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Abstract

The determination of exponentially stable equilibria and their basin of attraction for
a dynamical system given by a general autonomous ordinary differential equation can be
achieved by means of a contraction metric. A contraction metric is a Riemannian metric
with respect to which the distance between adjacent solutions decreases as time increases.
The Riemannian metric can be expressed by a matrix-valued function on the phase space.

The determination of a contraction metric can be achieved by approximately solving
a matrix-valued partial differential equation by mesh-free collocation using Radial Basis
Functions (RBF). However, so far no rigorous verification that the computed metric is
indeed a contraction metric has been provided.

In this paper, we combine the RBF method to compute a contraction metric with
the CPA method to rigorously verify it. In particular, the computed contraction metric
is interpolated by a continuous piecewise affine (CPA) metric at the vertices of a fixed
triangulation, and by checking finitely many inequalities, we can verify that the interpola-
tion is a contraction metric. Moreover, we show that, using sufficiently dense collocation
points and a sufficiently fine triangulation, we always succeed with the construction and
verification. We apply the method to two examples.

Keywords: Contraction Metric, Lyapunov Stability, Basin of Attraction, Numerical Method,
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1 Introduction

Consider an ordinary differential equation (ODE) of the form

ẋ = f(x), x ∈ Rn (1.1)

∗email: p.a.giesl@sussex.ac.uk
†email: shafstein@hi.is
‡email: imehrabinzhad@hi.is

1



with a Cs-vector field f : Rn → Rn with s ≥ 3; further assumptions will be made later. The
solution x(t) with initial value x(0) = ξ is denoted by Stξ := x(t) and is assumed to exist for
all t ≥ 0. An equilibrium of the ODE is a point x0 ∈ Rn such that f(x0) = 0, from which
x(t) = Stx0 = x0 for all t ∈ R follows. The equilibrium is said to be exponentially stable if
there exist α, β, δ > 0 such that ‖x(0)− x0‖2 < δ implies

‖x(t)− x0‖2 ≤ α‖x(0)− x0‖2e−βt for all t ≥ 0.

We denote by A(x0) = {x ∈ Rn : lim
t→∞

Stx = x0} its basin of attraction.

For a given domain in Rn, we are interested in proving the existence, uniqueness and expo-
nential stability of an equilibrium, as well as to determine or estimate its basin of attraction.
There are different methods in the literature towards this problem. If the position of an equi-
librium is known, its exponential stability and a lower bound on its basin of attraction can
be obtained by computing a Lyapunov function for the system [19, 24, 27, 34]. Computing
a Lyapunov function analytically is usually not feasible for a nonlinear system, therefore a
plethora of numerical methods has been developed. To name a few, a sum of squared (SOS)
polynomials Lyapunov function can be parameterized by using semidefinite programming
[2, 6, 30, 31] or with different methods [23, 32, 33], an approximate solution to the Zubov
equation [38] can be obtained using series expansion [33, 38] or by using radial basis functions
(RBF) [8], or linear programming can be used to parameterize a continuous and piecewise
affine (CPA) Lyapunov function [11, 15, 21, 22, 28] or to verify a Lyapunov function candidate
computed by other methods [5, 12, 18].

Another approach is based on contraction metrics, which has the advantage that the position
of the asymptotically stable equilibrium, or more generally the attractor, is not needed.
Whereas a Lyapunov function demonstrates that solutions get closer to the attractor as
the time evolves if measured by an appropriate metric on Rn, a contraction metric proves
that adjacent solutions come closer to each other as the time evolves when measured by an
appropriate Riemannian metric [1, 19, 25, 26].

The analytical computation of a contraction metric is even more difficult than that of a
Lyapunov function. Much less literature is available on numerical methods to compute con-
traction metrics, but the methods are often similar to the ones used to compute Lyapunov
functions, e.g. in [3] SOS polynomials are parameterized, in [13, 14] RBF is used, and in
[10] a CPA contraction metric is parameterized using semidefinite programming. While the
RBF method is computationally more efficient than the CPA method, the RBF method does
not guarantee that the computed metric is indeed a contraction metric. However, error esti-
mates show that this holds true if the set of collocation points is sufficiently dense. The CPA
method, on the other hand, provides such a guarantee. The goal of this paper is to combine
these two methods and their advantages.

In [12] the RBF method is used to compute a Lyapunov function candidate with a subsequent
verification of the linear constraints of a feasibility problem for a CPA Lyapunov function.
In this paper we follow a similar approach, but for contraction metrics and not for Lyapunov
functions. The result is a method that combines the computational efficiency of the RBF
method and the rigour of the CPA method, but for contraction metrics the computational
advantage is even larger than for Lyapunov functions, because the feasibility problem is not
a linear programming problem but a semi-definite optimization problem.

In more detail: We first compute an approximation to a contraction metric using collocation
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with RBFs and then compute a CPA interpolation of this approximation. Using a sufficiently
dense set of collocation points and a sufficiently fine triangulation, we are able to prove the
conditions for a contraction metric for the CPA interpolation.

Note that the first step, computing an approximation to a contraction metric, could be
achieved with other methods and then be combined with a CPA interpolation. For exam-
ple, one could compute the solution of the matrix equation by numerically approximating
the solution formula given in Theorem 2.8. The advantages of using RBF include that the
method is computationally efficient and that scattered collocation points can be used. For
example, one can employ refinement strategies, using more collocation points in areas where
the approximation S is not sufficiently good; these areas can easily be found by checking for
which points x the function F (S)(x) is not negative definite or S(x) is not positive definite,
see [29] for a similar refinement algorithm for the computation of Lyapunov functions using
RBF.

The paper is organized as follows: in Section 2 some basic definitions and results about
Riemannian contraction metrics are provided, in particular Theorem 2.6 that describes their
implications and Theorem 2.8 that shows the existence of a contraction metric as the solution
to a matrix-valued PDE.
In Section 3, we introduce the optimal recovery problem and review previous results on finding
the unique solution to this problem and the error estimates in recovering the contraction
metric.
In Section 4, we review the concepts needed for the CPA interpolation of a function and then
combine all the previous results to obtain Theorem 4.9, which shows that if the constraints
of Verification Problem 4.6 are satisfied for certain values, then these define a Riemannian
contraction metric, and Theorem 4.12, showing that such values can be obtained from a
solution to the optimal recovery problem, if both the triangulation and the collocation points
are sufficiently fine.
In Section 5, we first present our algorithm and then provide two examples to demonstrate
its applicability. These examples have been used in different references and thus provide a
good comparison. Some estimates and a detailed description of the method are given in the
appendix.

2 Preliminaries

In this section we will review basic concepts about Riemannian contraction metrics and some
important tools that we will use later on in this paper. As the Riemannian metric which we
later calculate will not be differentiable, we give a definition which does not require that.

2.1 Definition (Riemannian metric)
Let G be an open subset of Rn. A Riemannian metric is a locally Lipschitz continuous matrix-
valued function M : G→ Sn×n, such that M(x) is positive definite for all x ∈ G, where Sn×n
denotes the symmetric n× n matrices with real entries.
Then, 〈v, w〉M(x) := vTM(x)w defines a (point-dependent) scalar product for each x ∈ G and
v, w ∈ Rn.
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The forward orbital derivative M ′+(x) with respect to (1.1) at x ∈ G is defined by

M ′+(x) := lim sup
h→0+

M
(
Shx

)
−M(x)

h
. (2.1)

2.2 Remark Note that the forward orbital derivative (2.1) is formulated using a Dini deriva-
tive similar to [10, Definition 3.1] and always exists in R ∪ {∞}. This assumption is less
restrictive than [9, Definition 2.1], which is the existence and continuity of

M ′(x) =
d

dt
M(Stx)

∣∣∣∣
t=0

.

A sufficient condition for the existence and continuity of M ′(x) is that M ∈ C1(G; Sn×n);
then (M ′+(x))ij = (M ′(x))ij = (∇Mij(x) · f(x))ij for all i, j ∈ {1, 2, ..., n}.
It is also worth mentioning that if K ⊂ G is compact, then M in Definition 2.1 is uniformly
positive definite on K, i.e. there exists an ε > 0 such that vTM(x)v ≥ ε‖v‖2 for all v ∈ Rn
and all x ∈ K.

2.3 Remark It is useful to have a more accessible expression for the forward orbital deriva-
tive in terms of f in (1.1). In fact we have

M ′+(x) := lim sup
h→0+

M
(
Shx

)
−M(x)

h
= lim sup

h→0+

M
(
x+ hf(x)

)
−M(x)

h
,

because by [10, Lemma 3.3] an analogous formula holds true for each entry Mij of the matrix
M .

2.4 Definition (Riemannian contraction metric) [9]
Let K be a compact subset of an open set G ⊂ Rn and M ∈ C0(G;Sn×n) be a Riemannian
metric. For x ∈ K, v ∈ Rn define

LM (x; v) :=
1

2
vT
[
M(x)Df(x) +Df(x)TM(x) +M ′+(x)

]
v.

The Riemannian metric is called contracting in K ⊂ G with exponent−ν < 0, or a contraction
metric on K, if

LM (x) ≤ −ν for all x ∈ K, where (2.2)

LM (x) := max
vTM(x)v=1

LM (x; v).

2.5 Remark Fix x ∈ K. Note that (2.2) is equivalent to

M(x)Df(x) +Df(x)TM(x) +M ′+(x) � −2νM(x)

where A � B for A,B ∈ Sn×n means A − B is negative semi-definite, i.e. wT (A − B)w ≤ 0
for all w ∈ Rn, see [9, Remark 2.5].

