and Aβ ≤ b.

Hence, both s∗ and s̃ are of the form (10) and satisfy the constraints (9).
Note that we have

‖s∗‖2H =

〈
N∑
i=1

βiλ
x
i K(·, x),

N∑
j=1

βjλ
y
jK(·, y)

〉
H

=
N∑

i,j=1

βiβj〈λx
i K(·, x), λy

jK(·, y)〉H

= βTAβ

by (6).
Therefore, the coefficients β of s∗ minimize

βTAβ + cTβ = ‖s∗‖2H +

N∑
j=1

λj(s
∗)wj

by assumption, so that

‖s∗‖2H +

N∑
j=1

λj(s
∗)wj ≤ ‖s̃‖2H +

N∑
j=1

λj(s̃)wj

≤ ‖s‖2H +

N∑
j=1

λj(s)wj

due to (13) and we have shown that s∗ is a minimizer of (9).
By Lemma 3.1 the problem (9) has no more than one minimizer and hence s∗ is

the unique minimizer. �
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3.2. Convergence. We come back to the original problem (8) and show that it
has a unique solution, which is the limit of solutions to the discretized problem.
Let us first define singular and regular points of a linear differential operator of the
form used in Theorem 3.5.

Remark 3.4. A point x ∈ R
d is called singular point of the linear differential opera-

tor L, if δx ◦L = 0, i.e. cα(x) = 0 for all |α| ≤ m, and regular point of L otherwise,
see [19, Definition 3.2].

Theorem 3.5. Let Ω ⊆ R
d be a bounded domain with Lipschitz boundary. Let L

be a linear differential operator of order m ∈ N defined by

Lv =
∑

|α|≤m

cαD
αv,

where all cα ∈ Cσ−m(Ω) and σ > d/2 + m + 1. Let b : Ω → R be a continuous
function and H = Hσ(Ω) with norm given by an appropriate reproducing kernel;
see Lemma 2.2. Consider the optimization problem for v ∈ H{

minimize ‖v‖2H +
∫
Ω
Lv(x) dx

subject to Lv(x) ≤ b(x), ∀x ∈ Ω,
(15)

and the sequence of optimization problems : Let Ωn
1 , . . . ,Ω

n
Nn

⊆ Ω, n ∈ N, be mea-
surable sets with

• |Ωn
i | > 0 for all i = 1, . . . , Nn,

•
⋃Nn

i=1 Ω
n
i = Ω for all n ∈ N,

• Ωn
i ∩ Ωn

j = ∅ for all i �= j and all n ∈ N,
• dn :=maxi=1,...,Nn

dni −→0 as n→∞, where dni =diam Ωn
i =supx,y∈Ωn

i
‖x−

y‖.
For n ∈ N and i = 1, . . . , Nn let xn

i ∈ Ωn
i be regular points of L, see Remark 3.4.

Set Xn := {xn
1 , x

n
2 , . . . , x

n
Nn

}. For each fixed n ∈ N let vn be the unique solution of
the minimization problem for v ∈ H{

minimize ‖v‖2H +
∑Nn

i=1 Lv(x
n
i )|Ωn

i |
subject to Lv(xn

i ) ≤ b(xn
i ), i = 1, . . . , Nn.

(16)

Furthermore, assume that there exists a V0 ∈ Hσ(Ω) that satisfies the constraints
of (15).

Then the optimization problem (15) has a unique solution v and the solutions vn
of the optimization problems (16) converge strongly in H to v as n → ∞.

