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Abstract. We propose a subgradient algorithm for the computation of con-
traction metrics for systems with an exponentially stable equilibrium. We show

that for sufficiently smooth systems our method is always able to compute a
contraction metric on any forward-invariant compact neighbourhood of the

equilibrium, which is a subset its basin of attraction. We demonstrate the ap-

plicability of our method by constructing contraction metrics for three planar
and one three-dimensional systems.

Contraction metrics; stability analysis; contraction metrics; subgradient

method

1. Introduction. Consider an ordinary differential equation (ODE)

ẋ = f(x) (1.1)

with a C1-vector field f : Rn → Rn; we will denote the Jacobian of f by Df(x).
Let φt(x) denote the induced flow, i.e. the solution of (1.1) at time t ≥ 0 with
initial value x, and assume that it is defined for all t ≥ 0. Furthermore, we assume
that K ⊂ Rn is a compact forward-invariant set which is the closure of its interior,
i.e. K◦ = K.

An equilibrium of the ODE is a point x0 ∈ Rn such that f(x0) = 0, from which
φt(x0) = x0 for all t ≥ 0 follows. The equilibrium is said to be exponentially stable
if there exist δ, ρ, C > 0 such that ‖x− x0‖ < δ implies

‖φt(x)− x0‖ ≤ C‖x− x0‖e−ρt for all t ≥ 0,
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where ρ > 0 is called the rate of exponential attraction; here and elsewhere in the
paper, ‖ · ‖ stands for the Euclidean norm on Rn. We denote by A(x0) = {x ∈ Rn :
lim
t→∞

φt(x) = x0} its basin of attraction.

It is usually not hard to compute the equilibria by solving f(x) = 0. Further, the
exponential stability of an equilibrium x0 can be determined from the eigenvalues
of the linearization Df(x0) of f at x0; the equilibrium is exponentially stable if and
only if the real part of each eigenvalue of Df(x0) is strictly negative. Estimating
A(x0) is a much harder problem.

We are interested in proving the existence, uniqueness and exponential stability
of an equilibrium x0, as well as gaining information on its basin of attraction. There
are different methods in the literature towards estimating the basin of attraction.
A lower bound can be obtained by computing a Lyapunov function for the system
[29, 34]. Computing a Lyapunov function analytically is usually not feasible for a
nonlinear system, therefore a plethora of numerical methods have been developed.
To name a few, a sum of squared (SOS) polynomials Lyapunov function can be
parametrized by using semidefinite programming [36], an approximate solution to
the Zubov equation [44] can be obtained by collocation with radial basis functions
(RBF) [14], or linear programming can be used to parametrize a continuous and
piecewise affine (CPA) Lyapunov function [22, 26]. For an overview of numerical
methods to construct Lyapunov functions, see, e.g., the review [17].

Other methods to compute the basin of attraction of an equilibrium include
determining its boundary by computing invariant manifolds [31], or dividing the
phase space into cells using the cell mapping approach [24] or set oriented methods
[10] and computing the dynamics between those cells [35].

Another approach for studying the basin of attraction is based on contraction
metrics, which has the advantage that the position of the equilibrium is not needed.
While a Lyapunov function shows that solutions approach the equilibrium as time
evolves, a contraction metric proves that adjacent solutions approach each other as
time evolves when measured by an appropriate Riemannian metric [1, 23, 30, 33].

Converse theorems, proving the existence of a contraction metric, have been
derived in [15]. The explicit analytical computation of a contraction metric is,
however, in most cases not achievable. Numerical methods to compute contraction
metrics are often similar to the ones used to compute Lyapunov functions, e.g. in
[6, 7] metrics with SOS polynomial entries are computed, in [21] collocation with
RBF is used, in [16] a CPA contraction metric is parametrized using semidefinite
programming, and in [19] collocation with RBF is used to obtain an approximation
that is subsequently verified by CPA. See the recent review [18] for an overview of
methods for the computation of contraction metrics.

Let us compare the various methods with the proposed method in this paper: the
SOS method computes a polynomial matrix-valued contraction metric. Since not
all positive definite functions are sums of squares, there is no guarantee that an SOS
contraction metric exists. The algorithm transforms the conditions of a contraction
metric into Linear Matrix Inequalities. For the algorithm, a maximal degree of the
polynomials needs to be fixed in advance, which might not be sufficiently high. An
SOS contraction metric is valid for the entire Rn and thus shows global stability,
moreover it rigorously proves the properties of a contraction metric.

For the CPA method, a triangulation of a compact subset of the phase space
is fixed, and the contraction metric is found as a continuous piecewise affine func-
tion on each simplex of the triangulation. The conditions are transformed into
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constraints of a semi-definite programming problem. If a contraction metric exists
and the triangulation is sufficiently fine, the method is guaranteed to find a CPA
contraction metric, however the method only works on compact subsets. Due to
inbuilt Taylor-type error estimates, the method rigorously proves the properties of
a contraction metric.

The collocation method constructs a contraction metric as the approximation of
a solution of a certain matrix-valued PDE after fixing a finite number of collocation
points, which may be scattered. Practically, the solution is found by solving a sys-
tem of linear equations. If a contraction metric exists and the collocation points are
sufficiently dense, the method is guaranteed to find a contraction metric. However
the method only works on compact subsets and an a posteriori error estimate is
necessary to rigorously prove the properties of a contraction metric.

In this paper, we adapt the subgradient method from [28], developed for obtaining
upper bounds on the restoration entropy for dynamical systems, to compute a
contraction metric for an equilibrium of (1.1) on a compact set K ⊂ Rn. For some
recent references on the subgradient method and its variations see, e.g. [2, 43, 42,
3, 4, 5].

In comparison to the other methods, we also consider a compact subset, similar
to all methods apart from the SOS method. Our method is based on iterations
and thus can be pursued until a contraction metric is found. A contraction metric
of the form ep(x)P with a constant matrix P and polynomial of maximal fixed
degree is constructed. While the properties of a contraction metric are asserted on
a dense set, an a posteriori error estimate would be necessary to rigorously prove the
properties of a contraction metric, similar to the RBF method. Similarly to the SOS
method, the algorithm finds a bound for the exponential attraction. Finally, the
method is fast and can compute 10,000 iterations in minutes to hours, depending
on the degree of the polynomial and number of points used in the minimization in
the method.