The next theorem will answer the question how contraction metrics can be used in our study
of finding equilibria and their basin of attraction.
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2.6 Theorem (Existence and uniqueness of the equilibrium)
Let ∅ 6= K ⊂ Rn be a compact, connected and positively invariant set and M be a Riemannian
metric defined on a neighborhood G of K and contracting in K with exponent −ν < 0 as in
Definition 2.4. Then there exists one and only one equilibrium x0 of system (1.1) in K; x0 is
exponentially stable and K is a subset of its basin of attraction A(x0).

Proof: The proof is a mimic of [9, Theorem 3.1], the only exception is that our Riemannian
metric is not necessarily C1 and we only assume the existence of the forward orbital derivative.
This, however, does not change the structure of the proof. Thus, one can easily get the desired
result by changing M ′ to M ′+ there. Note that LaSalle’s principle, needed in the proof, holds
equally true for a C0 mapping with forward orbital derivative which still fulfills the purpose
of the theorem; see for example [8, Theorem 2.20] and its proof and consider that a negative
Dini derivative implies that a function is decreasing. �

2.7 Remark Let us define a linear differential operator F associated with system (1.1), given
for any M ∈ Cτ (G; Sn×n) by

F (M)(x) := Df(x)TM(x) +M(x)Df(x) +M ′+(x).

As already mentioned in Remark 2.2, when τ ≥ 1, the orbital derivative M ′ exists and is
equal to the positive orbital derivative M ′+. Therefore, in reading the following results one
should not get confused using different references. However, we will prefer this notation as
we need it later in the paper for functions with τ = 0.

The following theorem which is a converse statement to Theorem 2.6, guarantees that within
the basin of attraction for an exponentially stable equilibrium of (1.1) there exists a contrac-
tion metric. Note that it provides a stronger smoothness property for M than in Definition
2.1 and thus, it allows us to use the orbital derivative instead of the forward orbital derivative
(see Remark 2.2). Note that on a compact subset K ⊂ A(x0), M is a contraction metric by
(2.2).

2.8 Theorem (Existence and uniqueness of the contraction metric) [14, Theorems 2.2, 2.3]

Let f ∈ Cs(Rn;Rn), s ≥ 2. Let x0 be an exponentially stable equilibrium of ẋ = f(x) with
basin of attraction A(x0). Let C ∈ Cs−1(A(x0);Sn×n) such that C(x) is a positive definite
matrix for all x ∈ A(x0). Then the matrix equation

F (M)(x) = Df(x)TM(x) +M(x)Df(x) +M ′+(x) = −C(x) for all x ∈ A(x0) (2.3)

has a unique solution.

In particular, M ∈ Cs−1(A(x0);Sn×n), M(x) is positive definite for all x ∈ A(x0) and M is
of the form

M(x) =

∫ ∞
0

φ(τ, 0;x)TC(Sτx)φ(τ, 0;x) dτ,

where τ 7→ φ(τ, 0;x) is the principal fundamental matrix solution to ẏ = Df(Stx)y.

The last statement of this section is a powerful result that we will use later to obtain error
estimates.
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2.9 Theorem (Perturbation effect on contraction metrics) [14, Theorem 2.4]

Let f ∈ Cs(Rn;Rn), s ≥ 2. Let x0 be an exponentially stable equilibrium of ẋ = f(x) with
basin of attraction A(x0). Let Ci ∈ Cs−1(A(x0);Sn×n), i = 1, 2, such that Ci(x) is a positive
definite matrix for all x ∈ A(x0).

Let Mi ∈ Cs−1(A(x0);Sn×n) be the unique solution (see Theorem 2.8) of the matrix equation

F (Mi)(x) := Df(x)TMi(x) +Mi(x)Df(x) + (Mi)
′
+(x) = −Ci(x)

for all x ∈ A(x0), where i = 1, 2. Let K ⊂ A(x0) be a compact set.

Then there is a constant α, independent of Mi and Ci such that

sup
x∈K
‖M1(x)−M2(x)‖2 ≤ α sup

x∈γ+(K)

‖C1(x)− C2(x)‖2 ,

where γ+(K) =
⋃
t≥0 StK.

The theorem shows that if ‖F (M)(x) − F (S)(x)‖ ≤ ε for all x ∈ γ+(K), then we have
‖M(x) − S(x)‖ ≤ α ε for all x ∈ K. In particular, as M is positive definite in K, so is S
for all small enough ε > 0. Note that for a positively invariant and compact set K we have
γ+(K) = K.

In the rest of the paper we will consider the PDE (2.3) with a constant right hand side

Df(x)TM(x) +M(x)Df(x) +M ′+(x) = −C, (2.4)

that is, F (M)(x) = −C for all x ∈ A(x0), where C ∈ Sn×n is positive definite.

3 First Approximation using RBF

In this section we introduce the proper setting for the optimal recovery problem and then
review two theorems: one regarding the existence and uniqueness of the optimal recovery
(Theorem 3.5) and an error estimate for the approximation (Theorem 3.6).

Let Ω ⊂ Rn be a domain and σ > n/2 be given. Then, the matrix-valued Sobolev space
Hσ(Ω;Rn×n) consists of all matrix-valued functionsM having each componentMij : Ω→ R in
the Sobolev space Hσ(Ω). Similarly, the Sobolev space Hσ(Ω;Sn×n) consists of all symmetric
matrix-valued functions M having each component Mij in Hσ(Ω).

Hσ(Ω;Rn×n) and Hσ(Ω; Sn×n) are Hilbert spaces with inner product given by

〈M,S〉Hσ(Ω;Rn×n) :=
n∑

i,j=1

〈Mij , Sij〉Hσ(Ω),

where 〈·, ·〉Hσ(Ω) is the usual inner product on Hσ(Ω); the same inner product can be used
for Hσ(Ω; Sn×n). They are also reproducing kernel Hilbert spaces (RKHS). In the following
we assume that W is either Rn×n or its subspace Sn×n. On W we define the inner product

〈α, β〉W =

n∑
i,j=1

αijβij , α = (αij), β = (βij),
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which renders it a Hilbert space. We denote by L(W ) the linear space of all linear and
bounded operators W →W .

3.1 Definition (Reproducing Kernel Hilbert Space) A Hilbert spaceH(Ω;W ) of func-
tions f : Ω→W is called reproducing kernel Hilbert space if there is a function Φ : Ω×Ω→
L(W ) with the following properties :

1. Φ(·, x)α ∈ H(Ω;W ) for all x ∈ Ω and all α ∈W .
2. 〈f(x), α〉W = 〈f,Φ(·, x)α〉H for all f ∈ H(Ω;W ), all x ∈ Ω and all α ∈W .

The function Φ is called a reproducing kernel of H(Ω;W ).

A kernel Φ is thus a mapping Φ : Ω×Ω→ L(W ), W = Rn×n or W = Sn×n ⊂ Rn×n, and can
be represented by a tensor of order 4, i.e. we will write Φ = (Φijk`) and define its action on
α ∈ Rn×n by

(Φ(x, y)α)ij =

n∑
k,`=1

Φ(x, y)ijk`αk`.

3.2 Lemma (Induction of reproducing kernels) [13, Lemma 3.2]

Let Ω ⊂ Rn be a domain and σ > n/2 be given. Assume that φ : Ω×Ω→ R is the reproducing
kernel of Hσ(Ω). Then, Hσ(Ω;Rn×n) and Hσ(Ω; Sn×n) are also reproducing kernel Hilbert
spaces with the reproducing kernel Φ defined by

Φ(x, y)ijk` := φ(x, y)δikδj` (3.1)

for x, y ∈ Ω and 1 ≤ i, j, k, ` ≤ n.

It is now time to introduce the problem: how to recover a function with values in W given
only finitely many information of it.

3.3 Definition (Optimal recovery of a function) Given N linearly independent func-
tionals λ1, . . . , λN ∈ H(Ω;W )∗ of a reproducing kernel Hilbert space H(Ω;W ) and N values
r1 = λ1(M), . . . , rN = λN (M) ∈ R generated by an element M ∈ H(Ω;W ). The optimal
recovery of M based on this information is defined to be the element S ∈ H(Ω;W ) which
solves

min {‖S‖H : S ∈ H(Ω;W ) with λj(S) = rj , 1 ≤ j ≤ N} .

We choose Wendland functions as the radial basis functions, which will define the reproducing
kernel Φ needed for our optimal recovery problem. For more details on these functions and
their properties, see [36].

3.4 Definition (Wendland functions, [36]) Let l ∈ N, k ∈ N0. We define by recursion

ψl,0(r) = (1− r)l+,

and ψl,k+1(r) =

∫ 1

r
tψl,k(t) dt

for r ∈ R+
0 . Here we set x+ = x for x ≥ 0, x+ = 0 for x < 0, and xl+ := (x+)l.
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With l := bn2 c + k + 1 the function ψl,k(c‖ · ‖2) belongs to C2k(Rn) for any c > 0 and the
reproducing kernel Hilbert space with reproducing kernel φ(x, y) = ψl,k(c‖x − y‖2) given by
a Wendland function is norm-equivalent to the Sobolev space Hσ(Ω), where σ = k + n+1

2 .

Now consider Hσ(Ω; Sn×n), the matrix-valued Sobolev space with reproducing kernel Φ :
Ω × Ω → L(Sn×n) as in (3.1) with φ(x, y) = ψl,k(c‖x − y‖2), where ψl,k is a Wendland
function with l := bn2 c+ k + 1 and c > 0. We again have σ = k + n+1

2 .

We then define the linear functionals λ
(i,j)
k : Hσ(Ω;Sn×n)→ R by

λ
(i,j)
k (M) = eTi

[
DfT (xk)M(xk) +M(xk)Df(xk) +M ′+(xk)

]
ej (3.2)

=: eTi Fk(M)ej

= eTi F (M)(xk)ej

for xk ∈ Ω, 1 ≤ k ≤ N and 1 ≤ i ≤ j ≤ n. Here, ei denotes the usual ith unit vector in Rn.