Proof. We start by showing that for a fixed n ∈ N, the optimization problem (16)
is just the optimization problem (9). To this end, we first note that, because of
σ > d/2 and because of Ω having a Lipschitz boundary, H := Hσ(Ω) is indeed
a RKHS. Moreover, using Lemma 2.2, we can choose an inner product on Hσ(Ω)
and a reproducing kernel kσ which is given by a positive definite function Φσ :
R

d → R as kσ(x, y) = Φσ(x − y), x, y ∈ Ω. The norm induced by this inner
product is equivalent to the standard norm on Hσ(Ω), and we will use this inner
product and its induced norm as the inner product and norm on Hσ(Ω), denoting
〈·, ·〉H = 〈·, ·〉Hσ(Ω) = 〈·, ·〉kσ

. As L maps Hσ(Ω) continuously to Hσ−m(Ω) and

as σ > d/2 + m implies Hσ−m(Ω) ⊆ C(Ω) ∩ L∞(Ω) by the Sobolev embedding
theorem, the functionals λi = δxn

i
◦L indeed belong to H∗. Moreover, as the points
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xn
i are regular points of the differential operator, they are also linearly independent,

see [19, Proposition 3.3]. Hence, for a fixed n ∈ N, problem (16) is indeed (9) with
these λi, wi = |Ωn

i | > 0, bi = b(xn
i ), i = 1, . . . , Nn and N = Nn.

For the rest of the proof we will use the notation λi,n := δxn
i
◦ L, wi,n := |Ωn

i |,
and bi,n := b(xn

i ). We will now show, in several steps, that the sequence (vn)n∈N

of solutions of (16) converges strongly to an element v ∈ H, which is the unique
solution of (15).

Step 1. Since σ −m > d/2, we have by the Sobolev embedding theorem that the
function V0 ∈ Hσ(Ω) satisfies LV0 ∈ Hσ−m(Ω) ⊆ L∞(Ω) ∩ C(Ω). In particular,
there is a constant c such that |LV0(x)| ≤ c for all x ∈ Ω.

Since cα ∈ C0(Ω), there is a constant C > 0 such that

max
x∈Ω

∑
|α|≤m,|β|≤m

(−1)|β|cα(x)cβ(x)D
α+βΦσ(0) ≤ C2,

where kσ(x, y) = Φσ(x− y) denotes the translation-invariant reproducing kernel of
Hσ(Ω) introduced above. From (6) it follows that

‖λy
i,nkσ(·, y)‖2H = λx

i,nλ
y
i,nkσ(x, y)

=
∑

|α|≤m,|β|≤m

cα(x
n
i )cβ(x

n
i )D

α
1D

β
2 kσ(x

n
i , x

n
i )

=
∑

|α|≤m,|β|≤m

(−1)|β|cα(x
n
i )cβ(x

n
i )D

α+βΦσ(0)

≤ C2.

By (5) we have λi,n(v) = 〈v, λy
i,nkσ(·, y)〉H and hence

−
Nn∑
i=1

λi,n(vn)wi,n = −
Nn∑
i=1

wi,n〈vn, λy
i,nkσ(·, y)〉H

≤
Nn∑
i=1

|Ωn
i |‖vn‖H‖λy

i,nkσ(·, y)‖H

≤ |Ω|‖vn‖HC

≤ 1

2
(‖vn‖2H + |Ω|2C2),

that is

(17) −|Ω|2C2 − ‖vn‖2H ≤ 2

Nn∑
i=1

Lvn(x
n
i )wi,n.

Next, we can conclude from (15) that

λi,n(V0) = LV0(xi,n) ≤ b(xn
i ) = bi,n.
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Hence, V0 satisfies the constraints of (9). Using that vn is the minimizer of that
problem as well as (17) we have

−|Ω|2C2 + ‖vn‖2H ≤ 2

(
‖vn‖2H +

Nn∑
i=1

Lvn(x
n
i )wi,n

)

≤ 2

(
‖V0‖2H +

Nn∑
i=1

LV0(x
n
i )wi,n

)
≤ 2

(
‖V0‖2H + c|Ω|

)
.

Thus,

(18) ‖vn‖H ≤ C0 :=
√
|Ω|2C2 + 2 (‖V0‖2 + c|Ω|)

is bounded for all n and, because bounded sets in Hilbert spaces are relatively
compact in the weak topology, there is a subsequence of (vn)n∈N, which we again
denote by (vn)n∈N, that weakly converges to a function v ∈ H. From

‖v‖2H = 〈v, v − vn〉H + 〈v, vn〉H ≤ 〈v, v − vn〉H + ‖v‖H‖vn‖H
it follows that

(19) ‖v‖H ≤ lim inf
n→∞

‖vn‖H ≤ C0.