The paper is structured as follows: in Section 2 some basic definitions and results
about Riemannian contraction metrics are provided, in particular we recall results
that describe their implications and guarantee their existence for systems with an
exponentially stable equilibrium.

Section 3 contains the main theoretical contributions of the paper: first we de-
velop our method to compute contraction metrics for system (1.1) on compact sets
K ⊂ Rn. Then we prove a new converse theorem for system (1.1), assuming it
admits an exponentially stable equilibrium and that f ∈ Cn+2; see the precise
requirements in the theorem. Theorem 3.1 assures the existence of a contraction
metric of the specific form M(x) = ep(x)P , P ∈ Rn×n symmetric and positive defi-
nite and p : Rn → R a polynomial. In Section 4, we adapt the subgradient method
from [28] as needed for our approach. In Section 5, we show the application of our
algorithm to four examples, before concluding in Section 6.

Notation. If A ⊂ Rn, we write A and A◦ for the closure and the interior of A,
respectively. For the Euclidean norm of a vector x ∈ Rn, we write ‖x‖. We denote
by Sn the set of symmetric Rn×n matrices and by S+n the set of symmetric and
positive definite Rn×n matrices. Further, for A,B ∈ Sn we write A � B or B ≺ A
if A− B ∈ S+n and A � B or B � A if A− B is positive semi-definite. We denote
the trace of a matrix A ∈ Rn×n by tr(A). For a set K ⊂ Rn and δ > 0, we define
Kδ := {x ∈ Rn : d(x,K) < δ}, where d(x,K) := infy∈K ‖x− y‖.
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2. Contraction metrics. In this section, we review basic concepts about Rie-
mannian contraction metrics and some important tools that we will use later in this
paper.

Definition 2.1 (Riemannian metric). Let G be an open subset of Rn. A Rie-
mannian metric on G is a continuously differentiable matrix-valued function M ∈
C1(G,S+n ).

A Riemannian metricM defines a (point-dependent) scalar product 〈v, w〉M(x) :=

vTM(x)w for each x ∈ G and all v, w ∈ Rn.

The orbital derivative Ṁ(x) with respect to (1.1) at x ∈ G is defined by

Ṁ(x) :=
d

dt
M(φt(x))

∣∣∣∣
t=0

=
(
∇Mij(x) · f(x)

)
ij
.

The second equality is a consequence of the chain rule and (aij)ij denotes the matrix
with entries aij , i, j = 1, . . . , n.

Definition 2.2 (Contraction metric). Let K be a compact subset of an open set
G ⊂ Rn and M ∈ C1(G,S+n ) a Riemannian metric. For x ∈ K, v ∈ Rn, define

LM (x; v) :=
1

2
v>
[
M(x)Df(x) + Df(x)>M(x) + Ṁ(x)

]
v.

The Riemannian metric is called contracting in K ⊂ G for system (1.1) with expo-
nent −ν < 0, or a contraction metric on K, if

LM (x) ≤ −ν for all x ∈ K, where

LM (x) := max
v>M(x)v=1

LM (x; v). (2.1)

Remark 2.3. Fix x ∈ K. Note that (2.1) is equivalent to

M(x)Df(x) + Df(x)>M(x) + Ṁ(x) � −2νM(x), (2.2)

see [15, Rem. 2.5].

The existence of a contraction metric for system (1.1) is both a sufficient and
a necessary condition for the existence of an exponentially stable equilibrium. We
state the former in the next theorem and prove the latter in a specific form for our
needs in Theorem 3.1; for a converse theorem with less smoothness requirements
on the system, see [15, Thms. 2.2, 2.3]. We cite Theorem 3.1 from [15] in the next
theorem.

Theorem 2.4 (Existence and uniqueness of the equilibrium). Let ∅ 6= K ⊂ Rn
be a compact, connected and forward-invariant invariant set and M a Riemannian
metric defined on a neighborhood G of K and contracting in K with exponent −ν <
0. Then there exists one and only one equilibrium x0 of system (1.1) in K; x0 is
exponentially stable with rate of exponential attraction ν, and K is a subset of its
basin of attraction A(x0).

3. Converse theorem for contraction metrics. The class Cd(K) of conformal
metrics of the form M(x) = ep(x)P , p : Rn → R a polynomial of degree ≤ d and
P ∈ S+n , was used in [28] because it is geodesically convex, cf. [28, Lem. 4.1], and
parametrized by a finite number of parameters. Further, in several examples an
analytical expression for a Riemannian metric of this class is known, which gives
the exact value for the restoration entropy. However, there certainly are some
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limitations by restricting the search for a metric to this class. For our task of
computing contraction metrics for exponentially stable equilibria, it is, however,
not limiting as shown in Theorem 3.1. Hence, it is particularly well-suited for our
algorithm.

In the proof of Theorem 3.1, we use results about the existence of polynomial
Lyapunov functions from [37, Thm. 9] for system (1.1).

Theorem 3.1. Let x0 be an exponentially stable equilibrium of system (1.1) and
assume that f ∈ Cn+2(Rn,Rn). Denote by −ν the largest real part of all eigenvalues
of Df(x0). Furthermore, assume that K = K◦ ⊂ A(x0) is compact and forward-
invariant. Then there exists a Riemannian contraction metric on K of the form
M(x) = ep(x)P , where p : Rn → R is a polynomial and P ∈ S+n . Further, for every
ε > 0, there exists M of the form above such that LM (x) ≤ −ν + ε for all x ∈ K.

Proof. We assume w.l.o.g. that x0 = 0. We first establish the existence of a poly-
nomial Lyapunov function for (1.1): Note that there are constants ρ > 0 and C ≥ 1
such that for all x ∈ K and t ≥ 0 the estimate ‖φt(x)‖ ≤ C‖x‖e−ρt holds true;
see e.g. [8, Lem. 1]. By a standard argumentation identical to e.g. the proof of [29,
Thm. 4.14] or [40, Ch. 5, Thm. 63], one can then show that for a large enough T > 0

the function V (x) =
∫ T
0
‖φt(x)‖2 dt is a Lyapunov function fulfilling the inequalities

α0‖x‖2 ≤ V (x) ≤ β0‖x‖2,

V̇ (x) ≤ −γ0‖x‖2
(3.1)

for some constants α0, β0, γ0 > 0 and for all x ∈ K. Since f ∈ Cn+2(Rn,Rn) so is
(t, x) 7→ φt(x), see e.g. [41, III.§13.XI], and it follows that V ∈ Cn+2(K,R) because
we can differentiate under the integral over a compact interval.

