
Lyapunov Function Verification:
MATLAB Implementation

Skuli Gudmundsson ∗ Sigurdur F. Hafstein ∗

∗Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
e-mail: skuligu@ru.is, sigurdurh@ru.is

Abstract: Lyapunov functions are a mathematical generalization of the dissipative energy
concept of physics. Lyapunov functions are the centerpiece of the Lyapunov-stability theory for
dynamical systems in general. Here we present a simple method for checking the validity of a
quadratic Lyapunov function, which is constructed for the linearization of a nonlinear system
and does not in general satisfy the condition of having a negative orbital derivative on the
origins basin of attraction. The current work also extends previous work done on continuous
and piecewise affine (CPA) Lyapunov functions by permitting more general triangulations than
have been used in that context, namely Delaunay triangulations. Delaunay triangulations have
been studied intensively in the literature and allow local refinements of the triangulation. The
third contribution of this paper is a freely available MATLAB implementation of the methods
proposed.

Keywords: Lyapunov function, MATLAB, dynamical systems, Delaunay-triangulation.

1. INTRODUCTION

This article is the result of work which was initially un-
dertaken as continuation of the CPA methods to compute
Lyapunov functions, where a dynamical system arising
from a system of nonlinear autonomous differential equa-
tions is considered and the stability of its equilibria in-
vestigated by constructing an associated CPA Lyapunov
function by linear programming Marinósson (2002); Giesl
and Hafstein (2014). The CPA method has already been
modified to make a principled guess of appropriate values
of a CPA Lyapunov function at the vertices of a suitable
triangulation and then verify the conditions for a Lya-
punov function of the CPA interpolation Björnsson et al.
(2014,?).

Here, however, we do not consider the CPA interpolation of
a candidate Lyapunov function, but verify the conditions
for a Lyapunov function directly for the function at hand.
The approach investigated is based on a triangulation
scheme novel to the CPA method, namely the Delaunay
triangulation Delaunay (1934), which has been studied at
length in the literature. The Delaunay triangulation has
the advantage over other triangulations that have been
proposed in the context of the CPA method, in that it
allows for a simple implementation of local refinements,
where finer triangulations are obtained incrementally by
increasing the resolution locally where it is required. We
implement a Delaunay triangulation on the domain of the
system and test the negativity of the orbital derivative
of a quadratic Lyapunov function for the system. This
quadratic Lyapunov function is constructed using stan-
dard methods of linearization of the system around the

? Gudmundsson is supported by The Icelandic Research Fund, grant
nr. 152429-051.

equilibrium at the origin. The MATLAB implementation and
its use for the proposed method is described in detail.

1.1 Lyapunov Functions

A basic dynamical system is considered, derived from the
following autonomous (and generally nonlinear) differen-
tial equation:

ẋ = f(x), where f ∈ C2(Rn,Rn) and f(0) = 0. (1)

The stability of the equilibrium at the origin is to be
investigated. In particular, we deliver an estimate of its
basin of attraction.

The stability of (1) is closely tied to the existence of
a Lyapunov function for the system, the sublevel-sets
of which are entirely contained within the domain of
attraction of the equilibrium at the origin. A locally
Lipschitz function V : Rn → R+ with V (0) = 0 and
V (x) > 0 for x 6= 0 is a Lyapunov function for the system
(1) if:

V ′(x) := lim sup
h→0+

V (x + hf(x))− V (x)

h
< 0 (2)

for all x ∈ U \ {0}, where U is a simply connected
neighborhood of the origin. If V is differentiable, then
V ′(x) = ∇V (x) · f(x). The function V ′ is called the
orbital derivative of V (w.r.t. the system (1) if necessary).
The inequality (2) implies that Lyapunov functions are
decreasing along solution trajectories.

Consider a linear system of the form:

ẋ = Ax where A ∈ Rn×n (3)

and let Q ∈ Rn×n be an arbitrary positive definite
matrix. The origin is an asymptotically stable equilibrium
of system (3), if and only if the equation:

P A+AT P +Q = 0 (4)

(called emphcontinuous-time Lyapunov equation) has a
positive definite solution P . The solution P is then unique
and

VP (x) =
1

2
xTP x (5)

is a Lyapunov function for the system (3) with U = Rn.