Step 2. Now we use the kernel representation to show that Lv(x) ≤ b(x) for all
x ∈ Ω, where v is the weak limit of the (subsequence) (vn)n∈N.

First note that we have for λ = δx ◦ L ∈ H∗, as λykσ(·, y) is the Riesz represen-
tative of λ, that

|Lv(x)− Lvn(x)| = |λ(v − vn)| = 〈v − vn, λ
ykσ(·, y)〉H −→ 0,(20)

as vn converges weakly to v.
Next, as σ − m > d/2 and as Ω ⊆ R

d has a Lipschitz boundary, the Sobolev
space Hσ−m(Ω) is also a RKHS and, again following Lemma 2.2, we may assume
that the inner product is chosen in such a way that the reproducing kernel has the
form kσ−m(x, y) = Φσ−m(x−y) with Φσ−m : Rd → R. Since we even have σ−m >
d/2+1, the Sobolev embedding theorem even givesHσ−m(Rd) ⊆ W 1

∞(Rd)∩C1(Rd),
which means in particular, that there is an M > 0 such that ‖∇Φσ−m(ξ)‖2 ≤ M
for all ξ ∈ R

d.
Furthermore, we have for x, y ∈ Ω that there is a ξ ∈ R

d on the line segment
between 0 and x − y such that, using that L : Hσ(Ω) → Hσ−m(Ω) is a bounded
operator with constant c0,

|Lvn(x)− Lvn(y)| = 〈Lvn, kσ−m(·, x)− kσ−m(·, y)〉Hσ−m(Ω)

≤ ‖Lvn‖Hσ−m(Ω)‖kσ−m(·, x)− kσ−m(·, y)‖Hσ−m(Ω)

= ‖Lvn‖Hσ−m(Ω) (kσ−m(x, x) + kσ−m(y, y)− 2kσ−m(x, y))
1/2

≤
√
2c0‖vn‖Hσ(Ω) (Φσ−m(0)− Φσ−m(x− y))1/2

≤
√
2c0C0‖∇Φσ−m(ξ)‖1/22 ‖x− y‖1/22

≤ C1‖x− y‖1/22(21)

for all n ∈ N by (18) and with C1 =
√
2c0C0M

1/2.
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We will now show that the fill distance

hXn,Ω = sup
x∈Ω

min
j=1,...,Nn

‖x− xn
j ‖2

satisfies

(22) lim
n→∞

hXn,Ω = 0.

Fix n ∈ N. For a point x ∈ Ω, there is an i ∈ {1, . . . , Nn} with x ∈ Ωn
i . We have

min
j=1,...,Nn

‖x− xn
j ‖2 ≤ ‖x− xn

i ‖2 ≤ sup
y,z∈Ωn

i

‖y − z‖2 = dni ≤ dn.

Hence, we also have

hXn,Ω = sup
x∈Ω

min
j=1,...,Nn

‖x− xn
j ‖2 ≤ dn.

This shows the statement, since dn → 0 as n → ∞.
We will show that for all x ∈ Ω we have Lv(x) ≤ b(x). Indeed, we fix x ∈ Ω and

will show that for all ε > 0 we have Lv(x)− b(x) < ε.
Fix ε > 0. By (20), there is an N1 ∈ N such that for all n ≥ N1 we have

(23) |Lvn(x)− Lv(x)| < ε

3
.

Since b is continuous at x, there exists a δ > 0 such that

(24) |b(x)− b(y)| < ε

3

for all y ∈ Bδ(x).
By (22) there is an N2 ∈ N such that for all n ≥ N2 there exists xn

i ∈ Xn with

(25) ‖x− xn
i ‖2 < min

(
ε2

9C2
1

, δ

)
.