We can use standard techniques of smoothing by convolution with a smooth
kernel to extend V from K to a function Ṽ ∈ Cn+2(Rn,R) with Ṽ (x) = V (x) for

x ∈ K and Ṽ (x) = 1 for x ∈ Rn \Kδ̃, with δ̃ > 0 so small that Kδ̃ ⊂ A(0). Thus,
we may assume that V fulfilling (3.1) is in Cn+2(Rn,R) and apply [37, Thm. 9] to
assert for every α ∈ (0, α0), β > β0, and γ ∈ (0, γ0) the existence of a polynomial
Lyapunov function W : Rn → R fulfilling

α‖x‖2 ≤W (x) ≤ β‖x‖2,

Ẇ (x) ≤ −γ‖x‖2
(3.2)

for all x ∈ K.
We now complete the proof following the proof of [15, Thm. 4.1]: Fix an ε ∈ (0, ν).

As in Step 1 of the proof of [15, Thm. 4.1], one can show there exists a P ∈ S+n
such that LP (0) ≤ −ν + ε

2 , using a special Jordan Normal Form of Df(0). Set

µ(x) := LP (x) = max
v>Pv=1

1

2
v>
[
PDf(x) + Df(x)>P

]
v (3.3)

and µ∗ := maxx∈K µ(x).
If µ∗ ≤ −ν + ε < 0 we can set p(x) := 0 and the statements of the theorem hold

true with M(x) := ep(x)P = P for all x ∈ K, because maxx∈K LM (x) = µ∗ < 0.

Now assume that µ∗ > −ν + ε, set c := µ∗+ν−ε
γδ2 > 0, define the polynomial

p(x) := 2cW (x), and set M(x) := ep(x)P for all x ∈ K. The function M is a
Riemannian metric and from

2LM (x; v) = ep(x)v>
[
PDf(x) + Df(x)>P + 2cẆ (x)P

]
v
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= ep(x)v>
[
PDf(x) + Df(x)>P

]
v + ep(x)2cẆ (x)v>Pv

and (3.3), we see that

LM (x) = max
v>M(x)v=1

LM (x; v) = max
v>Pv=e−p(x)

LM (x; v) = µ(x) + cẆ (x).

Since µ is a continuous function (see [15, Lem. 2.6]), there is a δ > 0 such that
Bδ(0) ⊂ K and x ∈ Bδ(0) implies µ(x) ≤ −ν+ε; recall that µ(0) = LP (0) ≤ −ν+ ε

2 .
We show that µ(x) ≤ −ν + ε for all x ∈ K by distinguishing between two cases:

Case (i). Assume that x ∈ Bδ(0). Then, since Ẇ (x) ≤ 0, we have

LM (x) = µ(x) + cẆ (x) ≤ −ν + ε.

Case(ii). Assume that x ∈ K \ Bδ(0). Then Ẇ (x) ≤ −γδ2 by (3.2) and we have,

using (3.3),

LM (x) = µ(x) + cẆ (x) ≤ µ∗ − cγδ2 = µ∗ − (µ∗ + ν − ε) = −ν + ε.

This concludes the proof.

Remark 3.2. Note that Theorem 3.1 and its proof do not provide the degree of
the polynomial p in M(x) = ep(x)P . For polynomial right-hand sides f in (1.1),
degree bounds that depend on the size of K, maxx∈K ‖∇f(x)‖, and the parameters
ρ in C in the estimate ‖φ(t, x)‖ ≤ C‖x‖e−ρt are available, see [38]. However, these
bounds are somewhat conservative and not applicable to non-polynomial f .

Remark 3.3. In [37] less strict assumptions on the smoothness of f in Theorem
3.1 are used. However, we use the assumption f ∈ Cn+2(Rn,Rn), from which
(t, x) 7→ φt(x) in Cn+2 definitely follows, see e.g. [41, III.§13.XI]. In the arXiv
version of the paper [37] this is also the assumption used.

4. Subgradient algorithm for contraction metrics. We now adapt the subgra-
dient algorithm from [28], which was used for the approximation of the restoration
entropy, to compute contraction metrics for system (1.1). The main idea is the
following: Assume that M ∈ C1(G,S+n ) is a Riemannian metric on the open set
G ⊃ K, K compact. Fix x ∈ K, and let λi, i = 1, . . . , n, be the solutions to (roots
of the polynomial)

det
[
Df(x)>M(x) +M(x)Df(x) + Ṁ(x)− λM(x)

]
= 0. (4.1)

Then the λi are the eigenvalues of the symmetric matrix

A(x) := M−
1
2 (x)[M(x)Df(x) + Df(x)>M(x) + Ṁ(x)]M−

1
2 (x),

i.e. λi ∈ R for i = 1, . . . , n, and there exists a basis for Rn of corresponding or-
thonormal eigenvectors vi of A(x). By writing an arbitrary v ∈ Rn as a linear
combination

∑n
i=1 civi, ci ∈ R, we see that

v>A(x)v =
( n∑
i=1

civi

)>
A(x)

n∑
i=1

civi =

n∑
i=1

λic
2
i

and defining λmax := maxi=1,...,n λi delivers

v>A(x)v ≤ max
i=1,...,n

λi‖v‖2 = λmax‖v‖2.
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Hence A(x) � λmaxI, or equivalently v>(A(x)− λmaxI)v ≤ 0 for all v ∈ Rn. With

w = M−
1
2 (x)v, we obtain

w>
[
M

1
2 (x)A(x)M

1
2 (x)− λmaxM(x)

]
w ≤ 0 for all w ∈ Rn,

which translates into

M(x)Df(x) + Df(x)>M(x) + Ṁ(x) � λmaxM(x).

Hence, we have shown the following proposition by the arguments above and Re-
mark 2.3.

Proposition 4.1. Let M ∈ C1(G,S+n ), where G ⊂ Rn is open and K ⊂ G is
compact. Denote by ζM1 (x) ≥ ζM2 (x) ≥ · · · ≥ ζMn (x) the solutions ζ(x) of

det
[
M(x)Df(x) + Df(x)>M(x) + Ṁ(x)− ζ(x)M(x)

]
= 0. (4.2)

Assume that ζM1 (x) ≤ −2ν holds for all x ∈ K. Then

M(x)Df(x) + Df(x)>M(x) + Ṁ(x) � −2νM(x),

i.e. the Riemannian metric M is contracting on K with exponent ν if ν > 0.

