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Abstract. Contraction analysis considers the distance between two adjacent

trajectories. If this distance is contracting, then trajectories have the same

long-term behavior. The main advantage of this analysis is that it is inde-
pendent of the solutions under consideration. Using an appropriate metric,

with respect to which the distance is contracting, one can show convergence
to a unique equilibrium or, if attraction only occurs in certain directions, to a

periodic orbit.

Contraction analysis was originally considered for ordinary differential equa-
tions, but has been extended to discrete-time systems, control systems, delay

equations and many other types of systems. Moreover, similar techniques can

be applied for the estimation of the dimension of attractors and for the esti-
mation of different notions of entropy (including topological entropy).

This review attempts to link the references in both the mathematical and

the engineering literature and, furthermore, point out the recent developments
and algorithms in the computation of contraction metrics.
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1. Introduction. (Asymptotic) stability is one of the key properties of solutions to
ordinary differential equations (ODE). For solutions within the basin of attraction
of an attractor, e.g. an asymptotically stable equilibrium, small perturbations have
no influence on the long-term outcome. Hence, it is desirable to have sufficient
conditions (or certificates) for stability of real-world systems. In control theory,
one is interested in designing suitable controllers that ensure stability of a specific
solution. One of these sufficient conditions is based on Lyapunov functions, which
measure the (decreasing) generalized distance between a point and an attractor
such as an equilibrium.

A different way to study stability and attraction, which does not require any
knowledge about the position of the attractor, is to measure the evolution of the
distance between two trajectories. If this distance decreases, i.e. contracts, then the
long-term behavior of both solutions, and thus of all solutions in a certain set, is
the same. This approach is called contraction analysis.

There is a large literature on contraction analysis and related topics, and although
we have attempted to include many aspects, we will have missed some and apologize.
The main purpose of the review is to show links and connections between the
different concepts, give an overview over the literature and to present algorithms
for the computation of contraction metrics.

The review presents the different aspects of contraction analysis in Section 1,
starting with an explanation of the concepts in the simplest case and giving a
historical overview. In Section 2, extensions are considered such as contraction only
in certain directions and generalizations to other classes of systems. Finally, Section
3 gives an overview over numerical methods for the computation of contraction
metrics.

1.1. Notation. We denote by Sn the set of symmetric matrices in Rn×n and by
S+
n ⊂ Sn the subset of positive definite matrices. For matrices A,B ∈ Sn, we write
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A ≤ B if the matrix A−B is negative semidefinite and A < B if A−B is negative
definite. We write the identity matrix in any Rn×n as I and leave it to the reader
to work out the dimension from the context. Recall that a matrix A ∈ Sn can be
factorized as A = OTDO, where O ∈ Rn×n is an orthogonal matrix, i.e. OTO = I,
and D = diag(d1, . . . , dn) ∈ Rn×n is a diagonal matrix. If additionally A ∈ S+

n we
have di > 0 and Ap = OT diag(dp1, . . . , d

p
n)O for all p ∈ R.

For a differentiable function f : R × Rn → Rn, we denote by ∂f
∂x (t, x) ∈ Rn×n

the Jacobian matrix of partial derivatives with respect to the variable x ∈ Rn. The
classes K∞ and KL of comparison functions are defined as follows: α ∈ K∞ if and
only if α : R+

0 → R+
0 is continuous, strictly monotonically increasing, α(0) = 0, and

limx→∞ α(x) = ∞; β ∈ KL if β : R+
0 × R+

0 → R+
0 is continuous, β(·, y) ∈ K for all

y ∈ R+
0 and β(x, ·) is strictly monotonically decreasing with limy→∞ β(x, y) = 0 for

all x ∈ R+.
Let f : R×Rn → Rn. Then ϕ(t, t0, x0) denotes the solution x(t) of the initial value

problem ẋ = f(t, x), x(t0) = x0; for an autonomous equation, we just write ϕ(t, x0)
and assume t0 = 0. For M : Rn → R (Lyapunov function) or M : Rn → Rn×n

(contraction metric), we write Ṁ(x) for the derivative along solutions of the ODE

ẋ = f(x), i.e. its entries Ṁij(x), i = j = 1 or i, j = 1, . . . , n, are given by

Ṁij(x) =
d

dt
Mij(ϕ(t, x))

∣∣
t=0

= ∇Mij(ϕ(t, x)) · f(ϕ(t, x))
∣∣
t=0

= ∇Mij(x) · f(x).

Usually, a Lyapunov function is denoted by V (x) :=M11(x). Similarly, Ṁ(t, x) for
a time-dependent metric M : R× Rn → Rn×n has the entries

Ṁij(t, x) =
∂Mij

∂t
(t, x) +∇xMij(t, x) · f(t, x).