For n ≥ max(N1, N2) we have by (23), (21), (25), and (24) as well as Lvn(xi) ≤
b(xn

i ), that

Lv(x)− b(x) ≤ (Lv(x)− Lvn(x)) + (Lvn(x)− Lvn(x
n
i ))

+ (Lvn(x
n
i )− b(xn

i )) + (b(xn
i )− b(x))

<
ε

3
+ C1

ε

3C1
+ 0 +

ε

3
= ε.

This shows the statement.

Step 3. Since Lv(x) ≤ b(x) holds for all x ∈ Ω, as shown in Step 2, v satisfies the
constraints of (16) and thus

‖vn‖2H +

Nn∑
i=1

Lvn(x
n
i )wi,n ≤ ‖v‖2H +

Nn∑
i=1

Lv(xn
i )wi,n

since vn is the minimizer of (16).
We will show that for every ε > 0 there exists an N0 ∈ N such that

(26)

∣∣∣∣∣
Nn∑
i=1

Lvn(x
n
i )wi,n −

Nn∑
i=1

Lv(xn
i )wi,n

∣∣∣∣∣ < ε

for all n ≥ N0. This implies that lim supn→∞ ‖vn‖2H ≤ ‖v‖2H holds. Together with
(19) this then shows

lim
n→∞

‖vn‖H = ‖v‖H ,
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and from

‖v − vn‖2H = ‖vn‖2H − ‖v‖2H + 2〈v, v − vn〉H
it follows that vn converges strongly to v.

Fix ε > 0. To show (26), we define μ(v) :=
∫
Ω
Lv(x) dx. We have μ ∈ H∗ since

|μ(v)| ≤
∫
Ω

1 · Lv(x) dx ≤ |Ω|1/2‖Lv‖Hσ−m(Ω) ≤ |Ω|1/2c0‖v‖Hσ(Ω).

But then ∫
Ω

(Lvn(x)− Lv(x)) dx = 〈vn − v, μykσ(·, y)〉Hσ(Ω) → 0

since vn converges weakly to v in H = Hσ(Ω). Hence, there is an N1 ∈ N such that
for all n ≥ N1 we have

(27)

∣∣∣∣∫
Ω

(Lvn(x)− Lv(x)) dx

∣∣∣∣ < ε/3.

Then we have∣∣∣∣∣∣
∫
Ω

Lvn(x) dx−
Nn∑
j=1

wj,nLvn(x
n
j )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Nn∑
j=1

∫
Ωn

j

Lvn(x) dx−
Nn∑
j=1

∫
Ωn

j

Lvn(x
n
j ) dx

∣∣∣∣∣∣
≤

Nn∑
j=1

∫
Ωn

j

|Lvn(x)− Lvn(x
n
j )| dx

≤ C1

Nn∑
j=1

∫
Ωn

j

‖x− xn
j ‖

1/2
2 dx by (21)

≤ C1

Nn∑
j=1

d1/2n

∫
Ωn

j

dx

= C1d
1/2
n |Ω|.(28)

Note that the same estimate holds for v instead of vn, since (21) holds with the
same constant by (19).

Since dn → 0 as n → ∞ there is N2 ∈ N such that for all n ≥ N2 we have

dn < ε2

9C2
1 |Ω|2 .

For n ≥ N0 := max(N1, N2) we have∣∣∣∣∣
Nn∑
i=1

Lvn(x
n
i )wi,n −

Nn∑
i=1

Lv(xn
i )wi,n

∣∣∣∣∣ ≤
∣∣∣∣∣
Nn∑
i=1

Lvn(x
n
i )wi,n −

∫
Ω

Lvn(x) dx

∣∣∣∣∣
+

∣∣∣∣∫
Ω

Lvn(x) dx−
∫
Ω

Lv(x) dx

∣∣∣∣
+

∣∣∣∣∣
∫
Ω

Lv(x) dx−
Nn∑
i=1

Lv(xn
i )wi,n

∣∣∣∣∣
< ε

by (28) and (27), which shows (26).
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Step 4. Finally, we seek to show that v is the unique minimizer. First, let us show
that v is a minimizer. Assume that V ∈ H is any function satisfying the constraints
of (15). For every n, V also satisfies the constraints of the discrete problem, so we
have

‖vn‖2H +

Nn∑
i=1

Lvn(x
n
i )wi,n ≤ ‖V ‖2H +

Nn∑
i=1

LV (xn
i )wi,n.