Thus λ
(i,j)
k (M) is simply the (i, j)th element of the matrix F (M)(xk).

We define Esµµ to be the matrix with value 1 at position (µ, µ) and value zero everywhere else.

For µ < ν, we define Esµν to be the matrix with value 1/
√

2 at positions (µ, ν) and (ν, µ) and
value zero everywhere else. It is easy to see that {Esµν : 1 ≤ µ ≤ ν ≤ n} is an orthonormal
basis of Sn×n. We also define Eµν ∈ Rn×n to be the matrix with value 1 at position (µ, ν)
and value zero everywhere else.

We can compute the solution S of the optimal recovery problem as in Definition 3.3. This
gives the following result with our notation:

3.5 Theorem (Existence and uniqueness of the optimal recovery) [13, Theorem 5.2]

Let σ > n/2 + 1 and let Φ : Ω×Ω→ L(Sn×n) be the reproducing kernel of Hσ(Ω;Sn×n). Let

X = {x1, . . . , xN} ⊂ Ω be pairwise distinct points and let λ
(i,j)
k ∈ Hσ(Ω; Sn×n)∗, 1 ≤ k ≤ N

and 1 ≤ i, j ≤ n be defined by (3.2). Then there is a unique function S ∈ Hσ(Ω; Sn×n) solving

min
{
‖S‖Hσ(Ω;Sn×n) : λ

(i,j)
k (S) = −Cij , 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ N

}
,

where C = (Cij)i,j=1,...,n is a symmetric, positive definite matrix. It has the form

S(x) =

N∑
k=1

∑
1≤i≤j≤n

γ
(i,j)
k

∑
1≤µ≤ν≤n

λ
(i,j)
k (Φ(·, x)Esµν)Esµν

=

N∑
k=1

∑
1≤i≤j≤n

γ
(i,j)
k

[ n∑
µ=1

Fk(Φ(·, x)·,·,µ,µ)ijEµµ

+
1

2

n∑
µ,ν=1
µ 6=ν

[Fk(Φ(·, x)·,·,µ,ν)ij + Fk(Φ(·, x)·,·,ν,µ)ij ]Eµν

]
, (3.3)

where the coefficients γk = (γ
(i,j)
k )1≤i≤j≤n are determined by substituting (3.3) in the operator

equations λ
(i,j)
` (S) = −Cij for 1 ≤ i ≤ j ≤ n, 1 ≤ ` ≤ N .
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If the kernel Φ is given by (3.1) then we also have the alternative expression

S(x) =
N∑
k=1

n∑
i,j=1

β
(i,j)
k

n∑
µ,ν=1

Fk(Φ(·, x)·,·,µ,ν)ijEµν

where the symmetric matrices βk ∈ Sn×n are defined by β
(j,i)
k = β

(i,j)
k = 1

2γ
(i,j)
k if i 6= j and

β
(i,i)
k = γ

(i,i)
k .

We will measure the error of the optimal recovery in terms of the so-called fill distance or
mesh norm

hX,Ω := sup
x∈Ω

min
xi∈X

‖x− xi‖2.

3.6 Theorem (Error estimates for the RBF approximation) [13, Theorem 5.3]

Let f ∈ Cσ+1(Rn;Rn), with σ ∈ N and σ > n/2 + 1. Assume that x0 is an exponentially
stable equilibrium of ẋ = f(x) with basin of attraction A(x0). Let C ∈ Sn×n be a positive
definite (constant) matrix and let M ∈ Cσ(A(x0);Sn×n) be the solution of the PDE (2.4)
from Theorem 2.8. Let K ⊂ Ω ⊂ A(x0) be a positively invariant and compact set, where Ω
is open with Lipschitz boundary. Finally, let S be the optimal recovery of M from Theorem
3.5. Then, we have the error estimate

sup
x∈K
‖M(x)− S(x)‖2 ≤ α‖F (M)− F (S)‖L∞(Ω;Sn×n) ≤ βh

σ−1−n/2
X,Ω ‖M‖Hσ(Ω;Sn×n) (3.4)

for all sets X ⊂ Ω with sufficiently small hX,Ω.

Note that in this theorem α, β are positive constants independent of M,S, and X; the state-
ment in (3.4) follows directly from the proof of [13, Theorem 5.3]. The theorem indicates that
S, itself, is a contraction metric in K provided hX,Ω is sufficiently small.

3.7 Remark It is worth mentioning another useful norm estimate for S ∈ Hσ(Ω; Sn×n), the
optimal recovery of M from Theorem 3.5, when Ω ⊂ A(x0) is bounded and open with C1

boundary. Let k ≥ 2 if n is odd and k ≥ 3 if n is even. Let S be the approximation of M ,
using the Wendland function ψl,k with l = bn2 c + k + 1 and the collocation points X ⊂ Ω
with sufficiently small fill distance hX,Ω. Note that the reproducing kernel Hilbert space
H(Ω; Sn×n) with reproducing kernel Φ given by the Wendland function is norm-equivalent to
the Sobolev space Hσ(Ω; Sn×n), where σ = k + n+1

2 . Then we have

‖S‖C2(Ω;Sn×n) ≤ ζ ‖M‖Hσ(Ω;Sn×n) , (3.5)

where ζ > 0 is a constant independent of the collocation points X, and the approxima-
tion S. The inequality is proved using that the approximation S is norm-minimal, that is,
‖S‖H(Ω;Sn×n) ≤ ‖M‖H(Ω;Sn×n); for more details see [12, Lemma 3.8].

4 Second Approximation using CPA Interpolation

In this section we will first provide the necessary definitions and statements about the tri-
angulations and continuous piecewise affine interpolations of a function. Then we consider a
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verification problem to check whether our criteria for a contraction metric are fulfilled by the
interpolated function, and finally we derive error estimates for this process.

4.1 Definition (simplex) Given vectors x0, x1, . . . , xn ∈ Rn that are affinely independent,
i.e. the vectors x1 − x0, x2 − x0, . . . , xn − x0 are linearly independent, the convex hull

S = co(x0, x1, . . . , xn) :=

{
n∑
k=0

λkxk : λk ∈ [0, 1] and

n∑
k=0

λk = 1

}

is called an n-simplex or simply a simplex. A set

co(xk0 , xk1 , . . . , xkj ) :=

{
j∑
i=0

λkixki : λki ∈ [0, 1] and

j∑
i=0

λki = 1

}

with 0 ≤ k0 < k1 < . . . < kj ≤ n and 0 ≤ j < n is called a j-face of the simplex S.

4.2 Definition (Triangulation) We call a finite set T = {Sν}ν of n-simplices Sν a trian-
gulation in Rn, if two simplices Sν ,Sµ ∈ T , µ 6= ν, intersect in a common face or not at all.
For a triangulation T we define its domain and vertex set as

DT :=
⋃
Sν

Sν and VT := {x ∈ Rn : x is a vertex of a simplex in T }.

We also say that T is a triangulation of the set DT .

For a triangulation T = {Sν} and constants h, d > 0, we say that T is (h, d)-bounded if it
fulfills the following conditions:

(i) The diameter of every simplex Sν ∈ T is bounded by h, that is

hν := diam(Sν) := max
x,y∈Sν

‖x− y‖2 < h.

(ii) The degeneracy of every simplex Sν ∈ T is bounded by d in the sense that

hν‖X−1
ν ‖1 ≤ d,

where Xν := (xν1−xν0 , xν2−xν0 , · · · , xνn−xν0)T is the so-called shape matrix of the simplex
Sν .

4.3 Definition (CPA interpolation) Let T be a triangulation in Rn and assume some
values P̃ij(xk) ∈ R are fixed for every xk ∈ VT and every i, j = 1, 2, . . . , n. Then we can
uniquely construct a continuous function P : DT → Rn×n, that is affine on each simplex
Sν ∈ T in the following way : An x ∈ Sν = co(x0, . . . , xn) can be written uniquely as
x =

∑n
k=0 λkxk with λk ∈ [0, 1] and

∑n
k=0 λk = 1 and we define

Pij(x) :=

n∑
k=0

λkP̃ij(xk)

10



and

P (x) :=


P11(x) P12(x) · · · P1n(x)
P21(x) P22(x) · · · P2n(x)

...
...

. . .
...

Pn1(x) Pn2(x) · · · Pnn(x)

 .

We refer to the functions Pij and P as the CPA interpolations of the values P̃ij(xk) and

P̃ (xk) = (P̃ij(xk))i,j=1,...,n, respectively.

Equivalently, we can define the continuous functions Pij : DT → R through :

(i) Pij(x) := P̃ij(x) for every x ∈ VT ,

(ii) Pij is affine on every simplex Sν ∈ T , i.e. there is a vector wνij ∈ Rn and a number
bνij ∈ R, such that

Pij(x) = (wνij)
Tx+ bνij

for all x ∈ Sν .

The set of all such continuous and piecewise affine functions DT → R is denoted by CPA[T ].

Note that for every simplex Sν ∈ T we have ∇Pij |S◦ν = wνij , where wνij ∈ Rn is as in (ii).

Assume W is a matrix-valued function defined on DT , fix the values P̃ (xk) = W (xk) for
every vertex xk ∈ VT , and continue the procedure mentioned above to create a continuous
piecewise affine function P . Then we call P the CPA interpolation of the function W on T .

Note that if P̃ (xk) ∈ Sn×n for all xk ∈ VT , then P : DT → Sn×n.