For a vector norm ∥ · ∥ on Rn, the induced matrix norm on Rn×n is defined through
∥A∥ := supx ̸=0 ∥Ax∥/∥x∥ = max∥x∥=1 ∥Ax∥. We write ∥x∥p for the standard vector

p-norms ∥x∥p :=

(
n∑

i=1

|xi|p
) 1

p

for 1 ≤ p < ∞ and ∥x∥∞ := max
i=1,...,n

|xi|. We will

often define a metric by an inner product ⟨v, w⟩ through ∥v∥ =
√

⟨v, v⟩ and the
induced metric dist(x, y) = ∥x− y∥.

1.2. Contraction analysis. A contraction metric is a Riemannian metric, with
respect to which the distance between two solutions of a differential equation is
decreasing.

Let us explain how to derive a condition for the contraction in the simplest case,
namely a linear system ẋ = Ax with A ∈ Rn×n. We consider two solutions ϕ(t, x)
and ϕ(t, y) with initial values x, y ∈ Rn at time 0, and denote the squared distance
between them with respect to the Euclidean metric by

d(t) = (ϕ(t, y)− ϕ(t, x))T (ϕ(t, y)− ϕ(t, x))

see Figure 1. The derivative of d(t) is given by
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Figure 1. The Euclidian distance d(t) between solutions ϕ(t, x)
and ϕ(t, y) starting at x and y at time t = 0.

d

dt
d(t) =

d

dt
(ϕ(t, y)− ϕ(t, x))T (ϕ(t, y)− ϕ(t, x))

+(ϕ(t, y)− ϕ(t, x))T
d

dt
(ϕ(t, y)− ϕ(t, x))

= (f(ϕ(t, y))− f(ϕ(t, x)))T (ϕ(t, y)− ϕ(t, x))

+(ϕ(t, y)− ϕ(t, x))T (f(ϕ(t, y))− f(ϕ(t, x)))

= (ϕ(t, y)− ϕ(t, x))T (AT +A)(ϕ(t, y)− ϕ(t, x)).

If the matrix AT + A ∈ Sn is negative definite, then d(t) is strictly decreasing (if
x ̸= y) and limt→∞ d(t) = 0. Note that if AT + A < 0, then there exists β ∈ R+

such that

AT +A ≤ −βI (1)

and we even have

d

dt
d(t) ≤ −βd(t),

showing that d(t), and thus ∥ϕ(t, y)−ϕ(t, x)∥2, converges exponentially to zero with
rates at least β, β/2, respectively. In this case, the time-t map ϕ(t, ·) for any t > 0 is
contracting and the contraction mapping theorem shows the existence of a unique
fixed point, i.e. an equilibrium of the ODE, which is globally attracting. Note that
the different aspects of this proof will be discussed in detail and more generality
later: formula (1), the matrix inequality (contraction metric), the decrease of the
distance between two solutions (incremental stability) and the convergence of all
solutions to a unique solution (convergent dynamics).

These arguments can be generalized by replacing the Euclidean metric ⟨v, w⟩ =
vTw with the constant metric ⟨v, w⟩M = vTMw, where M ∈ S+

n . In this case,

dM (t) = (ϕ(t, y)− ϕ(t, x))TM(ϕ(t, y)− ϕ(t, x))
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and the derivative is given by

d

dt
dM (t) =

d

dt
(ϕ(t, y)− ϕ(t, x))TM(ϕ(t, y)− ϕ(t, x))

+(ϕ(t, y)− ϕ(t, x))TM
d

dt
(ϕ(t, y)− ϕ(t, x))

= (ϕ(t, y)− ϕ(t, x))T (ATM +MA)(ϕ(t, y)− ϕ(t, x)).

Hence, contraction occurs if

ATM +MA < 0, (2)

and in this case there exists β ∈ R+ with

ATM +MA ≤ −βM, (3)

implying even exponential contraction.
For nonlinear equations, further generalizations are appropriate such as employ-

ing a point-dependent metric ⟨v, w⟩x = vTM(x)w, where M ∈ C1(Rn,S+
n ). The

(squared) distance d(t) can (i) be measured by the straight line between ϕ(t, x) and
ϕ(t, y) with respect to M(ϕ(t, x)): d(t) = (ϕ(t, y) − ϕ(t, x))TM(ϕ(t, x))(ϕ(t, y) −
ϕ(t, x)); in this case, a synchronization of the times of the solutions might be ap-
plied, i.e.

d(t) = (ϕ(θ(t), y)− ϕ(t, x))TM(ϕ(t, x))(ϕ(θ(t), y)− ϕ(t, x))

with a K∞ function θ. The function θ is often chosen such that the difference vector
is perpendicular to the flow, either with respect to the Euclidean metric, i.e.