As n → ∞, this becomes

‖v‖2H +

∫
Ω

Lv(x) dx ≤ ‖V ‖2H +

∫
Ω

LV (x) dx(29)

as ‖vn‖H → ‖v‖H due to the strong convergence,
∑Nn

i=1 Lvn(x
n
i )wi,n →

∫
Ω
Lv(x) dx

using (27) and (28) and
∑Nn

i=1 LV (xn
i )wi,n →

∫
Ω
LV (x) dx similar to (28). Equation

(29) shows that v is a minimizer.
To show that there is not more than one minimizer, we first assume that s ∈ H

is a minimizer and v ∈ H satisfies the constraints of (15) and show that

2〈s, v − s〉H +

∫
Ω

L(v − s)(x) dx ≥ 0.(30)

Indeed, assume that 2〈s, v− s〉H +
∫
Ω
L(v− s)(x) dx < 0. Let α ∈ [0, 1]. Note that

t = αv + (1− α)s satisfies the constraints and we have

‖t‖2H +

∫
Ω

Lt(x) dx = ‖s+ α(v − s)‖2H +

∫
Ω

L[s+ α(v − s)](x) dx

= ‖s‖2H + 2α〈s, v − s〉H + α2‖v − s‖2H
+

∫
Ω

Ls(x) dx+ α

∫
Ω

L(v − s)(x) dx

< ‖s‖2H +

∫
Ω

Ls(x) dx

for a suitable α > 0. This is a contradiction to s being a minimizer.
Now let s1, s2 ∈ H be minimizers. Then by (30) we have

2〈s1, s2 − s1〉H +

∫
Ω

L(s2 − s1)(x) dx ≥ 0

and

2〈s2, s1 − s2〉H +

∫
Ω

L(s1 − s2)(x) dx ≥ 0.

This implies

0 ≤ 2‖s1 − s2‖2H
= −2〈s1, s2 − s1〉H − 2〈s2, s1 − s2〉H
= −2〈s1, s2 − s1〉H − 2〈s2, s1 − s2〉H

−
∫
Ω

L(s2 − s1)(x) dx−
∫
Ω

L(s1 − s2)(x) dx

≤ 0

which shows s1 = s2.
Hence, every weakly convergent subsequence of the original sequence (vn)n∈N

necessarily converges strongly to the unique minimizer v of (15). It now follows
that the original sequence (vn)n∈N of the solutions to the problems (16) converges



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPLETE LYAPUNOV FUNCTIONS 2153

strongly to v. For a contradiction assume this is not the case and there exists an
ε > 0 and a subsequence (vnk

)k∈N such that

‖vnk
− v‖H ≥ ε for all k ∈ N.(31)

Since (vnk
)k∈N is bounded it has a weakly convergent subsequence and as we have

shown above this subsequence must necessarily converge weakly, and then strongly,
to v. This is a contradiction to (31). �

Remark 3.6. The assumption that there exists a function V0 ∈ Hσ(Ω) that satisfies
the constraints of (15) is obviously satisfied if the equation Lv(x) = b(x) has a
solution in Hσ(Ω). This will, for example, be the case in our application to compute
complete Lyapunov functions in the next section.

4. Computing complete Lyapunov functions

For our application to compute complete Lyapunov functions we choose b ≡ 0
as well as λi = δxi

◦ L, i = 1, . . . , N , where Lv = v′ = f · ∇v denotes the operator
of the orbital derivative, which is of order m = 1. Moreover, we assume that all
points xi are pairwise distinct and satisfy f(xi) �= 0, i.e. they are no equilibria of
(1). This implies that they are regular points of L, see [19].