For the general system (1) one can consider its linear
approximation (3) with A = Jf (0) the Jacobi-matrix of
f at the origin. It is well known that if (5) is a Lyapunov
function for the linearized system, then it is also a valid
Lyapunov function for the (nonlinear) system (1) in a small
enough neighborhood U of the origin. In Hafstein (2004) it
is e.g. shown that one can take U = {x ∈ Rn : ‖x‖∞ < a},
where,

1

a
> ‖P‖2

√√√√√ n∑
i=1

 n∑
j,k=1

sup
ξ∈[−a,a]n

∣∣∣∂2jkfi(ξ)
∣∣∣
2

, (6)

and ‖P‖2 is the spectral-norm of the matrix P . This can
be used to get a minimal region. However, the domain
where the orbital derivative is negative might be much
larger than obtained by this crude estimate.

2. NUMERICAL APPROACH

Because of the fundamental difficulty in finding a Lya-
punov function for a given dynamical systems, we are
drawn to approaching the problem numerically. There have
been many proposals in the literature on how to generate
Lyapunov functions computationally, e.g. by parameter-
izing sum-of-squared (SOS) polynomials Parrilo (2000);
Peet and Papachristodoulou (2012), see also the MATLAB

toolbox Papachristodoulou et al. (2013) and the review
Anderson and Papachristodoulou (2015); using colloca-
tion to solve the Zubov equation numerically Giesl (2007)
or other methods for computing polynomial Lyapunov
functions Kamyar and Peet (2015). A review article has
recently been published Giesl and Hafstein on the subject
in general.

In the present article we will make extensive use of meth-
ods presented initially in Marinósson (2002) to parame-
terize continuous and piecewise affine (CPA) Lyapunov
functions on a simplicial-triangulation of U ⊂ Rn. Further
work on the CPA method has been undertaken in e.g. Haf-
stein (2007); Baier et al. (2012); Giesl and Hafstein (2013,
2014).

2.1 Simplicial Triangulations

For a finite set of vectors C = {x0, . . . ,xm} the set
consisting of all their convex-combinations is called the
convex-hull of C and is denoted by:

coC =

{
m∑
k=0

λkxk : 0 ≤ λk ≤ 1,

m∑
k=0

λk = 1

}
.

The set S = coC = co{x0, . . . ,xm} is called an m-simplex
if the vectors xk − x0 are linearly-independent and the
vectors x0, . . . ,xm are then referred to as its vertices. It
is easy to see that this does not depend upon the choice
of x0 among the vertices. We are mainly interested in n-
simplices in Rn.

The triangulation T of a set U ⊂ Rn, is a fam-
ily of n-simplices (Sν)ν∈I = (coCν)ν∈I where Cµ =
{xµ0 ,x

µ
1 , . . . ,x

µ
n} such that

DT :=
⋃
ν∈I

Sν = U

and for which the pairwise intersection of simplices in T
is a common face of the simplices or empty, i.e.

Sν ∩ Sµ = coCµ ∩ coCν = co(Cµ ∩ Cν).

A continuous function g : DT → R that is affine on each
simplex Sν ∈ T can now be uniquely defined by specifying
its values at the vertices

⋃
ν∈I Cν . This fact is instrumental

for the CPA method.

Analogous to using Cartesian-, spherical- or cylindrical-
coordinates to indicate points in a set U ⊂ Rn, there are
so-called Barycentric-coordinates which can be used on a
set U ⊂ Rn which has a triangulation T = (Sν)ν∈I . With
Barycentric-coordinates one specifies a point x ∈ U by
first listing a simplex which contains the point x ∈ Sµ =
co{xµ0 , . . . ,xµn} and with the simplex index µ given, listing
the unique convex-combination which yields the point
x =

∑n
k=0 λ

µ
kx

µ
k . A Barycentric-coordinate transformation

is thus given by

x = (x1, . . . , xn)T � (µ, λ0, λ1, . . . , λn)

with µ ∈ I from the index set I of the family T and the
λk-s satisfying: 0 ≤ λk ≤ 1 and

∑n
k=0 λk = 1.