4.4 Remark (Orbital derivative) Let P (x) be as in Definition 4.3 and fix a point x ∈ D◦T .
As shown in the proof of [10, Lemma 4.7], there exists a Sν = co(x0, . . . , xn) ∈ T and a
number θ∗ > 0 such that x + θf(x) ∈ Sν for all θ ∈ [0, θ∗]. Then the forward orbital
derivative (Pij)

′
+(x) defined by formula (2.1) (see Remark 2.3), is given by

(Pij)
′
+(x) = wνij · f(x),

where wνij was defined in Definition 4.3.

4.5 Lemma (Error estimates for CPA interpolation) Let T = {Sν} be an (h, d)-
bounded triangulation in Rn and let D ⊃ DT be an open set. Assume that W ∈ C2(D;Rn×n)
with ‖W‖C2(D;Rn×n) <∞ and define

γ := 1 +
dn3/2

2
.

Denote by WC the CPA interpolation of W on T . Then the following estimates hold true for
all 1 ≤ i, j ≤ n :

‖WC(x)−W (x)‖2 ≤ nh2 ‖W‖C2(D;Rn×n) for all x ∈ DT , (4.1)

‖∇(WC)νij −∇Wij(x)‖1 ≤ hγ ‖W‖C2(D;Rn×n) for all Sν ∈ T and all x ∈ Sν , (4.2)

‖∇(WC)νij‖1 ≤ (1 + hγ) ‖W‖C2(D;Rn×n) for all Sν ∈ T . (4.3)
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Proof: This lemma is a counterpart of [12, Lemma 4.15] for matrix-valued functions. We
just prove inequality (4.1), where we have obtained a sharper estimate. Observe that

‖WC(x)−W (x)‖max := max
i,j=1,2,...,n

∣∣(WC)ij(x)−Wij(x)
∣∣,

in which Wij ∈ C2(D;R) and Wij , (WC)ij are the components of W and WC , respectively.
Now we can use the ideas of [12, Lemma 4.15] and inequality (A.4) to obtain∣∣(WC)ij(x)−Wij(x)

∣∣ ≤ h2 max
z∈DT

∥∥HWij (z)
∥∥

2
≤ h2 ‖Wij‖C2(D;R) ,

where HWij (z) denotes the Hessian of Wij at z. Considering inequality (A.7) of Remark A.1
yields that

‖WC(x)−W (x)‖max ≤ max
i,j=1,2,...,n

h2 ‖Wij‖C2(D;R)

for all x ∈ DT . It only remains to consider norm equivalence relations (A.1) (A.7) to see (4.1)
holds true. The other two inequalities are essentially the same as [12, Lemma 4.15], as they
are expressed component-wise. �

In the sequel, we will apply this lemma to S, the optimal recovery function of M from Theorem
3.5. It is worth mentioning that when using Wendland functions φ(·) := ψl,k(c‖ · ‖2) with
l := bn2 c+ k + 1 and Φ as in (3.1) as reproducing kernels, S is a linear combination of these
functions and their first derivatives, see (B.4); hence, S ∈ C2k−1(Rn;Rn×n).
Therefore, in order to be able to apply the lemma, we only consider Wendland functions with
k ≥ 2 (for more details, see for example [8, section 3.2] or [37, chapter 10]).

A CPA interpolation of S, or more exactly the values P (xk) = S(xk) for all xk ∈ VT for
some triangulation T , that satisfies the constraints of the following semi-definite feasibility
problem, is necessarily a contraction metric. Later we prove a converse statement: if S is a
contraction metric and d is fixed, then for any h > 0 small enough its CPA interpolation on
an (h, d)−bounded triangulation will satisfy the constraints of the verification problem. Such
triangulations are easily generated, see Remark 4.11.

4.6 Verification Problem Given is a system ẋ = f(x), f ∈ C3(Rn;Rn), and a triangulation
T in Rn. The verification problem has the following constants, variables, and constraints.

Constants: The constants used in the problem are

1. ε0 > 0 – lower bound on the matrix P (xk).

2. The diameter hν of each simplex Sν ∈ T :

hν := diam(Sν) = max
x,y∈Sν

‖x− y‖2.

3. Upper bounds Bν on the second-order derivatives of the components fk of f on each
simplex Sν ∈ T :

Bν ≥ max
x∈Sν

i,j,k=1,2,...,n

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣ .
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4. Upper bounds B3,ν on the third-order derivatives of the components fk of f on each
simplex Sν ∈ T :

B3,ν ≥ max
x∈Sν

i,j,k,l=1,...,n

∣∣∣∣ ∂3fl
∂xi∂xj∂xk

(x)

∣∣∣∣ .
Variables: The variables of the problem are

1. Pij(xk) ∈ R for all 1 ≤ i ≤ j ≤ n and all vertices xk ∈ VT . For 1 ≤ i ≤ j ≤ n the value
Pij(xk) is the (i, j)-th entry of the (n×n) matrix P (xk). The matrix P (xk) is assumed
to be symmetric and therefore these components determine it.

2. Cν ∈ R+
0 for all simplices Sν ∈ T – upper bound on P in Sν .

3. Dν ∈ R+
0 for all simplices Sν ∈ T – upper bound on the derivative of Pij in Sν .

Constraints:

1. Positive definiteness of P

For each xk ∈ VT :
P (xk) � ε0I.

2. Upper bound on P

For each xk ∈ VT :
P (xk) � CνI.

3. Bound on the derivative of P

For each simplex Sν ∈ T and all 1 ≤ i ≤ j ≤ n :

‖wνij‖1 ≤ Dν .

Here wνij = ∇Pij
∣∣
S◦ν

for all x ∈ Sν , see Remark 4.7 for details.

4. Negative definiteness of Aν

For each simplex Sν = co(x0, . . . , xn) ∈ T and each vertex xk of Sν :

−ε0I � Aν(xk) + h2
νEνI.

Here
Aν(xk) := P (xk)Df(xk) +Df(xk)

TP (xk) + (wνij · f(xk))i,j=1,2,...,n, (4.4)

where Df(xk) is the Jacobian matrix of f at xk, (wνij · f(xk))i,j=1,2,...,n denotes the
symmetric (n× n)-matrix with entries wνij · f(xk) and wνij is defined as in (4.6), and for
a fixed Sν and i, j it is a constant vector independent of the vertex xk of Sν . Further,

Eν := n2(1 + 4
√
n)BνDν + 2n3B3,νCν . (4.5)
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4.7 Remark In Constraints 3 and 4 above, the gradient wνij of the affine function Pij
∣∣
Sν

on

the simplex Sν = co(x0, . . . , xn), i.e. ∇Pij
∣∣
S◦ν

= wνij , is given by the expression

wνij := X−1
ν

 Pij(x1)− Pij(x0)
...

Pij(xn)− Pij(x0)

 ∈ Rn, (4.6)

where Xν = (x1 − x0, x2 − x0, . . . , xn − x0)T ∈ Rn×n is the so-called shape-matrix of the
simplex Sν .

The Constraints 3 are indeed linear and can be implemented using the auxiliary variables Dk
ν

and the constraints
−Dk

ν ≤ [wνij ]k ≤ Dk
ν for k = 1, . . . , n,

where [wνij ]k is the k-th component of the vector wνij , and setting Dν =
∑n

k=1D
k
ν .

A feasible solution to Verification Problem 4.6 delivers a symmetric matrix P (xk) =
(Pij(xk))i,j=1,2,...,n at each vertex xk of the triangulation T and values Cν and Dν for each
simplex Sν ∈ T .

We recall a lemma before expressing our final results.

4.8 Lemma (Operator estimate over a triangulation) [16, Lemma 4.9]

Assume P is defined as in Definition 4.3 from a feasible solution Pij(xk) to the Verification
Problem 4.6. Fix a point x ∈ D◦T and a corresponding simplex Sν = co(x0, x1, . . . , xn) ∈ T
as in Definition 4.4. Set

Aν(y) := P (y)Df(y) +Df(y)TP (y) +
(
wνij · f(y)

)
i,j=1,2,...,n

for all y ∈ Sν . Then we have the following estimate with x =
∑n

k=0 λkxk, λk ≥ 0 and∑n
k=0 λk = 1 : ∥∥∥∥∥Aν(x)−

n∑
k=0

λkAν(xk)

∥∥∥∥∥
2

≤ h2
νEν , (4.7)

where Eν was defined in (4.5); in particular

Aν(x) �
n∑
k=0

λkAν(xk) + h2
νEνI.

We define the CPA metric P by affine interpolation on each simplex. The following theorem
explains why we call Problem 4.6 a Verification Problem as it shows that if the finitely many
constraints at vertices are satisfied, then the interpolated CPA function is a Riemannian
contraction metric on D◦T .

4.9 Theorem (CPA contraction metric)
Let f ∈ C3(Rn,Rn). Assume the constraints of Verification Problem 4.6 are satisfied for some
values Pij(xk), Cν , Dν . Then the matrix-valued function P , where P (x) is interpolated from
the values Pij(xk) as in Definition 4.3, is a Riemannian metric contracting in any compact

set K̃ ⊂ D◦T .
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Proof: Let x ∈ DT be an arbitrary point, x =
∑n

k=0 λkxk, λk ≥ 0 and
∑n

k=0 λk = 1, with
a corresponding Sν ∈ T . The symmetry of P (x) follows directly from Pij(xk) = Pji(xk)
assumed in Variables 1 of Verification Problem 4.6:

Pij(x) = Pij

(
n∑
k=0

λkxk

)
=

n∑
k=0

λkPij(xk) =

n∑
k=0

λkPji(xk) = Pji(x).

For positive definiteness, we have P (xk) � ε0I for each xk ∈ VT by Constraints 1, so

P (x) =
n∑
k=0

λkP (xk) �
n∑
k=0

λk ε0I = ε0I.