There exists a function V0 satisfying the constraints

LV0(x) = V ′
0(x) ≤ 0;

in fact, the constant function V0(x) ≡ 0 is such a function. Hence, Theorem 3.5
shows that in our situation there exists a unique minimizer v, which is a CLF
candidate, satisfying v′(x) ≤ 0 for all x ∈ Ω, and it is the limit of the functions vn,
obtained by solving a sequence of quadratic programming problems.

However, the minimizer could be itself a constant function and would then not
deliver any information about the dynamics of the system.

We will show that if there exists a smooth CLF, which is not constant on Ω, then
the minimizer is also not constant. By [30] this is the case, unless Ω is a subset of
the chain-recurrent set.

Proposition 4.1. Assume that the system (1) has a non-constant CLF candidate
V0 ∈ Hσ(Ω) =: H with σ > d/2 + 2 on a bounded domain Ω with a Lipschitz
boundary and there exists a point x0 ∈ Ω with V ′(x0) < 0. Then the minimizer
v ∈ H of the problem{

minimize ‖v‖2H +
∫
Ω
v′(x) dx

subject to v′(x) ≤ 0 ∀x ∈ Ω,
(32)

is a non-constant CLF candidate, which has not vanishing orbital derivative on all
of Ω.

Proof. We prove the proposition by showing that there is a constant c > 0 such
that the objective function for the CLF candidate cV0 is strictly negative.

Since V0 is a CLF candidate, so is cV0 for all c > 0. Define a = ‖V0‖2H and
b =

∫
Ω
V ′
0(x) dx. We have a > 0 and b < 0, since V0 is C1 and satisfies V ′

0(x0) < 0.
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We have

g(c) := ‖cV0‖2H +

∫
Ω

cV ′
0(x) dx

= ac2 + bc

= a

(
c+

b

2a

)2

− b2

4a
,

which is a quadratic function in c with minimum − b2

4a < 0, which is attained at

c = − b
2a > 0. �

Remark 4.2. Note that considering the problem{
minimize ‖w‖2H +R

∫
Ω
w′(x) dx

subject to w′(x) ≤ 0 ∀x ∈ Ω,
(33)

where R > 0, results in a scaled minimizer w(x) = Rv(x) compared to problem
(32). Therefore one can use the parameter R > 0 to obtain a scaled CLF candidate
for the system, however, it results in the same estimate of the chain-recurrent set.

More precisely, if v ∈ H is the solution of (32), then w(x) = Rv(x) is the solution
of (33).

Indeed, first of all, both problems have a unique minimizer. Further, if v′(x) ≤ 0,
then w′(x) ≤ 0 holds for all x ∈ Ω. Lastly, we show that if w is not the minimizer
of (33), then v is not the minimizer of (32): assume that there is u ∈ H with

‖u‖2H +R

∫
Ω

u′(x) dx < ‖w‖2H +R

∫
Ω

w′(x) dx.

Define ũ(x) = u(x)
R . Then we have

R2‖ũ‖2H +R2

∫
Ω

ũ′(x) dx < R2‖v‖2H +R2

∫
Ω

v′(x) dx, i.e.

‖ũ‖2H +

∫
Ω

ũ′(x) dx < ‖v‖2H +

∫
Ω

v′(x) dx,

which shows that v is not the minimizer.

5. Examples

For the computations we use a finite set of points X = {x1, . . . , xN} ⊆ R
d. The

set X is chosen as a subset of the following (shifted) hexagonal grid with fineness-
parameter αHexa-basis ∈ R

+:

αHexa-basis

{
ωd

2
+

d∑
k=1

ikωk : ik ∈ Z

}
, where(34)

ω1 = (2ε1, 0, 0, . . . , 0)

ω2 = (ε1, 3ε2, 0, . . . , 0)

...
...

ωd = (ε1, ε2, ε3, . . . , (d+ 1)εd) and

εk =

√
1

2k(k + 1)
, k ∈ N.
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This hexagonal grid optimally balances the opposing aims of a small fill distance and
a large separation distance of points to keep the condition numbers of the collocation
matrices as small as possible [26]. The singular points of L are equilibria, i.e. points
x satisfying f(x) = 0, and, therefore, all such points are removed from the set X.