We have discussed triangulations in general but let us now
consider a few explicit ways of achieving an actual triangu-
lation of a set U ⊂ Rn. A so-called standard triangulation
Tstd was proposed in Giesl and Hafstein (2012b) which
systematically triangulated [0, 1]n with sums of unit vector
as vertices and then repeated that construction, thereby
extending the triangulation to an integer grid (a subset
of Zn). This construction could then simply be scaled to
fit into a given dynamical system domain. In Giesl and
Hafstein (2014) this method was extended to using a fan-
like triangulation at the origin. Another possibility that
has been discussed is to map the vertices of Tstd with an
invertible transformation Rn → Rn of the form:

x 7→ ‖x‖∞
‖x‖Q

x

whereQ is a positive definite matrix and ‖x‖Q =
√

xT Qx.
The simplices of the resulting triangulation TQ would now
be the convex-hulls of the mapped vertices.

Although the triangulations Tstd with a triangular fan at
the origin and TQ served well for some applications that
have been investigated, there are some inherit difficulties
with such very regular and strictly constructed triangu-
lations. For example, it is difficult to come up with a
systematic way of increasing vertex-resolution locally. Fur-
thermore, it is difficult to continue with a development of
methods which rely upon a triangulation scheme which is
outside the domain of common usage. A completely differ-
ent triangulation method, called Delaunay-triangulations
Delaunay (1934) has been studied, developed and used ex-
tensively within the field of computational geometry, and it
would be of great utility for future work in the field of CPA
Lyapunov functions to apply this less restricted and widely
used algorithms to create triangulations for domains of
dynamical systems. There have been numerous applica-
tions for Delaunay triangulations, not least in the fields of

digital graphics and rendering, and for this reason many
useful properties concerning Delaunay triangulations have
been proven, but most importantly, very efficient incre-
mental algorithms have been designed for the creation of
Delaunay triangulations of a generically scattered set of
points in Rn Guibas et al. (1992). For this purpose, let us
review briefly what a Delaunay-triangulation is and then
let us use this scheme in the present context of Lyapunov
function generation and testing.

For n + 1 points defining an n-simplex in Rn the n-
sphere with all vertices on its surface is called the circum-
sphere for the simplex and its center, the simplex’s circum-
center. A Delaunay-triangulation of a set of points P =
{y1,y2, . . . ,yN} ⊂ Rn is a triangulation TD = (SDν)ν∈I
where the vertices of each Delaunay-simplex SDν come
from the set P and SDν is such that the interior of its
circum-sphere contains none of the points in P. Delaunay-
triangulations are widely used and algorithms for their cre-
ation are therefore available as part of many calculational
tools. The MATLAB Computational Geometry Toolbox is
no exception. They are however quite computationally
expensive and the generation quickly becomes intractable
as the dimension n increases (the number of simplices
in a Delaunay-triangulation is O(Nn/2) Seidel (1995)).
However, this is to some extent made up for by the
fact that Delaunay-triangulation algorithms are especially
suited for sequential triangulations. By sequential or in-
cremental algorithms we mean such where points can be
added iteratively to an already triangulated point set and
a new triangulation generated by local only alterations
near the added point effectively retaining a small problem
in each iteration. Such behavior is ideal for the purpose
of our present work, namely the local refinement of a
triangulation.

2.2 Condition for Negative Orbital Derivative

With VP (x) = 1
2x

TPx as before, we have

V ′P (x) = xTP f(x) =

n∑
i,j=1

xipijfj(x), (7)

with xi, fj , and pij the entries of the vector x, the
function f , and the matrix P respectively. Let Sν =
co{x0,x1, . . . ,xn} be an n-simplex and g ∈ C2(Sν ,R).
Then, for every convex combination x =

∑n
i=0 λixi we

have the following inequality:∣∣∣∣∣g(x)−
n∑
i=0

λig(xi)

∣∣∣∣∣ ≤
n∑
i=0

λiE
g
i,ν

where

Egi,ν = nBgνh
2
ν ,

hν = max
i,j∈J0

‖xj − xi‖2,

Bgν ≥ max
r,s∈J

sup
x∈Sν

∣∣∂2rsg(x)
∣∣ ,

where we use the index sets J = {1, 2, . . . , n} and J0 = J∪
{0}. For a proof of this fact cf. e.g. (Baier et al., 2012,
Prop. 4.1).