(ϕ(θ(t), y)− ϕ(t, x))T f(ϕ(t, x)) = 0,

see Figure 2, or with respect to the metric M , i.e.,

(ϕ(θ(t), y)− ϕ(t, x))TM(ϕ(t, x))f(ϕ(t, x)) = 0.

This is particularly useful when contraction is only required with respect to certain
directions, such as those perpendicular to the flow and all solutions converge to a
unique periodic orbit, see Section 2.1.

Figure 2. The Euclidian distance d(t) between solutions ϕ(t, x)
and ϕ(θ(t), y). The time is synchronized with the function θ such
that the difference vector ϕ(θ(t), y)−ϕ(t, x) is perpendicular to the
flow f(ϕ(t, x)) at ϕ(t, x).
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Another choice (ii) is to consider the distance as the length of the geodesic with
respect to the metric M ; for a schematic depiction see Figure 3. In that case, one
first parameterizes the geodesic between x and y by a C1 function γ : [0, 1] → Rn

with γ(0) = x and γ(1) = y. The evolution of this curve under the flow is given by
t 7→ ϕ(t, γ([0, 1])), see Figure 3, and its length is

l(t) =

∫ 1

0

( ∂
∂s
ϕT (t, γ(s))M(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

)1/2
ds.

With

Figure 3. The geodesic γ([0, 1]) between x and y and its evolution ϕ(t, γ([0, 1]).

l(t, s) :=
( ∂
∂s
ϕT (t, γ(s))M(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

)1/2
,

the derivative is given by

d

dt
l(t) =

∫ 1

0

1

2l(t, s)

(
∂

∂s
fT (ϕ(t, γ(s)))M(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

+
∂

∂s
ϕT (t, γ(s))Ṁ(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

+
∂

∂s
ϕT (t, γ(s))M(ϕ(t, γ(s)))

∂

∂s
f(ϕ(t, γ(s)))

)
ds

=

∫ 1

0

1

2l(t, s)

(
∂

∂s
ϕT (t, γ(s))

∂fT

∂x
(ϕ(t, γ(s)))M(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

+
∂

∂s
ϕT (t, γ(s))Ṁ(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

+
∂

∂s
ϕT (t, γ(s))M(ϕ(t, γ(s)))

∂f

∂x
(ϕ(t, γ(s)))

∂

∂s
ϕ(t, γ(s))

)
ds

=

∫ 1

0

1

2l(t, s)

∂

∂s
ϕT (t, γ(s))

(
∂fT

∂x
(ϕ(t, γ(s)))M(ϕ(t, γ(s))) + Ṁ(ϕ(t, γ(s)))

+M(ϕ(t, γ(s)))
∂f

∂x
(ϕ(t, γ(s)))

)
∂

∂s
ϕ(t, γ(s)) ds.

Recall from Section 1.1 that Ṁ(x) ∈ Rn×n denotes the derivative along solutions

of the ODE, i.e. the entries of Ṁ(x) are given by Ṁij(x) = ∇Mij(x) · f(x).
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If

∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x) ≤ −βM(x) (4)

with β ∈ R+, then we can conclude that

d

dt
l(t) ≤ −β

2
l(t)

and l(t) ≤ e−
β
2 tl(0). Using that the geodesic distance dM (·, ·) satisfies

dM (ϕ(t, y), ϕ(t, x)) ≤ l(t) ≤ e−
β
2 tl(0) = e−

β
2 tdM (y, x),

we can conclude exponential contraction with contraction rate β/2.
Note that for the special class of metrics of the form M(x) = eV (x)I, condition

(4) becomes

∂fT

∂x
(x) +

∂f

∂x
(x) + V̇ (x)I ≤ −βI (5)

which adds the orbital derivative of the scalar-valued function V to (3) for A =
∂f
∂x (x) andM = I, resembling conditions for Lyapunov functions V , see also Section
2.6.

Alternatively, we can (iii) use virtual (infinitesimal) displacements δx, governed
by the first variational equation

˙δx =
∂f

∂x
(x)δx, (6)

which will be explored in the next section.

1.3. Different formulations of the contraction property. Let us introduce
the related concept of a local coordinate change

z = Θ(t, x)x,

where Θ : R×Rn → Rn×n is a smooth function and Θ(t, x) ∈ Rn×n is a nonsingular
matrix for all (t, x). For generality, we allow for time-dependent coordinate changes.
This induces a coordinate change of the displacements

δz = Θ(t, x)δx,

leading to the virtual dynamics in the new coordinates below, where x(t) and δx(t)
are the solution to ẋ = f(x) and (6), respectively,

d

dt
δz(t) =

d

dt
Θ(t, x(t))δx(t) + Θ(t, x(t))

d

dt
δx(t)

=

(
Θ̇(t, x(t)) + Θ(t, x(t))

∂f

∂x
(x(t))

)
δx(t)

=

(
Θ̇(t, x(t)) + Θ(t, x(t))