Now let x ∈ K̃ ⊂ D◦T . Then there is a simplex Sν ∈ T with x ∈ Sν as well as x+θf(x) ∈ Sν

for all θ ∈ [0, θ∗] with θ∗ > 0. Then, as expressed in Remark 4.4, we can show that wνij =

∇Pij
∣∣
S◦ν

(x) and (P ′+)ij(x) = wνij · f(x). Hence,

LP (x) = max
vTP (x)v=1

LP (x; v)

= max
vTP (x)v=1

1

2
vT [P (x)Df(x) +Df(x)TP (x) + P ′+(x)]v

= max
vTP (x)v=1

1

2
vTAν(x)v

≤ max
vTP (x)v=1

n∑
k=0

λkv
T [Aν(xk) + h2

νEνI]v

≤ −ε0 max∑n
k=0 λkv

TP (xk)v=1

n∑
k=0

λk‖v‖22

= − ε0
Cν

max∑n
k=0 λkv

TP (xk)v=1

n∑
k=0

λkv
TP (xk)v

= − ε0
Cν

< 0

in which we have used Lemma 4.8, Constraints 4, and Constraints 2. �

In order to measure how good the CPA interpolant P of the RBF approximation S of the
contraction metric M is, we need to check two criteria in correspondence to two properties of
the contraction metric. First, how close P is to M , and second, how close F (P ) is to F (M).
The following lemma provides these estimates.

4.10 Lemma (Error estimate for RBF-CPA approximation of the contraction metric)

Let k ≥ 2 if n is odd and k ≥ 3 if n is even. Assume that x0 is an exponentially stable
equilibrium of ẋ = f(x) where f ∈ Cσ+1(Rn;Rn), with σ ∈ N and σ ≥ k+ n+1

2 . Let C ∈ Sn×n
be a positive definite matrix and M ∈ Cσ(A(x0);Sn×n) be the solution of the PDE (2.4)
from Theorem 2.8. Let Ω ⊂ A(x0) be a bounded open set with C1 boundary and K ⊂ Ω be
a positively invariant and compact set. Let S ∈ Hσ(Ω; Sn×n) be the optimal recovery of M
from Theorem 3.5 with kernel given by the Wendland function ψl,k with l = bn2 c+ k + 1 and
collocation points X ⊂ Ω. Finally, let P be the CPA interpolation of S on an (h, d)-bounded
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triangulation T = {Sν}ν with DT ⊂ K. Then, we have for all small enough hX,Ω > 0 the
following error estimates :

max
x∈DT

‖M(x)− P (x)‖2 ≤
(
β h

σ−1−n/2
X,Ω + ζ n h2

)
‖M‖Hσ(Ω;Sn×n), (4.8)

sup
x∈D◦T

‖F (M − P )(x)‖2 ≤
(
β

α
h
σ−1−n/2
X,Ω + η h ‖f‖C1(Ω;Rn)

)
‖M‖Hσ(Ω;Sn×n), (4.9)

where ζ is the constant from Remark 3.7, γ = 1 + dn3/2

2 , and η = n ζ (2h+ γ).

Proof: First, note that by Theorem 3.6 we have

max
x∈DT

‖M(x)− P (x)‖2 ≤ max
x∈DT

(
‖M(x)− S(x)‖2 + ‖S(x)− P (x)‖2

)
≤ βh

σ−1−n/2
X,Ω ‖M‖Hσ(Ω;Sn×n) + max

x∈DT
‖S(x)− P (x)‖2 .

Next we provide an estimate for the latter term over each simplex Sν , using Lemma 4.5 and
Remark 3.7:

max
x∈DT

‖S(x)− P (x)‖2 ≤ max
ν

max
x∈Sν

‖S(x)− P (x)‖2

≤ nh2 ‖S‖C2(Ω;Sn×n)

≤ ζ n h2 ‖M‖Hσ(Ω;Sn×n).

This shows the first estimate.
The same procedure can be used for the second claimed estimate:

sup
x∈D◦T

‖F (M − P )(x)‖2 ≤ sup
x∈D◦T

(
‖F (M)(x)− F (S)(x)‖2 + ‖F (S)(x)− F (P )(x)‖2

)
≤ β

α
h
σ−1−n/2
X,Ω ‖M‖Hσ(Ω;Sn×n) + sup

x∈D◦T
‖F (S − P )(x)‖2 .

Now, for the second term, let x ∈ D◦T , so there exists a simplex such that x ∈ Sν . Then by
using Remark 4.4 we have

F (S − P )(x) =
(
S(x)− P (x)

)
Df(x) +Df(x)T

(
S(x)− P (x)

)
+
([
∇Sij(x)− wνij

]
· f(x)

)
i,j=1,2,...,n

.

Observe that
∥∥Df(x)T

∥∥
2

= ‖Df(x)‖2, and by inequality (A.6) of Remark A.1 we get

max
ν

max
x∈Sν

‖S(x)− P (x)‖2 ‖Df(x)‖2 ≤ nh
2 ζ ‖M‖Hσ(Ω;Sn×n) ‖f‖C1(Ω;Rn) .

Let Qν(x) =
(
∇Sij(x) ·f(x)−wνij ·f(x)

)
i,j=1,2,...,n

. From the Hölder inequality and inequality

(4.2) of Lemma 4.5 we have the following estimate

max
ν

max
x∈Sν

‖Qν(x)‖2 ≤ nmax
ν

max
x∈Sν

‖Qν(x)‖max

≤ nmax
ν

max
x∈Sν

max
i,j=1,2,··· ,n

∥∥∇Sij(x)− wνij
∥∥

1
‖f(x)‖∞

≤ nh γ ‖S‖C2(Ω;Sn×n) ‖f‖C0(Ω;Rn) (4.10)

≤ nh γ ζ ‖M‖Hσ(Ω;Sn×n) ‖f‖C1(Ω;Rn) .
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Putting all terms together delivers

sup
x∈D◦T

‖F (S)(x)− F (P )(x)‖2 ≤ max
ν

max
x∈Sν

‖F (S)(x)− F (P )(x)‖2

≤ nh ζ (2h+ γ) ‖f‖C1(Ω;Rn) ‖M‖Hσ(Ω;Sn×n) .

It is then just a simplification of coefficients to get (4.9) and the proof is complete. �

The last theorem of this section proves that a suitable CPA interpolation of the solution to a
suitable optimal recovery problem will indeed be a contraction metric.

4.11 Remark The following observation is useful for the statement of the next theorem:
Given an open set D, compact set K̃ ⊂ D, and d = 2

√
n, one can always construct an

(h, d)-bounded triangulation T such that K̃ ⊂ D◦T ⊂ DT ⊂ D. Indeed, by [17, Remark 2] the
so-called scaled standard triangulation T std

ρ is (h, 2
√
n)-bounded for any h >

√
nρ. By setting

3ε := dist(K̃,Rn \D) = min{‖x− y‖ : x ∈ K̃, y ∈ Rn \D} and Kε := {x ∈ Rn : dist(x, K̃) <
ε}, it is easy to see that with 0 < ρ ≤ ε/

√
n the triangulation S := {Sν ∈ T std

ρ : Sν∩K̃ε 6= ∅}
fulfills K̃ ⊂ D◦T ⊂ DT ⊂ D.

4.12 Theorem (RBF-CPA contraction metric) Let k ≥ 2 if n is odd and k ≥ 3 if n
is even. Define σ = dk + n+1

2 e and assume that x0 is an exponentially stable equilibrium
of ẋ = f(x) where f ∈ Cσ+1(Rn;Rn). Let C ∈ Sn×n be a positive definite matrix and
M ∈ Cσ(A(x0);Sn×n) be the solution of the PDE (2.4) from Theorem 2.8, i.e. PDE (2.3)
with a constant right-hand-side.

Let Ω ⊂ Rn be open and bounded with C1 boundary, Ω ⊂ A(x0) and let K ⊂ Ω be positively
invariant compact set such that x0 ∈ K◦.
Fix a compact set K̃ ⊂ K◦ and constants

d ≥ 2
√
n, B∗ ≥ max

x∈K
i,j,k=1,2,...,n

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣ , and B∗3 ≥ max
x∈K

i,j,k,l=1,...,n

∣∣∣∣ ∂3fl
∂xi∂xj∂xk

(x)

∣∣∣∣ .
Then there exist constants h∗X,Ω, h

∗, ε∗0 > 0, such that for any set of collocation points X ⊂ Ω

with fill distance hX,Ω ≤ h∗X,Ω and any (h, d)-bounded triangulation T with K̃ ⊂ D◦T ⊂
DT ⊂ K◦ and h < h∗ the following holds: Suppose that S is the optimal recovery of M from
Theorem 3.5 with kernel given by the Wendland function ψl,k with l = bn2 c+ k + 1. Fix the
constants and variables from Verification Problem 4.6 as follows for all Sν ∈ T , xk ∈ VT , and
1 ≤ i ≤ j ≤ n :

Pij(xk) = Sij(xk), Cν = max{‖P (x)‖2 : x vertex of Sν}, Dν = max
i,j=1,...,n

∥∥wνij∥∥1
,

B∗ ≥ Bν ≥ max
x∈Sν

i,j,k=1,2,...,n

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣ , B∗3 ≥ B3,ν ≥ max
x∈Sν

i,j,k,l=1,...,n

∣∣∣∣ ∂3fl
∂xi∂xj∂xk

(x)

∣∣∣∣ , ε∗0 ≥ ε0 > 0.

Then the constraints of Verification Problem 4.6 are fulfilled by these values. In particular,
we can assert that the CPA interpolation P of S on T is a contraction metric on K̃.
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Proof: First note that since Ω is compact and M is positive definite by Theorem 2.8, there
are constants λ0, λ1,Λ0 > 0 such that for all x ∈ Ω we have

λ0I � M(x) � Λ0I (4.11)

λ1I � C. (4.12)

Furthermore, define

ε∗0 =
1

3
min(λ0, λ1),

C∗ := Λ0 +
2

3
λ0,

D∗ := (1 + γ)ζ‖M‖Hσ(Ω;Sn×n),

E∗ := n2(1 + 4
√
n)B∗D∗ + 2n3B∗3C

∗,

where γ = 1 + dn
3
2

2 is the constant from Lemma 4.5, α, β > 0 are the constants from Theorem
3.6, and ζ > 0 is the constant from Remark 3.7.