By applying this theorem to the function V ′(x) =
xTP f(x) on a simplex Sν of a simplicial triangulation we
have the following result: If for all i = 0, 1, . . . , n we have

xTi P f(xi) + nBνh
2
ν < 0, (8)

with
Bν ≥ max

r,s∈J
sup
x∈Sν

∣∣∂2rsV ′(x)
∣∣ , (9)

then V (x) has a negative orbital derivative on Sν . Just
note that for a convex combination x =

∑n
k=0 λkxi we

have

V ′P (x) ≤
n∑
k=0

λkV
′
P (xk) +

∣∣∣∣∣V ′P (x)−
n∑
k=0

λkV
′
P (xk)

∣∣∣∣∣
≤

n∑
k=0

λk
(
xTk P f(xk) + nBνh

2
ν

)
< 0.

The second derivatives of the orbital derivative (7) is easily
calculated:

∂2rsV
′(x) =

n∑
j=1

(psj∂rfj(x) + prj∂sfj(x))

+

n∑
i,j=1

xipij∂
2
rsfj(x)

so a sufficiently large Bν is, e.g., given by the simple
formula:

Bν = n|P |max

(
2 max
i,j∈J
x∈Sν

|∂ifj(x)|+ nxmax
ν max

i,j,k∈J
x∈Sν

∣∣∂2ijfk(x)
∣∣)

where

|P |max = max
i,j∈J

|pij | and xmax
ν := max

x∈Sν
‖x‖∞.

This quantity Bν depends on the system f and on the
matrix P and by rewriting the condition (8) for a negative
orbital derivative of V (x) = 1

2x
TPx, we see that V ′ is

negative on Sν if

Bν < min
i∈J0

[
−xTi P f(xi)

h2ν

]
=: B†ν . (10)

3. LYAPUNOV VERIFICATION

Lots of work has been done in the area of Lyapunov func-
tion creation and verification of a CPA construction on a
simplicial-triangulation as has been described. However, to
date, this has not been done on a Delaunay triangulation
to the knowledge of the present authors. In this paper,
we have extracted a Lyapunov-condition specifically de-
signed for a quadratic Lyapunov function, employed on a
simplicial-triangulation in the anticipation of work along
the lines of the Linear Programming approach of Giesl and
Hafstein (2014, 2012a). Since this further work is out of
the context of this short paper, we have decided to utilize
the condition for a negative orbital derivative found in
equation (10) independently. By implementing the associ-
ated Delaunay triangulation in this context, we have found
a scheme which lends itself very naturally to local and
iterative resolution refinements. The CPA construction on
a Delaunay triangulation, which has been partially set up
here, leads very naturally to the optimization approach
cited, but we shall confine the current discussion to a sim-
ple MATLAB implementation of a Lyapunov-verification of a
quadratic Lyapunov function obtained by linearization.

Below is an example of how to utilize the Lyapunov func-
tion condition to verify in what domain a quadratic Lya-
punov function for a given system indeed has a negative

orbital derivative. Because we are refraining from extend-
ing the CPA construction on the Delaunay lattice and
limiting the present study to testing only the negativity
of the orbital derivative of a quadratic Lyapunov function
for an exponentially stable equilibrium, it is easy to point
out more straight forward ways to perform such a test,
lets say for example to sample V ′ on a fine grid over the
domain of the system. Such an approach would however
remain heuristic because it would strictly be possible that
negative values of V ′ were missed between sample points.
The present method gives a mathematical guarantee as
well as yields an explicit result in terms of how ”fine” such
a sample grid must be.

The numerical implementation below is in MATLAB and
interested readers can confirm our results, or by using our
code as a template, can experiment with their own dy-
namical systems and/or Lyapunov ansatz functions, with
only the most basic MATLAB literacy. In fact, the MATLAB code
has been organized in such a way as to make it particularly
simple and easy to supply a different dynamical system for
the calculation in the examples below. The implementation
in the form of m-files can be found in its entirety here:
http://www.ru.is/kennarar/sigurdurh/M2015M.rar.

4. ALGORITHM PROPOSED

Let us review the implementation first very schematically.
The algorithm we use to verify the negativity of the orbital
derivative of a quadratic Lyapunov function is as follows:

(1) Specify the dynamical system and the cube D =
[−C,C]n on which we want to study the negativity
of the orbital derivative of our quadratic Lyapunov
function candidate.

(2) Specify a negative definite matrix Q ∈ Rn×n and
obtain the quadratic Lyapunov function VP (x) from
equation (5) by solving the Lyapunov equation (4).

(3) Obtain an estimate for Bν (recall that this bound
does not have to be tight, can in fact be a constant
over the domain). The more generous the bound, the
finer the required triangulation (smaller hν).