∂f

∂x
(x(t))

)
Θ−1(t, x(t))δz(t),

which can be written compactly as

δ̇z = F (t, x)δz, where (7)

F (t, x) :=

(
Θ̇(t, x) + Θ(t, x)

∂f

∂x
(x)

)
Θ−1(t, x). (8)

From
d

dt
∥δz∥22 = δ̇z

T
δz + δzT δ̇z = δzT (FT (t, x) + F (t, x))δz



8 PETER GIESL, SIGURDUR HAFSTEIN AND CHRISTOPH KAWAN

it follows that exponential contraction is characterized by

FT (t, x) + F (t, x) ≤ −βI (9)

where β ∈ R+. To see that (9) is equivalent to condition (4), note that for matrices
A,B ∈ Rn×n, B nonsingular, one can easily verify using y = B−1x that xTAx ≤ 0
for all x ∈ Rn is equivalent to yTBTABy ≤ 0 for all y ∈ Rn. Thus, we can multiply
both sides of (9) with ΘT (t, x) from the left and Θ(t, x) from the right to obtain

Θ̇T (t, x)Θ(t, x) +
∂fT

∂x
(x)ΘT (t, x)Θ(t, x) + ΘT (t, x)Θ̇(t, x) + ΘT (t, x)Θ(t, x)

∂f

∂x
(x)

≤ −βΘT (t, x)Θ(t, x),

which can be written with the time-dependent Riemannian metric

M(t, x) = ΘT (t, x)Θ(t, x),

noting that Ṁ(t, x) = Θ̇T (t, x)Θ(t, x) + ΘT (t, x)Θ̇(t, x), as

∂fT

∂x
(x)M(t, x) +M(t, x)

∂f

∂x
(x) + Ṁ(t, x) ≤ −βM(t, x). (10)

For a time-independent metric M(t, x) =M(x), this last inequality is (4).
Contractivity can also be characterized by so-called matrix measures, also called

logarithmic norms. They are defined in Lewis 1949 [124], Dahlquist 1958 [35],
Desoer & Vidyasagar 1975 [40] and Michel 2008 [138]. We follow the presentation
in Aminzare & Sontag 2014 [3] and Vidyasagar 2002 [180].

Given a vector norm on Rn with its induced matrix norm, we define the associated
matrix measure µ of a matrix A ∈ Rn×n as the directional derivative of the matrix
norm at I in direction A, i.e.

µ(A) = lim
h→0+

1

h
(∥I + hA∥ − 1).

This limit is known to always exist. For the ∥ · ∥2 vector norm, the induced matrix
measure is the maximal eigenvalue of 1

2 (A
T + A), for the ∥ · ∥1 vector norm, it

is given by maxj=1,...,n

(
ajj +

∑
i ̸=j |aij |

)
, and for the ∥ · ∥∞ vector norm, it is

maxi=1,...,n

(
aii +

∑
i ̸=j |aij |

)
.

For a differentiable x : R → Rn, we have by Taylor’s theorem that

x(t+ h) = x(t) + hẋ(t) + o(h), where lim
h→0

∥o(h)∥
h

= 0.

If x(t) is a solution to ẋ = A(t)x, we have for any norm ∥ · ∥ on Rn that

∥x(t+ h)∥ = ∥x(t) + hA(t)x(t) + o(h)∥ ≤ ∥I + hA(t)∥∥x(t)∥+ ∥o(h)∥,
which for h > 0 implies

∥x(t+ h)∥ − ∥x(t)∥
h

≤ ∥I + hA(t)∥ − 1

h
∥x(t)∥+ ∥o(h)∥

h
,

i.e.

D+∥x(t)∥ := lim sup
h→0+

∥x(t+ h)∥ − ∥x(t)∥
h

≤ µ(A(t))∥x(t)∥

where D+ denotes the upper-right Dini derivative and µ is the matrix measure with
respect to the norm ∥ · ∥. If µ(A(t)) ≤ −b, this implies ∥x(t)∥ ≤ e−bt∥x(0)∥, hence,
for the solution δz(t) to (7) we obtain

µ(F (t, x)) ≤ −b for all t, x implies ∥δz(t)∥ ≤ e−bt∥δz(0)∥, (11)
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i.e. exponential attractivity with contraction rate b.
If µ(F (t, x)) ≤ −b holds for all t ∈ R+

0 and all x in a convex set Ω, and x(t) and
y(t) are solutions of the ODE that remain in Ω, then

∥x(t)− y(t)∥ ≤ e−bt∥x(0)− y(0)∥ (12)

for all t ≥ 0. Recall that the contraction rate b is equal to β/2 in the inequalities
above. The proof considers the ODE for the difference z(t) = x(t)− y(t), namely

ż(t) = f(x(t))− f(y(t)) =

(∫ 1

0

∂f

∂x
(y(t) + θz(t)) dθ

)
z(t)

and uses that by the subadditivity of the matrix measure and the convexity of
Ω the matrix measure is bounded by −b. Concerning the long-term behavior, if
Ω is the entire set and an equilibrium exists, then it must be unique and globally
asymptotically stable. If f(t, x) is T -periodic and Ω is closed and convex, then there
is a unique periodic orbit of period T and every solution in Ω converges (orbitally)
to it.