Now set

h∗ := min

(√
λ0

3ζn‖M‖Hσ(Ω;Sn×n)
,

λ1

3
(
nγζ‖f‖C0(Ω;Rn)‖M‖Hσ(Ω;Sn×n) + E∗

) , 1) ,
h∗X,Ω := min

(
λ0

3β‖M‖Hσ(Ω;Sn×n)
,

λ1α

3β‖M‖Hσ(Ω;Sn×n)

)1/(σ−1−n/2)

.

Note that the Cνs and Dνs are defined as the minimal number such that Constraints 2 and
Constraints 3 of Verification Problem 4.6 are satisfied. Now we verify that Constraints 1 are
fulfilled.

First note that by the construction method of Theorem 3.5, we know that the S(xk) and
hence the P (xk) are symmetric matrices.

We have for all x ∈ DT ⊂ K ⊂ Ω that

P (x) = M(x)−M(x) + P (x)

�
(
λ0 −

(
β h

σ−1−n/2
X,Ω + ζ n h2

)
‖M‖Hσ(Ω;Sn×n)

)
I � λ0

3
I � ε0I,

where we used inequalities (4.11), (4.8), and the definitions of h∗, h∗X,Ω, and ε0≤ ε∗0. Thus,
Constraints 1 hold true.

We now show that Cν ≤ C∗.
We have for all x ∈ DT , similarly to above, that

P (x) = M(x)−M(x) + P (x)

�
(

Λ0 +
(
β h

σ−1−n/2
X,Ω + ζ n h2

)
‖M‖Hσ(Ω;Sn×n)

)
I

�
(

Λ0 +
2λ0

3

)
I

� C∗I.
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Since Cν were chosen as the smallest constants to satisfy Constraints 2, we must have 0 <
Cν ≤ C∗.
We show that Dν ≤ D∗. Consider a simplex Sν ∈ T and let 1 ≤ i ≤ j ≤ n.

‖wνij‖1 = ‖∇Pij
∣∣
S◦ν
‖1

≤ (1 + hγ)‖S‖C2(Ω;Sn×n)

≤ (1 + γ)ζ‖M‖Hσ(Ω;Sn×n)

≤ D∗,

where we used inequalities (4.3), (3.5), h ≤ h∗ ≤ 1, and the definition of D∗. Since Dν were
chosen as the smallest constants to satisfy Constraints 3, we have 0 < Dν ≤ D∗.
To show that Constraints 4 are fulfilled, it is advantageous to first derive the following upper
bound on Eν ;

Eν = n2(1 + 4
√
n)BνDν + 2n3B3,νCν

≤ n2(1 + 4
√
n)B∗D∗ + 2n3B∗3C

∗

= E∗.

To conclude the proof fix a simplex Sν ∈ T and let xk be one of its vertices. Then xk ∈
DT ⊂ K ⊂ Ω . Since P (xk) = S(xk) we get by (4.2), and (4.10)

Aν(xk) = P (xk)Df(xk) +Df(xk)
TP (xk) + (wνij · f(xk))i,j=1,2,...,n

= S(xk)Df(xk) +Df(xk)
TS(xk) + (∇Sij(xk) · f(xk))i,j=1,2,...,n

+((wνij −∇Sij(xk)) · f(xk))i,j=1,2,...,n

� F (S)(xk) + n · max
i,j=1,...,n

‖wνij −∇Sij(xk)‖1 sup
x∈Ω
‖f(x)‖∞I

� F (M)(xk) + F (S)(xk)− F (M)(xk) + nhγ‖S‖C2(Ω;Sn×n)‖f‖C0(Ω;Rn)I

� −C +

(
β

α
h
σ−1−n/2
X,Ω + nhγζ‖f‖C0(Ω;Rn)

)
‖M‖Hσ(Ω;Sn×n)I,

where the last inequality follows by (3.4) and (3.5).

Hence,

Aν(xk) + h2
νEνI

�
(
−λ1 +

(
β

α
h
σ−1−n/2
X,Ω + nhγζ‖f‖C0(Ω;Rn)

)
‖M‖Hσ(Ω;Sn×n) + (h∗)2E∗

)
I

�
(
−λ1 +

2

3
λ1

)
I � −ε0I,

by (4.12) and the definitions of h∗, h∗X,Ω, and ε0≤ ε∗0. The propositions of the theorem now
follow from Theorem 4.9. �

5 Examples

When applying the method to examples, we choose the symmetric and positive definite matrix
C on the right-hand side of (2.3) to be the identity matrix, C = I. The steps of the method
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are described in Appendix B; here we provide two examples. Suitable values for the parameter
c and the densities of the collocation grid and the verification grid were determined by trial-
and-error.

5.1 Van der Pol System

As an example, we consider the classical Van der Pol equation with reversed time{
ẋ = −y
ẏ = x− 3(1− x2)y

(5.1)

and denote the right-hand side by f(x, y). It is well known to have an exponentially stable
equilibrium at the origin with basin of attraction bounded by an unstable periodic orbit. We
demonstrate the applicability of our method to this well known example.

The kernel given by Wendland’s function

ψ6,4(r) = (1− cr)10
+

(
2145(cr)4 + 2250(cr)3 + 1050(cr)2 + 250cr + 25

)
with c = 0.9 is used with corresponding RKHS Hσ with σ = 4+ 2+1

2 = 5.5. We used N = 1926
collocation points and a hexagonal grid [20] to cover the area inside the periodic orbit. Then,
we calculated the CPA verification over the rectangle [−2.5, 2.5] × [−5.5, 5.5] with 22002

vertices, see Figure 1.

Figure 1: The black dots show the 1926 collocation points. The blue and red area indicate the vertices where

Constraints 2 and 4 of the Verification Problem 4.6 are not satisfied, respectively. The green circle indicates

the equilibrium of the system at (0, 0), and the triangulation is over the area [−2.5, 2.5] × [−5.5, 5.5] with

22002 vertices.

This example was already used in [13] and [14] to illustrate the RBF approximation of the
contraction metric and one can compare this result with them. Here we are able to rigorously
verify the conditions of a contraction metric for the CPA interpolation, while in previous work
it has been checked for the optimal recovery at finitely many points.

To apply Theorem 2.6 to establish the existence of a unique equilibrium, that then is necessar-
ily exponentially stable, we additionally need a positively invariant set within the area where
the conditions of the contraction metric are fulfilled. To compute such an area we used an ap-
proach similar to [12] and computed a numerical solution to ∇V (x) ·f(x) = −

√
δ2 + ‖f(x)‖22,
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Figure 2: The suitable area suggested by the method for the contraction metric is in white. The blue and

red area indicate the vertices where Constraints 2 and 4 of the Verification Problem 4.6 are not satisfied,

respectively. They blend in dark-red where neither is satisfied. The green circle indicates the equilibrium of

the system. The curve inside the white area is the boundary of a positively invariant set, which is a sublevel-set

of a computed Lyapunov-like function.

x ∈ R2, using the RBF method, with f from (5.1) and δ = 10−4. Note that an approximate
solution will not have negative orbital derivative near the equilibrium, since at the equilibrium
f(x) = 0, see [8], so is not a Lyapunov function. However, if the approximation is sufficiently
good, then it will have negative orbital derivative outside a neighborhood of the equilibrium.
We thus can use CPA verification to assert that its orbital derivative is truly negative in a
large area and then use this information together with level-sets of the computed Lyapunov-
like function V to determine a positively invariant set within the area where the metric P is
a contraction metric. We used the same collocation points as above, a kernel given by the
Wendland’s function ψ5,3(cr) = (1− cr)8

+

(
32(cr)3 + 25(cr)2 + 8cr+ 1

)
, and c = 0.5. We then

used a subsequent CPA verification on a regular 500× 500 grid on [−2.5, 2.5]2.
In Figure 2, we have drawn the largest level set of the computed Lyapunov-like function V
that fulfills two conditions: it is inside of the area where P is a contraction metric and the
level set is in the area where V has negative orbital derivative. Hence, this sublevel-set is
necessarily positively invariant; for more information see [35, Section 10.XV].

5.2 Speed Control

As the second example let us consider the system ẋ = y

ẏ = −Kd y − x− gx2

(
y

Kd
+ x+ 1

)
(5.2)

with Kd = 1 and g = 6, which models the control of a speed, see [7]. The system fails to
reach the desired speed, which corresponds to the equilibrium x0 = (0, 0), for some inputs
since the basin of attraction of x0 is not the whole phase space, see [8, Section 6.1] for more
details.

The system has two asymptotically stable equilibria x0 = (0, 0) and (−0.7887, 0), and the
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saddle (−0.2113, 0).

Figure 3: The black dots show collocation points. The blue and red area indicate the vertices where

Constraints 2 and 4 of the Verification Problem 4.6 are not satisfied, respectively, and the green circles are

the equilibria of the system.

We provided two sets of collocation points for two equilibria; firstly, N = 547 points as a
hexagonal grid with

X = 0.030 · Z2 ∩ {(x, y) ∈ R2 : −0.18 ≤ y ≤ 0.85,−2.11x− 0.3 ≤ y ≤ −1.79x+ 0.54},

again with Wendland’s function ψ6,4(cr) and c = 0.9. The triangulation was created over the
area [−0.6, 0.5]× [−0.4, 1] with 14002 vertices, see Figure 3.