(4) Compute a (small) cube [−a, a]n, for example by
using (6), such that the orbital derivative V ′(x) of
V (x) is negative on [−a, a]n \ {0}.

(5) Generate points P = {y1,y2, . . . ,yN} ⊂ D randomly.
(6) Generate a Delaunay triangulation of the point set
P and calculate the values of f and VP on the
triangulation vertices P.

(7) Traverse the entire collection of simplices and eval-
uate the condition (9) for each simplex. For each
simplex Sν = co{x0,x1, . . . ,xn} where the condition
(9) fails, we add the midpoint

y =
x0 + x1 + . . .+ xn

n+ 1

to P.
(8) Return back to Step 6) with the enlarged set P.

We do not specify a termination condition for the algo-
rithm in general. Some obvious possibilities would be a
fixed number of repetitions of Step 6), some given maxi-
mum size of P, or some minimum of points added to P in
Step 7).

4.1 Worked out Example

Let us now go through the above steps in detail for a
concrete example:

(1) Dynamical System The implementation starts by
specifying the dynamical system in question. As a simple
explicit example, we consider a dynamical system of the
form (1) with:

r =

(
x
y

)
, f(x, y) =

(
x

0.5(1− x2)y − x

)
.

This is the well known Van-Der-Pol oscillator converted
from a second order ODE to planar system and with the
time variable reversed in order to make the equilibrium
at the origin exponentially stable. Lets look at the main
results from our conditions applied to this case.

In MATLAB this is done using the Symbolic Math Toolbox
as follows:

syms x y mu;
assume(x, 'real'); assume(y, 'real');
Fx(x,y,mu) = -y;
Fy(x,y,mu) = -1/2*(1-xˆ2)*y+x;
r = [x,y];
F = [Fx,Fy];

The MATLAB output for the first and second derivatives of
f(x) yields:

>> DF=jacobian(F,r)
DF(x, y) =

[0, -1]
[x*y + 1, 1/2*(xˆ2 - 1)]

>> DDFx=hessian(Fx,r)
DDFx(x, y) =

[0, 0]
[0, 0]

>> DDFy=hessian(Fy,r)
DDFy(x, y) =

[y, x]
[x, 0]

We fix our domain of interest by setting C = 3, i.e. D =
[−C,C]2 = [−3, 3]2.

(2) Generate a quadratic Lyapunov Function We fix
Q = −I, where I is the 2 × 2 identity matrix and then
use the built in solver for the Lyapunov equation (4) with
the matrix A as the Jacobian of f evaluated at r = 0.
The built in Lyapunov equation solver of MATLAB in fact
directly employs a LAPACK routine for the more general
Sylvester equation (see the example code for details).

For our example the result is

P =

(
2.25 −0.50
−0.50 2.00

)
.

(3) Estimate Bν for the simplices Sν From the jacobian

and hessian in 1) the following bounds are immediate:

max
i,j=1,2
x∈D

|∂ifj(x)| ≤ C2 + 1 and max
i,j,k=1,2

x∈D

∣∣∂2ijfk(x)
∣∣ ≤ C.

From this we see that sufficiently large Bν from the
formula derived in Section 2.2 are given by

Bν = 9
[
2 (xmax

ν)
2

+ 1
]
. (11)

Note that we could substitute xmax
ν = C = 3 for all

ν. These less tighter bound would, however, imply that
we might need more triangles in our triangulation for
comparable results.

(4) Estimate a in [−a, a]2 By using the second-derivatives
of the components of f from 1) and the formula (6) one
easily obtains the sufficient condition

1

a
< ‖P‖2

√
02 + (a+ a+ a)2 = 2.604 · 3a

or, e.g. a = 0.35 as a sufficiently small such that the
orbital derivative of VP is guarantied to be negative on
[−a, a]2 \ {0}.

(5) Generate P We generate N = 8, 000 random points
in D = [−3, 3]2 for our example. Note however that in
the figures presented, the domain has been ”framed” by
a regular grid of points, guaranteeing that the Delaunay
triangulation covers the domain and to avoid degenerate
triangles. This is not necessary but yields prettier figures
(see 1).