It is also possible to bring a constant metric M directly into the contraction
condition using an appropriate norm in the definition of µ. For M ∈ S+

n , one

defines the norm ∥x∥M :=
√
xTMx = ∥M 1

2x∥2 and the induced matrix norm with
respect to the norm ∥ · ∥M is

∥A∥M = sup
∥x∥M ̸=0

∥Ax∥M
∥x∥M

= sup
∥x∥M ̸=0

∥M 1
2Ax∥2

∥M 1
2x∥2

= sup
∥y∥2 ̸=0

∥M 1
2AM− 1

2 y∥2
∥y∥2

.

It follows that the matrix measure µM (A) using the norm ∥ · ∥M is the maximal
eigenvalue −b of

1

2

(
M

1
2ATM− 1

2 +M− 1
2AM

1
2

)
=

1

2
M− 1

2

(
MAT +AM

)
M− 1

2 .

In particular, −b is the largest number such that ATM + MA ≤ −2bM by the
argumentation above and it follows that

µM (A) ≤ −b ⇔ 1

2

(
ATM +MA

)
≤ −bM,

which is (3) with b = β/2.
As a final note on different formulations of the contraction property, note that

these ideas can be generalized to non-autonomous systems, where in general the
metric will depend on space and time, as well as to infinite-dimensional systems.
Additionally, they can be extended to systems with non-differentiable right-hand
sides by defining logarithmic Lipschitz constants.

For non-autonomous systems, the notion of strictly contracting processes has
been defined in the book Kloeden & Yang 2021 [104, Definition 7.5] as follows: a
process ϕ on a complete metric space (X, dX), e.g. ϕ(t, t0, x0) is the solution of
the non-autonomous ODE ẋ = f(t, x) with initial condition x(t0) = x0, satisfies a
uniformly strictly contracting property if there exists L > 0 such that

dX(ϕ(t, t0, x0), ϕ(t, t0, y0)) ≤ e−L(t−t0)dX(x0, y0)

holds for all x0, y0 ∈ X and t, t0 ≥ 0. In [104, Theorem 7.2], it is shown that such
a process, under some additional assumptions, has a pullback attractor, which is
also forward attracting, with component sets consisting of single, entire solutions.
If f is time-periodic, then the entire solution is also periodic. The main idea of
the existence proof is to use the contraction property to show that ϕ(0, tn, xn) for
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a decreasing sequence tn with limn→∞ tn = −∞ and certain assumptions on xn, is
a Cauchy sequence, which thus converges due to the completeness of X; this idea
goes back to the stochastic case in Caraballo, Kloeden & Schmalfuß 2004 [30].

1.4. Contraction analysis vs. Lyapunov stability theory. Stability measures
the distance of solutions to an attractor, which should (exponentially) decrease,
while contraction measures the distance of solutions to each other, which should
(exponentially) decrease. While the first one requires us to know the attractor,
the second one does not. Moreover, contraction is robust under perturbations of
the system, even under perturbations of the attractor. Stability is a topological
property, independent of the metric, while contractivity is a metric property and
depends on the specific metric that is used. In particular, a system can be contract-
ing with respect to one metric, but not with respect to another. We first present
the simplest case, i.e. autonomous linear systems, and then we discuss a unified
framework for the Lyapunov theory and contraction analysis.

1.4.1. Autonomous linear systems. Let us compare both notions for a linear system
ẋ = Ax. The zero solution is asymptotically stable if and only if A is Hurwitz,
i.e. the eigenvalues of A have negative real part; in this case, it is even exponentially
stable and there exists a quadratic Lyapunov function V (x) = xTMx, where the
symmetric matrix M is the solution of the Lyapunov equation

ATM +MA = −C, (13)

for any given symmetric, positive definite matrix C. Note that if A is Hurwitz and
C ∈ S+

n , then this equation has a unique solutionM ∈ S+
n . This is a converse result,

showing that a linear system with an asymptotically stable equilibrium always has
a quadratic Lyapunov function.