We are thus interested in finding

− ν :=
1

2
inf

M∈C1(G,S+
n )

max
x∈K

ζM1 (x). (4.3)

If −ν < 0, then ν is the rate of exponential attraction of the equilibrium and,
moreover, a minimizer M is a corresponding contraction metric.

4.1. The subgradient algorithm on Riemannian manifolds. In this subsec-
tion, we briefly explain the subgradient algorithm on a complete Riemannian man-
ifold M with lower bounded sectional curvature. In particular, we write TxM for
the tangent space to M at x and 〈·, ·〉x for the inner product on TxM given by
the Riemannian metric. A function g : M → R is called geodesically convex if
the composition g ◦ γ : [0, 1] → R is a convex function in the usual sense for every
geodesic γ : [0, 1]→M.

Recall the following facts for a geodesically convex function g :M→ R defined
on a complete Riemannian manifold M [39]:

• g is locally Lipschitz continuous [39, Cor. 3.10].
• Given x ∈ M, a vector s ∈ TxM is called a subgradient of g at x if for any

geodesic γ of M with γ(0) = x the following inequality holds:

(g ◦ γ)(θ) ≥ g(x) + θ〈s, γ̇(0)〉x for all θ ≥ 0.

The set of all subgradients of g at x, denoted by ∂g(x), is called the sub-
differential of g at x. The subdifferential at any point x is nonempty, convex
and compact [39, Thm. 4.5 and 4.6].

The subgradient algorithm consists of the following steps for a given sequence
(tj)j∈N of step sizes with tj > 0 for all j (see also (4.4)):

(0) Initialize. Choose p1 ∈M and compute some s1 ∈ ∂g(p1). Put j := 1.
(1) If sj = 0 go to (4). Otherwise, compute the geodesic γvj with γvj (0) = pj ,

γ̇vj (0) = vj , vj = −sj/|sj |, where |sj | =
√
〈sj , sj〉pj .

(2) Put pj+1 := γvj (tj).
(3) Compute some sj+1 ∈ ∂g(pj+1). Put j := j + 1 and go to (1).
(4) pj is the minimum of g.
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The computation of the subgradients and the geodesics is discussed in detail in the
next section. For the convergence of the sequence pj to a minimizer, a proper choice
of the step sizes tj is necessary, and it is an important assumption that the sectional
curvature of M is uniformly bounded from below. The diminishing or exogeneous
step size rule requires to choose the step sizes tj such that

∞∑
j=1

tj =∞ and

∞∑
j=1

t2j <∞. (4.4)

Assuming that the sectional curvature of M is uniformly bounded below, with such
a choice (typically, tj = a/(j+ b) with a > 0, b ≥ 0), [12, Thm. 3.2] guarantees that

lim inf
j→∞

g(pj) = inf
x∈K

g(x)

and that pj converges to a minimizer, if a minimizer exists.

4.2. The algorithm. To apply the algorithm described in the preceding subsection
to solve the problem posed by (4.3), we restrict ourselves to Riemannian metrics of
the form

M(x) = epa(x)P,

where P ∈ S+n , pa(x) =
∑
α∈J aαx

α is a polynomial, and J ⊂ Nn0 a finite set
of multi-indices. Note that the metric M is parameterized by the matrix P and
the vector a = (aα)α∈J = R|J|. We have shown in Theorem 3.1 that this class is
sufficient to find a contraction metric.

Hence, we restrict the search for the optimal metric to the space R|J| × S+n ,
where R|J| is equipped with the usual Euclidean metric and S+n with its standard
Riemannian metric given by

〈V,W 〉P := tr(P−1V P−1W ) for all P ∈ S+n , V,W ∈ TpS+n = Sn.
The optimization is performed using the Riemannian subgradient algorithm for
geodesically convex functions on the Riemannian product manifoldM := R|J|×S+n ,
cf. [13, 12]. The required geodesic convexity of the objective function

g : (a, P ) 7→ max
x∈K

ζe
pa(·)P

1 (x) (4.5)

is shown in the proof of [28, Lem. 3.5]: in particular,

(a, P ) 7→ max
x∈K

k∑
i=1

ζe
pa(·)P
i (x)

is geodesically convex for any k ∈ {1, . . . , n}, see inequality (3.6) and equation (3.7)
in [28]. The sectional curvature of M is bounded below by [28, Lem. A.1]. The
existence of near-minimizers is guaranteed by Theorem 3.1.

Our algorithm to compute a contraction metric for system (1.1) can be stated as
follows:

(0) Fix some initial values for a and P , e.g. a0 = 0 and P0 = I, and a sequence
of step sizes tj satisfying

∞∑
j=1

tj =∞ and

∞∑
j=1

t2j <∞.

(1) Step j = 1, . . .: Find an x∗ ∈ K that maximizes g(x; aj , Pj) = ζM1 (x) with

M(x) = epa(x)P .
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(2) Compute a subgradient sj ∈ ∂g(x∗; aj , Pj), where g(x∗; aj , Pj) = g(aj , Pj).
(3) Normalize sj to unit length by defining s̄j := sj/|sj |. Here, | · | is the norm

on the product tangent space T(aj ,Pj)(R|J| × S+n ) = R|J| × Sn, given by

|sj | = |(s1j , s2j )| =
√
‖s1j‖2 + tr(P−1j s2jP

−1
j s2j ),

where ‖s1j‖ is the standard Euclidean metric of s1j .
(4) Update the Riemannian metric by

(aj+1, Pj+1) := (aj − tj s̄1j , expPj
(−tj s̄2j )).

(5) Let j → j + 1 and go to (1).

Here, expPj
(·) is the Riemannian exponential map of S+n at Pj ∈ S+n , and s̄1j ∈

R|I|, s̄2j ∈ TPjS+n = Sn are the two components of s̄. An explicit formula is

expPj
(−tj s̄2j ) = P

1/2
j exp(−tjP−1/2j s̄2jP

−1/2
j )P

1/2
j ,

where exp on the right-hand side is the usual matrix exponential map.
The details of the computation of the subgradient are given in [28, Sec. 5.2].