(6) Delaunay Triangulation The Delaunay triangula-
tion for the point set P is constructed by the command
T=delaunayn(P). The CPA method requires only the values
of f at the vertices and the Bν for the simplices of the
triangulation. It would be possible to now follow along
the lines of Hafstein (2007); Giesl and Hafstein (2014) and
set up an LP optimization problem to compute a CPA
Lyapunov function on this type of triangulation. Here,
however, we simply compute f(x) and Vp(x) at the vertices
x. For the explicit code please refer to the downloadable
MATLAB program mentioned above.

(7) Verifying the Orbital Derivative So we continue
with the schematic outline and now traverse through the
simplices of the triangulation T = (Sν)ν∈I . For each
simplex we perform the calculations of Bν from formula
(11) B†ν from formula (10) in the program and compare
them. If Bν < B†ν the orbital derivative of VP on Sν
is negative. If Bν ≥ B†ν the orbital derivative might be
positive in Sν or the triangle Sν might be too large.
To verify which of both possibilities applies we add the
midpoint of Sν to the set P to increase the resolution of
the triangulation locally at Sν .

(8) Iteration If we cannot guaranty that the orbital
derivative is negative in all triangles Sν , then we added
new points into P in Step 7), and we can return to
Step 6) to triangulate again with the new set P. For
the explicit code please refer, again, to the downloadable
MATLAB program mentioned above.

5. RESULTS AND CONCLUSIONS

The three figures: 1, 2, and 3 show the results of our
implemented example. On the first two figures we draw
the region of attraction secured by the quadratic Lyapunov
function, a result proved by our algorithm.

In figures 2 and 3 we can see how smaller simplices result
in a better result, i.e. we can extend the region where

Fig. 1. First run: Delaunay-triangulation of the domain
D = [−3, 3]2 where triangles are coloured red if
the condition of negative orbital derivative for the
quadratic Lyapunov function VP is not satisfied. For
the interior area points have been scattered at random
but clearly not densely enough, judging from how
widely the Lyapunov condition seems to be violated.
At the boundary we used a more regular grid to avoid
degenerated triangles.

Fig. 2. Steps 6) and 7) have been repeated two times. We
zoom into the Delaunay-triangulation on the domain
D = [−1.5, 1.5]2 and triangles are coloured red if
the condition of negative orbital derivative for the
quadratic Lyapunov function VP is not satisfied.

our quadratic Lyapunov function VP is guaranteed to have
a negative orbital derivative. Indeed, we can exhaust the
area where the orbital derivative V ′P is negative. Still, it
is clear that the condition is violated at the origin. This
follows from the condition (10). To see this let C ⊂ D
be any compact subset such that 0 /∈ C. If the orbital
derivative V ′P is negative on C, then q := maxx∈C V

′
P (x) <

Fig. 3. Steps 6) and 7) have been repeated six times. We
zoom into the Delaunay-triangulation on the domain
D = [−0.18, 0.18]2 and triangles are coloured red if
the condition of negative orbital derivative for the
quadratic Lyapunov function VP is not satisfied.

0. Further, there is a constant B > 0 such that for any
simplex Sν ⊂ C we can set Bν = B and Bν fulfills (9).

Now, let Sν ⊂ C be such that 0 < hν <
√
−q/B. Then

clearly for every vertex x of Sν we have

Bν <
−q
h2ν
≤ V ′(x)

h2ν
=
−xTP f(x)

h2ν
and the condition (10) is fulfilled.

The example presented constitute a ”toy” model of sorts
to test our Delaunay triangulation refinement algorithm.
Note that although we have emphasized the incremental
Delaunay algorithms widely available, we have not used
such here. Instead we have simply re-triangulated the
entire point-set P in each successive refinement. With
the idea thusly tested, further work implementing a self-
refining incremental Delaunay triangulation algorithm, for
the CPA Lyapunov function context, is under way.

Lack of space only allows us to consider this simple initial
example implementation of our method and MATLAB code.

REFERENCES

Anderson, J. and Papachristodoulou, A. (2015). Ad-
vances in computational Lyapunov analysis using sum-
of-squares programming. Discrete Contin. Dyn. Syst.
Ser. B. Accepted.

Baier, R., Grüne, L., and Hafstein, S. (2012). Linear
programming based Lyapunov function computation for
differential inclusions. Discrete Contin. Dyn. Syst. Ser.
B, 17(1), 33–56.