We will see that such a system is not in general contracting with respect to
the Euclidean metric, but it is contracting with respect to a suitable constant Rie-
mannian metric. For contraction with respect to the Euclidean metric, we require
that AT + A is negative definite, see Section 1.2. This implies that A is Hurwitz:
to see this, let us assume in contradiction to the statement that A is not Hur-
witz, then (real case) there exist v ∈ Rn \ {0} and λ ≥ 0 with Av = λv, which
shows vT (AT + A)v = 2λvT v ≥ 0 in contradiction to AT + A being negative def-
inite. In the complex case, there exist vectors v1, v2 ∈ Rn and µ ≥ 0, ν ∈ R with
A(v1 + iv2) = (µ+ iν)(v1 + iv2) and v1 + iv2 ̸= 0. Then

vT1 (A
T +A)v1 = 2[µ∥v1∥2 − νvT1 v2]

vT2 (A
T +A)v2 = 2[µ∥v2∥2 + νvT1 v2]

and, depending on the sign of νvT1 v2, at least one of the two expressions is ≥ 0 in
contradiction to AT +A being negative definite.

But the converse implication is false, as the matrix A =

(
−1 a
0 −1

)
with a ≥ 2

shows. Indeed, the matrix is Hurwitz as the eigenvalue is −1, but with v = (1, 1)T

we have vT (A+AT )v = vT
(

−2 a
a −2

)
v = −4+2a ≥ 0. However, if we allow for

a more general metric defined by ⟨v, w⟩M = vTMw, then the system is contracting
with respect to this metric if and only if

ATM +MA < 0,
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see (2); this can again be achieved by the solution M of the Lyapunov equation
(13) and is thus equivalent to A being Hurwitz.

Summarizing, asymptotic stability for linear autonomous systems is equivalent
to the existence of a Lyapunov function and to the existence of a contraction metric,
even a point-independent metric ⟨v, w⟩M = vTMw, see also Falsaperla, Giacobbe
& Mulone 2012 [42]. We will later study the question of existence of contraction
metrics for more general systems, see Section 1.8.

1.4.2. Unified framework. We now discuss a unified framework for contraction anal-
ysis and Lyapunov stability theory. For this, it is advantageous to add to the
non-autonomous system ẋ = f(t, x) with solution x(t) = ϕ(t, t0, x0) the associated

variational equation ˙δx = ∂f
∂x (t, ϕ(t, t0, x0))δx with solution δx(t) = ψ(t, t0, x0, δx0),

i.e. to consider the augmented system

d

dt
[x, δx] =

[
f(t, x),

∂f

∂x
(t, ϕ(t, t0, x0))δx

]
.

For simplicity, let us assume that the flow defined by ẋ = f(t, x) evolves onM = Rn,
i.e. f : R× Rn → Rn; below, we will discuss ODEs on more general manifolds.

In both Lyapunov theory and contraction analysis, one studies the derivative of
a sufficiently smooth function V : R+

0 ×Rn×Rn → R along the solution trajectories
of this system:

V̇ (t, x(t), δx(t)) :=
d

dt
V (t, x(t), δx(t)) (14)

=
∂V

∂t
(t, x(t), δx(t)) +

∂V

∂x
(t, x(t), δx(t))f(t, x(t))

+
∂V

∂δx
(t, x(t), δx(t))

∂f

∂x
(t, x(t))δx(t).

By some abuse of notation, the time-dependence of x and δx is usually suppressed
and equation (14) is simply written as

V̇ (t, x, δx) =
∂V

∂t
(t, x, δx) +

∂V

∂x
(t, x, δx)f(t, x) +

∂V

∂δx
(t, x, δx)

∂f

∂x
(t, x)δx. (15)

In the classical Lyapunov theory for the asymptotic stability of, say the zero solution
x(t) ≡ 0, one considers functions V that do not depend on δx, i.e. V (t, x, δx) =
Vc(t, x), and there is no need for the augmented system. Classical results are,
e.g. that the global, uniform, asymptotic stability of the zero solution is equivalent
to the existence of a Lyapunov function Vc(t, x) fulfilling α1(∥x∥2) ≤ Vc(t, x) ≤
α2(∥x∥2) and V̇c(t, x) ≤ −α3(∥x∥2) for some α1, α2, α3 ∈ K∞ and all (t, x) ∈
R+

0 ×Rn. If αi(x) = cix
2 for constants ci > 0, then the equilibrium is even globally

uniformly exponentially stable, cf. e.g. [99, Ths. 4.10, 4.14]. If f(t, x) does not
depend on t or is periodic in t, then one may assume the same of Vc(t, x). The
general principle is to let Vc(t, x) measure the distance to some attractor A and
demand that (15) is strictly negative on N \ A for an open neighbourhood N of
A. Since t 7→ Vc(t, x(t)) is decreasing and Vc obtains its minimum on the attractor,
mild assumptions guarantee that all solutions starting in a compact sublevel set
V −1
c ((−∞, c]) ⊂ N converge to the attractor when t→ ∞.
In contraction analysis, one typically sets V (t, x, δx) := (δx)TM(t, x)δx, where