Here, we recall the necessary computational steps. For better readability, we omit
the index j related to the step of the algorithm and write B(x) = Df(x) for all
x ∈ K. We can then decompose

ζe
pa(·)P

1 (x) = ṗa(x) + λ1(P
1
2B(x)P−

1
2 + P−

1
2B(x)>P

1
2 )

and compute the components s1 and s2 of the subgradient s = (s1, s2) separately.
That is, we compute the subgradient s1 of a 7→ ṗa(x∗) and the subgradient s2 of

P 7→ λ1(P
1
2B(x∗)P−

1
2 +P−

1
2B(x∗)>P

1
2 ) and then set s = (s1, s2). The component

s1 is trivial, because ṗa(x) is a linear function of a. The computation of the second
component s2 can be accomplished by processing the following steps:

• Compute an orthonormal basis {ei} of the tangent space TPS+n = Sn with
respect to its inner product 〈·, ·〉P .

• Diagonalize the symmetric matrix

X := P
1
2B(x∗)P−

1
2 + P−

1
2B(x∗)>P

1
2 ,

leading to X = UDU> with D = diag(λ1, . . . , λn) and λ1 ≥ · · · ≥ λn.
• Compute S := Udiag(1, 0, . . . , 0)U>.
• For each basis vector ei ∈ Sn, compute the unique solution Yi of the Lyapunov

equation

P
1
2Yi + YiP

1
2 = ei.

• For each Yi, compute the matrix

Zi := YiB(x∗)P−
1
2 − P 1

2B(x∗)P−
1
2YiP

− 1
2

− P− 1
2YiP

− 1
2B(x∗)>P

1
2 + P−

1
2B(x∗)>Yi.

• Compute the subgradient via

s2 =
∑
i

tr[S>Zi]ei.
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5. Examples. In this section we demonstrate our algorithm by computing con-
traction metrics for three planar systems and one three-dimensional system. One
of the planar systems has two equilibria and we compute contraction metrics in
a neighbourhood of each. In order to obtain a contraction metric one must com-
pute a Riemannian metric on a superset of a forward-invariant set of the dynamics.
Thus, one must first locate a forward-invariant set. In Example 5.1 we compute
analytically a forward-invariant quadrilateral set, mainly for demonstration. Ex-
ample 5.2 is taken from [19] and Example 5.4 is taken from [20] and we use the
forward-invariant sets computed numerically in these papers. In Example 5.3 we
compute a forward invariant set with the method from [19]. In more detail, we

approximate the solution of V ′(x) = −
√

10−8 + ‖f(x)‖2 by a function v and verify
that v′(x) < 0 holds for all x ∈ ∂LR, where LR = {x ∈ Rn | v(x) ≤ R} is a sublevel
set of v of level R > 0. This is rigorously verified using a CPA interpolation and
Taylor-like error estimates, and thus shows that LR is positively invariant.

Example 5.1 is also in [19] and we compute a contraction metric for it using the
forward-invariant set constructed in that paper. However, the results were basically
identical to the results with our analytically computed forward-invariant set so we
omit them.

In all the examples we started with P = I and pa(x, y) = 0 (planar) or pa(x, y, z)
= 0 (three-dimensional), i.e. the initial metric was I. We used polynomials of
various degrees, starting with 0 and going up to 10, depending on the system. In all
examples we used the exogenous step-size tk = 1/k and performed 10, 000 iterations
with the subgradient method. We report the first iteration, where condition (2.2) is
fulfilled, i.e. the Riemannian metric is a contraction metric on the forward-invariant
set, and the lowest value for ν in (2.2) that we computed overall, or equivalently
the best solution found in (4.3). We also report the time needed for the iterations,
but these are mainly for comparing the execution times for polynomials of different
degrees.

We adapted the software from [27] to compute the metrics. The maximization
(4.5) is performed on a 1000× 1000 grid for the planar systems with a subsequent
refinement on a grid of equal size around the located maximum. Similarly, for the
three-dimensional example we used a grid with 500×50×100 points with refinement
on a grid with equal size for the maximization. The metrics for the planar systems
were computed on AMD ThreadRipper 3990X (64 cores) and the three-dimensional
system on Intel i9900K (8 cores).

5.1. Example: Time-reversed van der Pol system. Consider the time-reversed
van der Pol system (

ẋ
ẏ

)
= f(x, y) =

(
−y

x− 3(1− x2)y

)
. (5.1)

Let K be the quadrilateral with vertices (a, d), (b, c), (−a,−d), (−b−c) with a = 0.6,
b = 1, c = 0.18, and d = 2.5. It is not difficult to verify analytically that K
is forward-invariant for the system, see Appendix A. The Jacobian of f at the

origin is Df(0, 0) =

(
0 −1
1 −3

)
and has eigenvalues λ± = −3±

√
5

2 . Hence, the

largest eigenvalue is λ+ = −3+
√
5

2 ≈ −0.381966011250105 and the origin is locally
exponentially stable.
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Results after iterating over the forward-invariant set K 10, 000 times, using dif-
ferent degrees of polynomials, from p(x, y) = 0 to p(x, y) =

∑
|α|≤10 aαx

α, can be

seen in Table 1.

Time-reversed van der Pol (5.1)

degree first neg. itr. lowest −ν time
0 ∞ 1.447348563020335 445 s
1 ∞ 1.448404890308665 468 s
2 2 -0.3133495012442786 545 s
3 7 -0.2952854122048584 639 s
4 3 -0.3692555275877225 885 s
5 7 -0.357751157505084 1134 s
6 3 -0.3639232968985002 1439 s

Table 1. Results for the time-reversed van der Pol system (5.1).
The degree of the polynomial in the metric is in the first column
and the second column contains the first iteration where −ν <
0, i.e. exponential stability is asserted (∞ when −ν ≥ 0 for all
iterations). The third column reports the lowest value for −ν in
10, 000 iterations and the last column reports the time needed for
the computation of the 10, 000 iterations on AMD ThreadRipper
3990X (64 cores).

Using a polynomial of degree 2 or higher results in a negative value for −ν
after a few iterations, proving the existence of a unique equilibrium in the forward-
invariant set that is exponentially stable. The lowest value obtained for −ν in
10, 000 iterations was −0.3692555275877225 using the polynomial of degree 4. The
value | − ν| = ν gives a lower bound on the rate of exponential attraction and

should be compared to |λ+| = |−3+
√
5

2 | ≈ |− 0.381966011250105|. Table 2 gives the

details of this matrix-valued function. Figure 1 shows the metric M(x) = epa(x)P
by plotting ellipses of equal distance with respect to the metric around each point,
while Figure 2 displays pa(x).