Björnsson, J., Giesl, P., and Hafstein, S. (2014). Algo-
rithmic verification of approximations to complete Lya-
punov functions. In Proceedings of the 21st International
Symposium on Mathematical Theory of Networks and

Systems, 1181–1188 (no. 0180). Groningen, The Nether-
lands.

Björnsson, J., Giesl, P., Hafstein, S., Kellett, C., and Li, H.
(2014). Computation of continuous and piecewise affine
Lyapunov functions by numerical approximations of the
Massera construction. In Proceedings of the CDC, 53rd
IEEE Conference on Decision and Control, pp. 5506-
5511. Los Angeles, California, USA.

Delaunay, B. (1934). Sur la sphère vide. a la mémoire de
georges voronöı. Bulletin de l’Académie des Sciences de
l’URSS. Classe des sciences mathématiques et na, (6),
793–800.

Giesl, P. (2007). Construction of Global Lyapunov Func-
tions Using Radial Basis Functions. Lecture Notes in
Math. 1904, Springer.

Giesl, P. and Hafstein, S. (2015). Review of computational
methods for Lyapunov functions. Discrete Contin. Dyn.
Syst.-Series B. Accepted.

Giesl, P. and Hafstein, S. (2012a). Construction of Lya-
punov functions for nonlinear planar systems by linear
programming. J. Math. Anal. Appl., 388, 463–479.

Giesl, P. and Hafstein, S. (2012b). Existence of piecewise
linear Lyapunov functions in arbitrary dimensions. Dis-
crete Contin. Dyn. Syst., 32(10), 3539–3565.

Giesl, P. and Hafstein, S. (2013). Construction of a CPA
contraction metric for periodic orbits using semidefinite
optimization. Nonlinear Anal., 86, 114–134.

Giesl, P. and Hafstein, S. (2014). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410, 292–306.

Guibas, L., Knuth, D., and Sharir, M. (1992). Random-
ized incremental construction of delaunay and voronoi
diagrams. Algorithmica, 7(1-6), 381–413.

Hafstein, S. (2004). A constructive converse Lyapunov
theorem on exponential stability. Discrete Contin. Dyn.
Syst., 10(3), 657–678.

Hafstein, S. (2007). An algorithm for constructing
Lyapunov functions, volume 8 of Electronic Journal
of Differential Equations. Monograph. Texas State
University–San Marcos, Department of Mathematics,
San Marcos, TX.

Kamyar, R. and Peet, M. (2015). Polynomial optimization
with applications to stability analysis and control – an
alternative to sum of squares. Discrete Contin. Dyn.
Syst. Ser. B. Accepted.

Marinósson, S. (2002). Stability Analysis of Nonlinear
Systems with Linear Programming: A Lyapunov Func-
tions Based Approach. PhD thesis: Gerhard-Mercator-
University Duisburg, Duisburg, Germany.

Papachristodoulou, A., Anderson, J., Valmorbida, G.,
Pranja, S., Seiler, P., and Parrilo, P. (2013). SOS-
TOOLS: Sum of Squares Optimization Toolbox for
MATLAB. User’s guide. Version 3.00 edition.

Parrilo, P. (2000). Structured Semidefinite Programs and
Semialgebraic Geometry Methods in Robustness and Op-
timiziation. PhD thesis: California Institute of Technol-
ogy Pasadena, California.

Peet, M. and Papachristodoulou, A. (2012). A converse
sum of squares Lyapunov result with a degree bound.
IEEE Trans. Automat. Control, 57(9), 2281–2293.

Seidel, R. (1995). The upper bound theorem for polytopes:
an easy proof of its asymptotic version. Computational
Geometry, 5(2), 115 – 116.

APPENDIX

5.1 Errata

The following typos have survived into the finished article:

• Equation (10) is incorrect in the paper. It should read:

Bν < min
i∈J0

[
−xTi P f(xi)

nh2ν

]
=: B†ν .

This error does not have any qualitative effect on the
results of the paper although it may in some instances
make more iterations and finer triangulations neces-
sary in order for the condition in the equation to be
fulfilled. We thank Alexander Weber from the De-
partment of Control Engineering at the University of
the Federal Armed Forces in Munich for his pointing
this error out to us!
• The error of equation (10) from above made its way

into the MATLAB code which was made available online
at: http://www.ru.is/kennarar/sigurdurh/M2015M.rar.
The code has now been corrected (as of 17/8/2015).