M(t, x) ∈ S+
n for all (t, x). Then (15) can be written as

V̇ (t, x, δx) = (δx)T
(
∂fT

∂x
(t, x)M(t, x) +M(t, x)

∂f

∂x
(t, x) + Ṁ(t, x)

)
δx. (16)
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In what follows, we consider again general functions V (t, x, δx), and we let αi ∈
K∞ for all i. Somewhat simplified, one can say that the classical Lyapunov stability
theory and contraction analysis both essentially boil down to the decrease condition

V̇ (t, x, δx) ≤ −α1(V (t, x, δx)) (17)

for a function V (t, x, δx) ≥ 0 and all relevant (t, x, δx). Integrating both sides
delivers for t > 0 and with c(t) := V (t, x(t), δx(t)) that

−∞ < −c(0) ≤ c(t)− c(0) ≤ −
∫ t

0

α1(c(s))ds ≤ −t α1(c(t)).

Since c(t) ≥ 0 is monotonically decreasing by (17), limt→∞ c(t) = c ≥ 0 and c > 0
contradicts −c(0) ≤ −tα1(c(t)) ≤ −tα1(c) for all t ≥ 0, we can conclude that
V (t, x(t), δx(t)) → 0 as t→ ∞.

In the classical Lyapunov theory, one usually demands additionally to (17) that

α2(∥x∥) ≤ V (t, x, δx) ≤ α3(∥x∥), (18)

and then V (t, x(t), δx(t)) → 0 implies x(t) → 0 as t→ ∞; in general, one considers
functions V that do not depend on δx. In contraction analysis, one usually demands
additionally to (17) that

α4(∥δx∥) ≤ V (t, x, δx) ≤ α5(∥δx∥), (19)

and then V (t, x(t), δx(t)) → 0 implies δx(t) → 0 as t→ ∞. Different choices of the
functions αi ∈ K∞ and other variations in the conditions deliver different types of
stability.

For simplicity of the exposition, we have considered flows on the manifold M =
Rn. In the classical Lyapunov theory one can also discuss flows on more general
metric spaces M. In contraction analysis, one can consider flows of ẋ = f(t, x) on
more general manifolds M than Rn, using f : R×M → TM with TM = {(x, vx) |
x ∈ M, vx ∈ TxM} as the tangent bundle. One just needs some adequate notion
of distance on the tangent spaces TxM. Most commonly, one assumes that M is a
Riemannian manifold with (time-independent) metric ⟨v, w⟩x = vTM(x)w (in local
coordinates), where v, w ∈ TxM and M(x) ∈ S+

n ; note that the tangent space is
isomorphic to Rn. In practice, one often considers M : M → S+

n as a variable of
the problem and tries to determine it such that V (x, δx) = ⟨δx, δx⟩x fulfills (17)
and (19); e.g.

∂fT

∂x
(t, x)M(x) +M(x)

∂f

∂x
(t, x) + Ṁ(x) ≤ −βM(x) for β ∈ R+.

Even more generally, one can consider Finsler metrics on the manifold M as studied
by Forni & Sepulchre 2014 [46]. A Finsler metric is given by a Finsler function on
the tangent bundle TM, which equips each TxM with a (possibly asymmetric)
Minkowskii norm instead of a scalar product as in the case of a Riemannian metric.
In this case, one must use the general formula (15) in the decrease condition (17).

Note that although contraction analysis is a more powerful tool than Lyapunov
functions for the analysis of one attractor, Lyapunov functions are also very use-
ful. In particular, the theory of Lyapunov functions for autonomous systems can
be generalized to complete Lyapunov functions that are defined on the whole state
space, see Auslander 1964 [12] and Conley 1978 [33]. They are decreasing along all
solution trajectories where possible, i.e. on the complement of the chain-recurrent
set, and their existence has been established for general dynamical systems on sep-
arable metric spaces Hurley 1998 [89]; see also Hurley 1991–95 [86, 87, 88], Akin



REVIEW ON CONTRACTION ANALYSIS 13

2010 [2], and Patrão 2011 [147]. For flows on domains in Rn (and easily extendable
to manifolds), even the existence of a C∞ complete Lyapunov function has been
established, see Bernhard & Suhr 2018 [15] and Hafstein & Suhr 2021 [80].

1.5. Contraction analysis, incremental stability, and convergent systems.
There are three different notions which seek to compare the evolution of two tra-
jectories: contraction analysis, incremental stability, and convergent systems.

Summarizing, contraction analysis seeks to formulate local, differential conditions
for the contraction of two (adjacent) trajectories in a suitable metric, incremental
stability requires the distance between any two solutions to decrease to zero as time
goes to infinity, and convergent dynamics study the decrease of the distance to one
specific solution x̄(t) as time goes to infinity.