Note that SOS was used to compute a contraction metric for a slightly different
van-der-Pol example [6]; while in their paper degree 4 polynomials were necessary,
we already succeeded in finding a contraction metric with a degree 2 polynomial.

5.2. Example: Speed control system. Consider the ODE(
ẋ
ẏ

)
= f(x, y) =

(
y

−Kdy − x− gx2
(
y
Kd

+ x+ 1
))

, (5.2)

with Kd = 1 and g = 6, was used in [11, 9, 25] as a model for a speed-control
system. The system has two asymptotically stable equilibria, one at (0, 0) and

one at
(
−
√
3
6 −

1
2 , 0
)
≈ (−0.7887, 0), as well as a saddle point at

(√
3
6 −

1
2 , 0
)
≈

(−0.2113, 0). We will consider both asymptotically stable equilibria; first, we look
at the one at (0, 0).

This system was considered in [19] and we use the forward invariant sets numeri-
cally computed therein and visually determine a quadrilateral, on which we compute
our metric, that is a superset of the forward invariant set. For the equilibrium at
(0, 0) see Fig. 3.
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Figure 1. Visualization of the optimal metric, see Table 2, ob-
tained for the time-reversed van der Pol system (5.1) on the area
K using a 4th degree polynomial and 10,000 iterations. The el-
lipse around a point x0 ∈ R2 denotes the points of equal dis-
tance to the point with respect to the metric, i.e. {x ∈ R2 |
(x− x0)>M(x0)(x− x0)> = c2} with fixed c > 0.

Figure 2. Visualization of the polynomial over the area K using
a 4th degree polynomial and 10,000 iterations. Since M(x0) =
ep(x0)P , the shape of the ellipse in Figure 1 is the same in the
entire area due to P , and we hence show pa(x, y) in this figure.
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Metric M(x, y) = epa(x,y)P with deg(pa) = 4 computed for the time-reversed
van der Pol system (5.1) on K with ν = 0.3692555275877225.

P =

(
1.234732514104349 −0.7185909507149911
−0.718590950714991 1.228098342871417

)
pa(x, y)

term coefficient term coefficient

x 0.005874011679514269 xy2 -0.023594561234174

y 0.002544185767556669 y3 0.2025391618590853

x2 3.133966383013717 x4 1.61103471945693

xy -0.6857166309584187 x3y -0.2487310019195522

y2 0.3002580326389737 x2y2 0.3543359078177429

x3 -0.01456990449537407 xy3 0.2471473588049839

x2y -0.05483029835239338 y4 0.9675867347507244

Table 2. The contraction metric with the best bound on the ex-
ponential rate of attraction for (5.1).

Figure 3. The black curve is the forward-invariant set computed
in [19] for system (5.2) and the red quadrilateral is the area, on
which we compute metrics for the equilibrium at (0, 0). The black
curve is a level set of the approximation v of the solution of V ′(x) =

−
√

10−8 + ‖f(x)‖2, while the blue circles denote the areas where
v′(x) ≥ 0. Since the black curve does not touch any blue circles, it
is a forward-invariant set.

The Jacobian for f in (5.2) is given by

Df(x, y) =

[
0 1

−1− 12xy − 18x2 − 12x −1− 6x2

]
. (5.3)

At the equilibrium (0, 0), we get the eigenvalues λ± = −1±i
√
3

2 , and therefore the
lower bound for −ν is −0.5.
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For the equilibrium (−0.7887, 0), the eigenvalues are λ1 = −0.6731 and λ2 =
−4.0590, so we get the lower bound −0.6731. In Table 3, the outcome for different
degrees of the polynomial is shown. The lowest value for −ν is obtained with a
polynomial of degree 6, but the difference in the outcome is very small between a
polynomial of degree 3 and 6.

Speed Control system (5.2) at equilibrium (0, 0)

degree first neg. itr. lowest −ν time
0 ∞ 0.02658980657159118 431 s
1 1628 -0.003808211430038129 462 s
2 1085 -0.004862705555080483 546 s
3 1081 -0.004874280676476273 688 s
4 1081 -0.004874531739145288 860 s
5 1081 -0.004874532732511677 1097 s
6 1081 -0.004874532751723261 1419 s

Table 3. Results for the Speed Control system (5.2) at equilib-
rium (0, 0). The degree of the polynomial in the metric is in the first
column and the second column contains the first iteration where
−ν < 0, i.e. exponential stability is asserted (∞ when −ν ≥ 0 for
all iterations). The third column reports the lowest value for −ν in
10, 000 iterations and the last column reports the time needed for
the computation of the 10, 000 iterations on AMD ThreadRipper
3990X (64 cores).

Figure 4 shows the polynomial pa(x, y) of degree 6 obtained for the Speed Control
system centered around the point (0, 0).

Figure 4. Graph of the 6th degree polynomial pa(x, y) in the met-
ric M(x, y) = epa(x,y)P computed with the algorithm for the Speed
Control system (5.2) at the equilibrium at (0, 0). Note that it is not
a Lyapunov function, in contrast to the construction in the proof
of Theorem 3.1.
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Metric M(x, y) = epa(x,y)P with deg(pa) = 6 computed for the Speed Control
system (5.2) at the equilibrium at (0, 0) on K with ν = 0.004874532751723261.

P =

(
1.188908218579773 0.5845677238765539
0.5845677238765541 1.128530699703952

)
pa(x, y)

term coefficient term coefficient

x -0.6406990025124931 x5 -0.0001312413688617601

y 0.5224323624975147 x4y 0.000103857484910813

x2 0.1189296701550616 x3y2 -8.838844320265229·10−5

xy -0.07400507177495169 x2y3 8.619846913687634·10−5

y2 0.06034845248479573 xy4 -5.08894875827791·10−5

x3 -0.01228598722340182 y5 7.926099979155098·10−5

x2y 0.009450037931185229 x6 1.458034136517088·10−5

xy2 -0.006313699379560556 x5y -1.311184472170316·10−5

y3 0.008513732143946087 x4y2 1.072007441348303·10−5

x4 0.001521991939021997 x3y3 -8.196794919518857·10−6

x3y -0.001284245468051136 x2y4 7.786137296316773·10−6

x2y2 0.001027217693957349 xy5 -3.724746494883292·10−6

xy3 -0.000539000261930083 y6 5.699738404557221·10−6

y4 0.0006766508585524121

Table 4. The contraction metric with the best bound on the ex-
ponential rate of attraction for (5.2).