The method was implemented on a UNIX system using C++ and the quadratic
optimization problems were solved using a quadratic program solver provided by
P. Perry https://github.com/patperry/qp. We will publish its implementation
as a further update to LyapXool – a software package for computing complete
Lyapunov functions [2, 6].

Figure 1. The orbital derivative v′(x, y) of the complete Lya-
punov function candidate v computed by our method for system
(35). v′(x, y) is approximately zero on the chain-recurrent set (ori-
gin and the two periodic orbits, circle with radii 0.5 and 1) and
negative elsewhere. Both figures depict v′(x, y), but on the right
one we have zoomed in on the z-axis (interval

[
−10−5, 5× 10−6

]
),

so that one can better identify the approximation to the chain-
recurrent set, i.e. where v′(x, y) ≈ 0.

Figure 2. The complete Lyapunov function candidate v(x, y)
computed by our method for system (35). v has a minimum at
the asymptotically stable equilibrium at the origin, a local maxi-
mum at the unstable periodic orbit (circle with radius 0.5) and a
local minimum at the asymptotically stable periodic orbit (circle
with radius 1). Both figures depict v(x, y), but on the right one
we have zoomed in on the z-axis (interval

[
−2× 10−4, 5× 10−4

]
),

so that one can better identify the shape of v.

https://github.com/patperry/qp
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Figure 3. Approximation of the chain-recurrent set as the set
{(x, y) ∈ R

2 | v′(x, y) ≥ 0} for system (35). The chain-recurrent
set consists of the asymptotically stable equilibrium at the origin,
the unstable periodic orbit (circle with radius 0.5) and the asymp-
totically stable periodic orbit (circle with radius 1).

5.1. Two periodic orbits. We consider the system

(35)

(
ẋ
ẏ

)
=

(
−x(x2 + y2 − 1/4)(x2 + y2 − 1)− y
−y(x2 + y2 − 1/4)(x2 + y2 − 1) + x

)
.

This system has an asymptotically stable equilibrium at the origin as well as two
periodic orbits: an asymptotically stable periodic orbit at Ω1 = {(x, y) ∈ R

2 |√
x2 + y2 = 1} and an unstable periodic orbit at Ω2 = {(x, y) ∈ R

2 |
√
x2 + y2 =

1/2}.
For the quadratic programming problem we used the points of the hexagonal

grid (34) with αHexa-basis = 0.0143 in the area [−1.5, 1.5]
2 ⊆ R

2. This results in a
matrix A of size N2 with N = 50, 820. As kernel we used the Wendland function
ψ6,4(r) = (1− r)6+(35r

2 + 18r + 3), where x+ = x if x > 0 and x+ = 0 otherwise.
Figure 1 displays the orbital derivative v′ of the CLF candidate, which is ap-

proximately zero at the equilibrium and the two periodic orbits (circles with radii
0.5 and 1) and negative otherwise. Figure 2 shows the computed CLF candidate
with a local minimum at the origin, which is an asymptotically stable equilibrium,
a local maximum at the unstable periodic orbit (circle with radius 0.5) and a local
minimum at the attracting periodic orbit (circle with radius 1). Figure 3 shows
an approximation of the chain-recurrent set, namely the points (x, y), such that
v′(x, y) ≥ 0.

5.2. Lorenz attractor. We consider the classical Lorenz system

(36)

⎛⎝ ẋ
ẏ
ż

⎞⎠ =

⎛⎝ −σx+ σx
rx− y − xz
xy − bz

⎞⎠ =: f(x, y, z).

with the parameters σ = 10, b = 8/3 and r = 28, for which it has a global attractor.
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Figure 4. Approximation of the chain-recurrent set as the set
{(x, y, z) ∈ R

3 | v′(x, y, z) ≥ 0} for the Lorenz system (37) in blue.
For comparison, the actual global attractor is shown in red and
was computed using the computer software GAIO [15]. The pro-
posed method characterizes the shape of the Lorenz attractor well,
including the butterfly-like shape. The figures show the attractor
in R

3 (top left) as well its projections on the xy−, xz− and
yz−planes.