As in the previous example we computed a solution to ∇V (x) ·f(x) = −
√
δ2 + ‖f(x)‖22 using

the RBF method with a subsequent CPA verification. The procedure and the parameters
were the same, the only difference being that we triangulated [−0.4, 0.5]× [−0.2, 0.8] for the
CPA interpolation. The results are shown in Figure 4. The set inside the white area is a
positively invariant set and therefore contains exactly one exponentially stable equilibrium.

Figure 4: The suitable area suggested by the method for the contraction metric is in white. The blue and

red area indicate the vertices where Constraints 2 and 4 of the Verification Problem 4.6 are not satisfied,

respectively. They blend in dark-red where neither is satisfied. The green circles indicate the equilibria of the

system. The curve inside the white area is the boundary of a positively invariant set, which is a sublevel-set

of a computed Lyapunov-like function around the equilibrium at (0, 0).
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Secondly, N = 667 collocation points are used for the hexagonal grid around the (−0.7887, 0)
equilibrium, together with triangulation of the area [−1.4, 0]×[−0.4, 0.4] with 14002 vertices,
see Figure 5. The set in the white area is bounded by the level set of a Lyapunov-like
function and thus positively invariant and a subset of the basin of attraction. The Lyapunov-
like function was computed as described above, now with the triangulation for the CPA
interpolation on [−1.4,−0.2]× [−0.4, 0.4].

Figure 5: The black dots show collocation points, the blue and red area indicate the vertices where Constraints

2 and 4 of the Verification Problem 4.6 are not satisfied, respectively. The curve inside the white area indicates

the boundary of a positively invariant set (right) obtained from the Lyapunov-like function. The green circles

are the equilibria of the system.

To illustrate the advantage of a contraction metric to, e.g., a Lyapunov function, we now
consider the perturbed speed control system with the same parameters Kd = 1 and g = 6 as
before {

ẋ = y + ε
ẏ = −y − x− 6(x2 + ε)

(
y + x+ 1

)
,

(5.3)

Figure 6: Small perturbation. The black dots show collocation points, and the blue areas (small triangle in

left down corner blended with the red/orange color) indicate the vertices where Constraints 2 of the Verification

Problem 4.6 are not fulfilled. The yellow area (left) and the red area (left and right) indicate the vertices where

Constraints 4 of the Verification Problem 4.6 are not satisfied: yellow for the original system and red for the

perturbed one. Where these areas overlap, yellow and red blend to orange. A level set of a Lyapunov-like

function inside the suitable area, computed for the unperturbed system and verified for the perturbed system,

is given by an elliptic-like curve (right). The equilibria of the original and perturbed system (ε = 0.01) are

represented by green and magenta circles, respectively. Note that the results are almost identical to the

unperturbed system in Figure 5, although the equilibria are displaced.
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first with a small perturbation ε = 0.01, and then with a large perturbation ε = 0.1. The
new system has three equilibria at (−0.1359,−0.01), (−0.0780,−0.01) and (−0.776,−0.01)
for ε = 0.01 and only one equilibrium at (−0.6648,−0.1) for ε = 0.1. The numerical results
(see Figures 6, 7) show that our method is robust with respect to perturbations.

Figure 7: Large perturbation. The black dots show collocation points, and the blue areas (small triangle in

left down corner blended with the red/orange color) indicate the vertices where Constraints 2 of the Verification

Problem 4.6 are not fulfilled. The yellow area (left) and the red area (left and right) indicate the vertices where

Constraints 4 of the Verification Problem 4.6 are not satisfied: yellow for the original system and red for the

perturbed one. Where these areas overlap, yellow and red are blend to orange. A level set of a Lyapunov-like

function, computed and verified for the perturbed system, inside the suitable area is given by an elliptic-

like curve (right). The equilibria of the original and perturbed system (ε = 0.1) are represented by green

and magenta circles, respectively. Note that the contraction metric for the unperturbed system in Figure 5

is still valid for this system, although the equilibrium has moved a considerable distance. However, a new

Lyapunov-like function had to be computed for the perturbed system.

For both the small and the large perturbation we use the same contraction metric as in the
unperturbed system. We can see in left-side plots of Figures 6, 7 that the metric satisfies the
constraints in a very similar area as before for both ε = 0.01 and ε = 0.1. However, while
the same Lyapunov-like function can be used to determine a positively invariant set for the
perturbed system when ε = 0.01 (see Figure 6), we needed to calculate a new Lyapunov-like
function for ε = 0.1.

6 Conclusion

In this paper we have combined two methods to construct and verify a contraction metric for
an equilibrium. A contraction metric is a tool to show the stability of an equilibrium and to
determine a subset of its basin of attraction. The advantage is that it is robust with respect to
perturbations of the dynamical system, including perturbing the position of the equilibrium.

We have combined the RBF method, which is fast and constructs a contraction metric by
approximately solving a matrix-valued PDE with meshfree collocation, with the CPA method,
interpolating the RBF metric by a continuous function, which is affine on each simplex of
a fixed triangulation. The CPA method includes a rigorous verification that the computed
metric is in fact a contraction metric. The new combined method is as fast as the RBF
method, but also includes a rigorous verification, which was missing in the original RBF
method. We have also shown in the paper that this combined method always succeeds in
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rigorously constructing a contraction metric by making the set of collocation points and the
triangulation finer and finer.

When compared to other methods to determine the basin of attraction of an equilibrium,
e.g. Lyapunov functions, the computation of a contraction metric is computationally more
demanding as we construct a matrix-valued function, but it is robust with respect to pertur-
bations of the system. One can combine these two approaches by first computing a Lyapunov
function, which will have a strictly negative orbital derivative in some areas, but will exhibit
some areas, where the orbital derivative is non-negative. If a sub-level set of the Lyapunov
function covers this area, then we have found a positively invariant set and can then apply
the method of this paper to prove that there is a unique equilibrium in this sub-level set, and
the sub-level set is part of its basin of attraction.
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Appendices

A Norm estimates

We will recall some norm-related definitions and inequalities. For an A ∈ Rn×n define

‖A‖max := max
i,j=1,2,...,n

|aij |

‖A‖p := max
‖x‖p=1

‖Ax‖p for p = 1, 2,∞,

‖A‖F :=

 n∑
i,j=1

a2
ij

 1
2

.

The following relations are well known:

‖A‖1 = max
j=1,...,n

n∑
i=1

|Aij |, ‖A‖1 = ‖AT ‖∞,

‖A‖max ≤ ‖A‖2 ≤ n ‖A‖max, ‖A‖2 ≤
√
n‖A‖∞, (A.1)

1√
n
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1,

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 .

For a symmetric and positive definite A, the largest singular value λmax of A, which equals
‖A‖2 and is the largest of its eigenvalues, is the smallest number such that A � λmaxI.
We recall that ‖M‖L∞(K) = ess sup

x∈K
‖M(x)‖2 for any K ⊂ Rn. Further, if M is continuous

and a set K ⊂ Rn has the property, that every neighbourhood (in K) of every x ∈ K has a
strictly positive measure, then the essential supremum is identical to the supremum.

For a function W ∈ Ck(D;R), where D ⊂ Rn is a non-empty open set, and R is R,Rn,Sn×n,
or Rn×n, we define the Ck-norm as

‖W‖Ck(D;R) :=
∑
|α|≤k

sup
x∈D
‖DαW (x)‖2 (A.2)

where α ∈ Nn0 is a multi-index and |α| :=
∑n

i=1 αi. Note that when all relevant DαW can be
continuously extended to D, the Ck-norm is defined on D in a similar fashion.
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A.1 Remark Throughout the paper we use the following inequalities regarding the function
norms. Assume that g ∈ C2(D;R), where ∅ 6= D ⊂ Rn is open, and let K be a compact subset

of D. Denote the Hessian of g at x ∈ D by Hg(x) :=
(

∂2g
∂xi∂xj

(x)
)
ij

and the upper bound

BK := max
x∈K

i,j=1,...,n

∣∣∣∣ ∂2g

∂xi∂xj
(x)

∣∣∣∣
on all the second-order derivatives of g on K by BK .

The first inequality bounds BK by the C2-norm of g.

‖g‖C2(D;R) :=
∑
|α|≤2

sup
x∈D
‖Dαg(x)‖2 ≥

∑
|α|=2

sup
x∈D
‖Dαg(x)‖2

≥
n∑

i,j=1

max
x∈K

∣∣∣∣ ∂2g

∂xi∂xj
(x)

∣∣∣∣ ≥ max
i,j=1,...,n

max
x∈K

∣∣∣∣ ∂2g

∂xi∂xj
(x)

∣∣∣∣ = BK . (A.3)

The second inequality bounds the 2-norm of the Hessian of g by its C2-norm. This is a
sharper estimate than [4, Lemma 4.2].

sup
x∈D
‖Hg(x)‖2 ≤ sup

x∈D
‖Hg(x)‖F = sup

x∈D

 n∑
i,j=1

(
∂2g

∂xi∂xj
(x)

)2
 1

2

≤ sup
x∈D

n∑
i,j=1

∣∣∣∣ ∂2g

∂xi∂xj
(x)

∣∣∣∣ ≤ ∑
|α|=2

sup
x∈D
‖Dαg(x)‖2 ≤ ‖g‖C2(D;R) . (A.4)

The third inequality bounds the 2-norm of the derivative Dg(x) =

(
∂g

∂xi
(x)

)
i

by the C1-norm

of g.

sup
x∈D
‖Dg(x)‖2 = sup

x∈D

(
n∑
i=1

(
∂g

∂xi
(x)

)2
)1/2

≤ sup
x∈D

n∑
i=1

∣∣∣∣ ∂g∂xi (x)

∣∣∣∣
≤

∑
|α|=1

sup
x∈D
‖Dαg(x)‖2 ≤ ‖g‖C1(D;R) . (A.5)

Now, for a vector-valued function g ∈ C2(D;Rn) one can extend the definition of BK using
the formula

BK := max
x∈K

i,j,k=1,...,n

∣∣∣∣ ∂2gk
∂xi∂xj

(x)

∣∣∣∣
and prove inequalities analogous to (A.3) and (A.5) in a similar way,

‖g‖C2(D;Rn) ≥
n∑

i,j=1

max
x∈K

(
n∑
k=1

(
∂2gk
∂xi∂xj

(x)

)2
) 1

2

≥ BK
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and, noting that Dg(x) is a matrix,

sup
x∈D
‖Dg(x)‖2 = sup

x∈D

∥∥∥∥(∂gk∂xi
(x)

)
ik

∥∥∥∥
2

≤ sup
x∈D

 n∑
i,k=1

(
∂gk
∂xi

(x)

)2
 1

2

(A.6)

≤ sup
x∈D

n∑
i=1

(
n∑
k=1

(
∂gk
∂xi

(x)

)2
) 1

2

≤
∑
|α|=1

sup
x∈D
‖Dαg(x)‖2

≤ ‖g‖C1(D;Rn) .