Now, we look at the equilibrium at (−0.7887, 0). We use the forward invariant
set computed in [19] to determine a quadrilateral on which we compute the metrics;
this is shown in Fig. 5.

The optimal metric computed for system (5.2) at equilibrium (−0.7887, 0) was

M(x) = ep(x,y)P, with P =

(
2.131845621905937 0.8330774850487976
0.8330774850487975 0.7946251260824676

)
and the 10th degree polynomial p(x, y) plotted in Fig. 6 (we do not list the values
of the 65 coefficients due to space constraints).

5.3. Example: Moore–Greitzer jet engine model. We consider the
Moore–Greitzer jet engine model [32, §2.4] as studied in [7]. The dynamics are
described by the ODE(

ẋ
ẏ

)
= f(x, y) =

(
−y − 3

2x
2 − 1

2x
3

3x− y

)
. (5.4)

The equilibrium at the origin (0, 0) is globally asymptotically stable and we compute

our metric on the area [−0.5, 0.5]2. The Jacobian of f at the origin is

(
0 −1
3 −1

)
and has eigenvalues − 1

2 ± i
√
11
2 ; thus, the lower bound for −ν is −0.5 for the jet

engine system.
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Figure 5. The black curve is the forward-invariant set computed
in [19] for system (5.2) and the red quadrilateral is the area, on
which we compute metrics for the equilibrium at (−0.7887, 0). The
black curve is a level set of the approximation v of the solution of
V ′(x) = −

√
10−8 + ‖f(x)‖2, while the blue circles denote the areas

where v′(x) ≥ 0. Since the black curve does not touch any blue
circles, it is a forward-invariant set.

Speed Control system (5.2) at equilibrium (−0.7887, 0)

degree first neg. itr. lowest −ν time
0 ∞ 0.1222798935657396 457 s
1 173 -0.05644550658291747 481 s
2 109 -0.01663507890691926 551 s
3 885 -0.01316624664094682 697 s
4 182 -0.04806445535693586 873 s
5 90 -0.1022075700247213 1129 s
6 64 -0.1330993315433471 1413 s
7 54 -0.1486330006840473 1785 s
8 55 -0.1623406730007267 2160 s
9 54 -0.1785195291961935 2607 s
10 56 -0.189294001167907 3092 s

Table 5. Results for the Speed Control system (5.2) at equilib-
rium (−0.7887, 0). The degree of the polynomial in the metric is
in the first column and the second column contains the first itera-
tion where −ν < 0, i.e. exponential stability is asserted (∞ when
−ν ≥ 0 for all iterations). The third column reports the lowest
value for −ν in 10, 000 iterations and the last column reports the
time needed for the computation of the 10, 000 iterations on AMD
ThreadRipper 3990X (64 cores).
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Figure 6. Graph of the polynomial p(x, y) in the metric
M(x, y) = epa(x,y)P for system (5.2) at the equilibrium at
(−0.7887, 0), obtained with the algorithm and a polynomial of de-
gree 10.

The SOS method in [7] requires polynomials of degree 4 to find a contraction
metric, while we only require degree 2; however, they show global stability. Their
lower bound for the rate of exponential convergence β = 2ν1.45 is higher than our
rates, however, it is also not compatible with the linear stability analysis above.

We used the method from [19] to compute a forward invariant set from a
Lyapunov-like function. The collocation grid was a hexagonal grid on [−0.6, 0.6]2

with density parameter 0.035 and we used the Wendland function ψ5,3 with support
in [0, 2]. The CPA verification was done on a regular triangulation of [−0.5, 0.5]2

with 501 × 501 vertices. With this method the forward invariant set in the square
[−0.5, 0.5]2, depicted in Fig. 7, was computed in less than a second.

The results of our computations are summed up in Table 6.
For a polynomial of degree two and higher the computed metric asserts the

exponential stability of the equilibrium. The optimal metric with a 10th degree
polynomial computed for system (5.4) at the equilibrium at the origin was

M(x) = ep(x,y)P, with P =

(
1.892928154523576 −0.4408994614637599
−0.44089946146376 0.6309760527700889

)

and the polynomial p(x, y) is plotted in Fig. 8.

5.4. Example: Three dimensional example. Consider the following system:ẋẏ
ż

 = f(x, y, z) =

x(x2 + y2 − 1)− y(z2 + 1)
y(x2 + y2 − 1) + x(z2 + 1)

10z(z2 − 1)

 . (5.5)

In Fig. 9, we see the forward invariant set computed in [20] for the system (5.5).
The set is contained in the cylinder C = {(x, y, z) ∈ R3 | |z| ≤ 0.6, x2 + y2 ≤ 0.62}.
We map a cube to C and we compute our metric on it.
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Figure 7. The black curve shows the forward-invariant set we
computed with the method from [19] for system (5.4) and the red
quadrilateral is the area, on which we compute metrics for the
equilibrium at the origin. The black curve is a level set of the
approximation v of the solution of V ′(x) = −

√
10−8 + ‖f(x)‖2,

while the blue circles denote the areas where v′(x) ≥ 0. Since the
black curve does not touch any blue circles, it is a forward-invariant
set.

Moore–Greitzer jet engine model (5.4)

degree first neg. itr. lowest −ν time
0 ∞ 0.206199297541573 462 s
1 ∞ 0.2052385876784619 513 s
2 878 -0.01738829435500433 577 s
3 625 -0.01920738923339776 709 s
4 44 -0.06668089661574375 885 s
5 36 -0.06946535756779648 1148 s
6 28 -0.07271224180134611 1426 s
7 28 -0.07323485077040126 1794 s
8 28 -0.07361891063939163 2186 s
9 28 -0.07366357746042262 2621 s
10 28 -0.0737091329581808 3115 s

Table 6. Results for the Moore–Greitzer jet engine model (5.4).
The degree of the polynomial in the metric is in the first column
and the second column contains the first iteration where −ν <
0 and exponential stability is asserted (∞ when −ν ≥ 0 for all
iterations). The third column reports the lowest value for −ν in
10, 000 iterations and the last column reports the time needed for
the computation of the iterations on AMD ThreadRipper 3990X
(64 cores).
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Figure 8. Graph of the polynomial p(x, y) in the metric
M(x, y) = epa(x,y)P for system (5.4) at the equilibrium at the
origin, obtained with the algorithm and a polynomial of degree
10.