For computational purposes it is advantageous to scale the system so that the
attractor fits into a smaller set. We follow [21] and consider the system

(37)

⎛⎝ ẋ
ẏ
ż

⎞⎠ =

⎛⎝ −σx+ σ(sy/sx)y
r(sx/sy)x− y − (sxsz/sy)xz

−bz + (sxsy/sz)xy

⎞⎠
and set sx = 24.5 and sy = sz = 100. In system (37) the function f(·) in the
classical Lorenz system has been replaced by S−1f(S·), where S = diag(sx, sy, sz).
A solution trajectory y(t) to (37) corresponds to a solution trajectory x(t) = Sy(t)
of (36). With this scaling one can use results from [12] to prove that the attractor
of (37) must be in the cube [−1, 1] × [−0.29, 0.29] × [0, 0.57], cf. [21], which is the
region shown in the figures.

For the quadratic programming problem we have used the points of the hexagonal
grid (34) with αHexa-basis = 0.04 in the area [−1, 1]2 × [−0.1, 0.6] ⊆ R

3. This results
in a matrix A of size N2 with N = 61, 092. As kernel we have used the Wendland
function ψ6,4(r) = (1 − r)6+(35r

2 + 18r + 3), where x+ = x if x > 0 and x+ = 0
otherwise.
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Figure 4 displays the set of points with orbital derivative v′(x, y, z) ≥ 0 in blue,
characterizing the chain-recurrent set, i.e. the attractor. For comparison, we have
plotted the actual attractor in red computed by the computer software GAIO [15].
The figures show that points with nonnegative orbital derivative of the computed
CLF candidate include the attractor and the set displays the butterfly shape very
well.

5.3. Rate of convergence. We have not developed a theory for determining the
rate of convergence for our approach, i.e. how fast the solutions vn of the discretized
optimization problems (16) converge to the solution of the original problem (15) as
a function of the diameter dn of the areas Ωn, cf. Theorem 3.5. We did, however,
do some numerical experiments to estimate the rate of convergence. We used the
system (35) and computed a CLF candidate with αHexa-basis = 0.0134. Then we
compared these results with those obtained using αHexa-basis = 0.02, 0.03, . . . , 0.1,
where we defined the error as the root mean square (rms) of their difference on a
uniform grid with 1, 002, 001 points. Note that αHexa-basis is directly proportional
to dn. The results are quite clear as can be seen in Figure 5 and we get a good
linear fit of the logarithm of the rms of the error vs. the logarithm of αHexa-basis with
slope 1.0237, indicating that the vn converge linearly in dn in the ‖ · ‖∞ norm to v.
These results were verified for the simple 1-dimensional system ẋ = −1 on (−1, 1).
We are optimistic that the rate of convergence can be improved, e.g. by including a
higher-order approximations of the integral

∫
Ω
Lv(x)dx. This will be investigated

in future work.

Figure 5. Numerical estimate of the rate of convergence: rms of
the error as a function of αHexa-basis on a dense uniform grid. The
convergence is clearly linear in αHexa-basis ∝ dn.

6. Summary

In this paper, we have considered a general quadratic minimization problem with
linear differential inequality constraints and we have shown that it has a unique
solution. Moreover, the unique minimizer is the (strong) limit of a sequence of
solutions of corresponding discretized problems, which in turn can be determined
by quadratic programming.
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This general theory has been applied to the construction of a complete Lyapunov
function candidate, which is a function with non-positive orbital derivative. So far,
construction methods for complete Lyapunov functions have either needed infor-
mation about the location of the chain-recurrent set or there has been no proof of
convergence. Our new method, on the contrary, proves that a complete Lyapunov
function can be constructed as the limit of solutions of quadratic programming
problems, which do not require any knowledge about the chain-recurrent set at all.
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