Further, for g ∈ C3(D;Rn) and with

B3,K := max
x∈K

i,j,k,`=1,...,n

∣∣∣∣ ∂3g`
∂xi∂xj∂xk

(x)

∣∣∣∣ ,
we can analogously prove that

B3,K ≤
n∑

i,j,k=1

max
x∈K

(
n∑
`=1

(
∂3g`

∂xi∂xj∂k
(x)

)2
) 1

2

≤ ‖g‖C3(D;Rn) .

Finally, we show that the C2-norm of each component Wij ∈ C2(D;R) of a matrix-valued
function W ∈ C2(D;Rn×n) is bounded by the C2-norm of W . First, note that

‖W‖C2(D;Rn×n) :=
∑
|α|≤2

sup
x∈D
‖DαW (x)‖2

= sup
x∈D
‖W (x)‖2 +

n∑
k=1

sup
x∈D

∥∥∥∥∥
(
∂Wij

∂xk
(x)

)
ij

∥∥∥∥∥
2

+
n∑

k,`=1

sup
x∈D

∥∥∥∥∥
(
∂2Wij

∂xk∂x`
(x)

)
ij

∥∥∥∥∥
2

.

Now, using the 2-norm definition we obtain

‖W (x)‖2 = max
u∈Rn
‖u‖2=1

‖W (x)u‖2 = max
u∈Rn
‖u‖2=1

 n∑
i=1

 n∑
j=1

Wij(x)uj

2


1
2

≥ max
u∈Rn
‖u‖2=1

|Wi∗j∗(x)uj∗ | ≥ ‖Wi∗j∗(x)‖2 ,

where in the last line i∗, j∗ are arbitrary fixed indices in the range 1, 2, . . . , n, and similarly∥∥∥∥∥
(
∂Wij

∂xk
(x)

)
ij

∥∥∥∥∥
2

≥
∥∥∥∥∂Wi∗j∗

∂xk
(x)

∥∥∥∥
2

and

∥∥∥∥∥
(
∂2Wij

∂xk∂x`
(x)

)
ij

∥∥∥∥∥
2

≥
∥∥∥∥∂2Wi∗j∗

∂xk∂x`
(x)

∥∥∥∥
2

.

Together this yields that for any i, j = 1, 2, . . . , n we have

‖W‖C2(D;Rn×n) ≥ ‖Wij‖C2(D;R) . (A.7)
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B Description of the method

Given is a system ẋ = f(x), with f ∈ Cσ+1(Rn;Rn), where σ = dk + n+1
2 e and k ≥ 2 if n

is odd and k ≥ 3 if n is even, so that the minimum smoothness needed for the contraction
metric M and its optimal recovery S is guaranteed (by Theorems 3.6 and 4.12).

The idea is to increase the number of collocation points and vertices gradually so that we
obtain a small enough fill distance and fine enough triangulation. Theorem 4.12 ensures that
after finitely many repetitions the conditions of Verification Problem 4.6 will be satisfied. In
other words, this is a semi-decidable problem, i.e. if there exist a contraction metric, then we
can compute one in a finite number of steps. The steps of the method are as follows:

STEP 0. Fix d ≥ 2
√
n, hcollo > 0, htriang > 0, c > 0, k ≥ 2 if n is odd and k ≥ 3 if n is even, and

the Wendland function ψ0(r) := ψl,k(cr) with l = bn2 c+k+1. Denote ψq+1(r) = 1
r
dψq
dr (r)

for q = 0, 1. Further, fix a compact set C ⊂ Rn that we triangulate and where we want
to compute a contraction metric for the system. and the upper bounds B∗ and B∗3 as
in Theorem 4.12. Further, fix an open set Ω ⊃ C.

STEP I. Choose a set of pairwise distinct points X = {x1, . . . , xN} in Ω as collocation points
with fill distance hX,Ω ≤ hcollo. To obtain a solution of the optimal recovery problem
based on RBF approximation we follow these steps:

1. Compute the coefficients bk,`,i,j,µ,ν defined as

bk,`,i,j,µ,ν = ψ0(‖xk − x`‖2)

[ n∑
p=1

Dfpi(x`)Dfpµ(xk)δνj +Dfµi(x`)Dfjν(xk)

+Dfiµ(xk)Dfνj(x`) + δiµ

n∑
p=1

Dfpν(xk)Dfpj(x`)

]
+ψ1(‖xk − x`‖2)〈xk − x`, f(xk)〉 [Dfµi(x`)δνj + δiµDfνj(x`)]

+ψ1(‖xk − x`‖2)〈x` − xk, f(x`)〉 [Dfiµ(xk)δνj + δiµDfjν(xk)]

−ψ1(‖xk − x`‖2)〈f(x`), f(xk)〉δiµδjν
+ψ2(‖xk − x`‖2)〈xk − x`, f(xk)〉〈x` − xk, f(x`)〉δiµδjν . (B.1)

for 1 ≤ k, ` ≤ N , and 1 ≤ i, j, µ, ν ≤ n (see [14, Subsection 3.2] for more details).

2. Calculate the coefficients ck,`,i,j,µ,ν defined as

ck,`,i,i,µ,µ = bk,`,i,i,µ,µ

ck,`,i,i,µ,ν =
1

2
(bk,`,i,i,µ,ν + bk,`,i,i,ν,µ)

ck,`,i,j,µ,µ = bk,`,i,j,µ,µ =
1

2
(bk,`,i,j,µ,µ + bk,`,j,i,µ,µ)

ck,`,i,j,µ,ν =
1

2
(bk,`,i,j,µ,ν + bk,`,i,j,ν,µ)

=
1

4
(bk,`,i,j,µ,ν + bk,`,j,i,ν,µ + bk,`,i,j,ν,µ + bk,`,j,i,µ,ν) (B.2)

where we assume µ < ν and i < j.
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3. Determine γ
(µ,ν)
k , by solving the linear system

N∑
k=1

∑
1≤µ≤ν≤n

ck,`,i,j,µ,νγ
(µ,ν)
k = (F (S)(x`))i,j = λ

(i,j)
` (S) = −Cij (B.3)

for 1 ≤ ` ≤ N , and 1 ≤ i ≤ j ≤ n. Note that (B.3) is a system of Nn(n + 1)/2
equations in Nn(n+ 1)/2 unknowns.

4. Compute βk ∈ Sn×n from γk; recalling that

β
(j,i)
k = β

(i,j)
k =

1

2
γ

(i,j)
k if i 6= j,

β
(i,i)
k = γ

(i,i)
k .

5. We now have a formula for the optimal recovery

S(x) =
N∑
k=1

[
ψ0(‖xk − x‖2)

[
Df(xk)βk + βkDf(xk)

T
]

+ ψ1(‖xk − x‖2)〈xk − x, f(xk)〉βk
]
. (B.4)

STEP II. Fix an (h, d)-bounded triangulation T with h ≤ htriang and DT = C. Moreover, fix
constants Bν ≤ B∗ and B3,ν ≤ B∗3 satisfying (3) and (4). Compute the values S(y) at
the vertices of the triangulation y ∈ VT and check if they are positive definite. If not,
decrease hcollo by a factor, e.g. hcollo ← hcollo/2, and go back to STEP I.

STEP III. Use the formulas in Theorem 4.12 to compute the Cνs and Dνs and check whether
Constraints 4 of Verification Problem 4.6 are fulfilled; Constraints 1 are fulfilled by
STEP II. and Constraints 2 and 3 are automatically fulfilled. If not, then reduce htriang

by a factor, e.g. htriang ← htriang/8, and repeat STEP II. If the conditions still don’t
hold, decrease hcollo by a factor, e.g. hcollo ← hcollo/2, and go back to STEP I.

STEP IV. Build the metric P : C → Sn×n as the CPA interpolation of the values P (y), y ∈ VT , as
suggested in Definition 4.3. P is a contraction metric for the system on any compact
K̃ ⊂ C◦.

B.1 Remark Note that in most applications it is more practical to use a relaxed version of
the procedure above to compute a contraction metric. If the matrices P (y), y ∈ VT , in STEP
II are positive definite in a reasonably large part of C, then one can proceed to STEP III.
Further, if additionally Constraints 4 of Verification Problem 4.6 are fulfilled in a reasonably
large part of C in STEP III, then one can proceed to STEP IV. The CPA interpolation P
will then be a contraction metric on any compact subset K̃ of the interior of the area where
P is both positive definite, asserted by Constraints 1 of Verification Problem 4.6, and fulfills
Constraints 4 of Verification Problem 4.6. We use this relaxed procedure in our examples.
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