Figure 9. The red area in the figure is the forward-invariant set
computed in [20] for system (5.5).

Just as in the other examples we can calculate a lower bound for−ν by calculating
the eigenvalues of the Jacobian of the system. The Jacobian of f at the origin has
eigenvalues λ1 = −10, λ2 = −1 + i, and λ3 = −1− i; therefore, the lower bound for
−ν is −1.

The results of our computations are given in Table 7 and we see that a polynomial
of degree 2 or higher delivers a negative values for −ν in a few iterations. In Table
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8 we display the matrix P and the polynomial p(x, y, z) in the optimal metric
M(x, y, z) = ep(x,y,z)P computed with deg(p) = 2.

Three dimensional example (5.4)

degree first neg. itr. lowest −ν time
0 ∞ 0.8099724835857676 7,734 s
1 ∞ 0.8530578751350688 8,486 s
2 32 -0.1896101138448129 10,889 s
3 48 -0.1712718552180064 17,334 s
4 26 -0.221581678986785 28,712 s
5 30 -0.2160216478649938 45,265 s
6 26 -0.2229981124760225 71,993 s

Table 7. Results for the three-dimensional system (5.4). The de-
gree of the polynomial in the metric is in the first column and the
second column contains the first iteration where −ν < 0 and expo-
nential stability is asserted (∞ when −ν ≥ 0 for all iterations). The
third column reports the lowest value for −ν in 10, 000 iterations
and the last column reports the time needed for the computation
of the iterations on Intel i9900K (8 cores, much slower than the
processor used in the other computations).

Optimal metric M(x, y, z) = epa(x,y,z)P with deg(pa) = 2 computed for the system
(5.4) at the equilibrium at the origin on the cylinder defined in the text and with

ν = 0.1896101138448129.

P =

 0.9857018834999954 −0.000631902183258329 −5.939756293723396 · 10−6

−0.0006319021832583289 0.9696657917818603 −6.827559459905256 · 10−6

−5.939756293723396 · 10−6 −6.827559459905256 · 10−6 1.046242891726449


pa(x, y, z)

term coefficient term coefficient

x 2.886921642216002·10−5 xz -0.01496681273321166

y 3.103209165308687·10−6 y2 1.188121045477437

z 2.350525324502533·10−7 yz 0.02688196544970737

x2 1.153938280913646 z2 1.070635223238271

xy -0.01809571166344076

Table 8. The contraction metric with the best bound on the ex-
ponential rate of attraction for (5.4) with a polynomial of degree
2.

In all examples, a contraction metric is found with the proposed algorithm in a
few iterations and with a polynomial of low degree. However, the optimal bound is
often not realised, even after 10,000 iterations. The bound can, on the other hand,
be easily obtained from the Jacobian to the equilibrium.
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6. Conclusions. We have proved in Theorem 3.1 that for a system ẋ = f(x)
with an exponentially stable equilibrium, there necessarily exists a Riemannian
contraction metric of the form M(x) = ep(x)P . Here p is a polynomial and P
a symmetric and positive definite matrix. We adapted the subgradient algorithm
for the estimation of the restoration entropy in [28] to compute such metrics and
demonstrated the applicability of our new method in four examples.

In comparison to other methods to compute contraction metrics, our method is
an iterative and efficient method, which is able to determine compact subsets of the
basin of attraction and a lower bound on the rate of exponential attraction.

Appendix A. Forward-invariant set for Example 5.1. We show that quadri-
lateral with vertices (a, d), (b, c), (−a,−d), (−b − c), a = 0.6, b = 1, c = 0.18 and
d = 2.5, is forward-invariant for system (5.1). First, consider the side from (a, d) to

(b, c). Here, we need to show for

(
x
y

)
=

(
b+ θ(a− b)
c+ θ(d− c)

)
with θ ∈ [0, 1] that(

−y
x− 3(1− x2)y

)(
d− c
b− a

)
≤ 0.

This means

− (c+ θ(d− c))(d− c) +
[
b− θ(b− a) + 3(−1 + b2 − 2θb(b− a)

+ θ2(b− a)2)(c+ θ(d− c))
]
(b− a)

= −c(d− c) + [b− 3(1− b2)c](b− a)

+ θ[−(d− c)2 − (b− a)2 − 3(1− b2)(d− c)(b− a)− 6bc(b− a)2]

+ θ2[−6b(b− a)2(d− c) + 3c(b− a)3] + θ33(b− a)3(d− c)
= −0.0176− 5.7152 θ − 2.19264 θ2 + 0.44544 θ3 =: g1(θ)

≤ 0,

since g1(0) < 0 and the derivative of the function is

g′1(θ)− 5.7152− 4.38528 θ + 1.33632 θ2

which is strictly negative in [0, 1].
Now, consider the side from (−a,−d) to (b, c). Here, we need to show for(
x
y

)
=

(
b+ θ(−a− b)
c+ θ(−c− d)

)
with θ ∈ [0, 1] that(
−y

x− 3(1− x2)y

)(
c+ d
−a− b

)
≤ 0.

This means

− (c− θ(c+ d))(c+ d) +
[
b− θ(a+ b)− 3(1− (b− θ(a+ b))2)

(c− θ(c+ d))
]
(−a− b)

= −c(c+ d) + θ(c+ d)2

+
[
b− θ(a+ b) + 3(−1 + b2 − 2bθ(a+ b) + θ2(a+ b)2)(c− θ(c+ d))

]
(−a− b)

= −c(c+ d) + [b+ 3(−1 + b2)c](−a− b)
+ θ[(c+ d)2 + (a+ b)2 + 3(−1 + b2)(c+ d)(a+ b) + 6bc(a+ b)2]
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+ θ2[−6b(a+ b)2(c+ d)− 3c(a+ b)3]

+ θ33(a+ b)3(c+ d)

= −2.0824 + 12.5072 θ − 43.37664 θ2 + 32.93184 θ3 =: g2(θ)

≤ 0,

since g2(0) = −2.0824 < 0 and g2(1) = −0.02 and the function has a local maximum
in the interval (0, 1) at θ∗ = 0.181815111989679 with value

g2(θ∗) = −1.044364718017452 < 0

At the other two sides, the flow is also pointing inward due to symmetry.
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