Thus, contraction analysis deals with a local criterion, incremental stability is
interested in the evolution (contraction) of the distance between two solutions and
convergent dynamics in convergence to one solution, so the limiting behavior. Often,
in particular in autonomous systems and under additional conditions, contraction
analysis is used to find conditions that imply incremental stability and then to show
convergent dynamics, as exemplified for linear systems in Section 1.2. However, in
general non-autonomous systems, these three concepts of stability are independent
and additional assumptions are needed for one to imply another. Rüffer, van de
Wouw & Mueller 2013 [160] study the relation of convergent systems and incremen-
tal stability, while Fromion & Scorletti 2005 [50] compare incremental stability with
contraction analysis. We will later see different conditions, depending on the type of
incremental stability and limiting behavior (e.g. equilibrium or periodic solution).

Tran, Rüffer & Kellett 2019 [177] consider the three notions incremental stability,
convergent dynamics and contraction analysis for discrete and time-varying systems.
They compare the relations between the three properties and characterize them
using Lyapunov functions.

Let us compare convergent systems and incremental stability (see [160]). A non-
autonomous system is uniformly convergent in a positively invariant set X ⊂ Rn

(see Pliss 1966 [153], who introduced (globally) convergent systems for time-periodic
systems) if

1. all solutions ϕ(t, t0, x0) exist for all t ∈ [t0,∞) for all initial conditions (t0, x0) ∈
R×X ,

2. there exists a unique solution x̄(t) in X , which is defined and bounded for
t ∈ R,

3. the solution x̄(t) is uniformly asymptotically stable, i.e. there exists a function
β ∈ KL such that for all (t0, x0) ∈ R×X and t ≥ t0 we have

∥ϕ(t, t0, x0)− x̄(t)∥ ≤ β(∥x0 − x̄(t0)∥, t− t0).

The system is incrementally asymptotically stable (IAS) in a positively invariant
set X ⊂ Rn if there exists a function β ∈ KL such that for all ξ1, ξ2 ∈ X and t ≥ t0
we have

∥ϕ(t, t0, ξ1)− ϕ(t, t0, ξ2)∥ ≤ β(∥ξ1 − ξ2∥, t− t0).

The system is globally incrementally stable if X = Rn. The system could have
additional inputs (controls or disturbances from a closed set), see Angeli 2002 [6].

It is shown in [160] that both notions are different in general: neither implies the
other one. An example for a system that is uniformly convergent, but not globally
IAS is a 2-dimensional system with solutions spiraling to a bounded solution, but
at different angular velocities. An example for a system that is globally IAS, but
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not uniformly convergent is given by ẋ = t−x, since there does not exist a bounded
solution. Note, however, that a reparameterization by subtracting a the limiting,
unbounded solution x̃(t) = t − 1 leads to a uniformly convergent system, i.e. z =
x − x̃(t) satisfies ż = −z. On the other hand, it is shown that both notions are
equivalent if X is compact.

Lastly, a characterization of globally uniformly convergent systems using Lya-
punov functions is given in [160, Th. 7], where the Lyapunov function V ∈ C1(R×
Rn,R+

0 ) satisfies

α1(∥x− x̄(t)∥) ≤ V (t, x) ≤ α2(∥x− x̄(t)∥)
and

V̇ (t, x) ≤ −α3(∥x− x̄(t)∥)
with α1, α2, α3 ∈ K∞ as well as

V (t, 0) ≤ c

for all t ∈ R and some constant c > 0, which is equivalent to the boundedness of
the solution x̄(t).

1.6. Historical overview of contraction analysis (equilibrium and time-
periodic systems). In this section, we discuss the earliest contributions to con-
traction analysis and partially follow the original notations. One of the earliest ref-
erences is Trefftz 1926 [178] who considers a second-order time-periodic ODE and
defines stable solutions by the property that adjacent solutions (and their deriva-
tives) converge to the stable solution (and its derivative) as time goes to infinity.
It is shown that every stable solution converges to a periodic solution. Lewis 1949
[124] uses geodesic distance in a Finsler space. Lewis 1951 [125] considers a time-
independent metric and shows that if the Finsler metric Mf (x, ẋ) for a system
ẋ = f(t, x) satisfies

∂Mf

∂x
f +

∂Mf

∂ẋ

∂f

∂x
ẋ ≤ −β < 0

in a region R of the state space, then any two solutions must approach each other
asymptotically. For a time-periodic system ẋ = f(t, x), this implies that there exists
a unique periodic solution to which all trajectories converge asymptotically, see also
[91].

Reissig 1955 [159] considers a second-order time-periodic ODE and defines the
notion of extreme stability for the system, if the difference between any two solu-
tions converges to zero as time goes to infinity. He shows that extreme stability is
equivalent to the existence of a periodic solution to which all solutions converge.

LaSalle 1957 [111] defines an equivalence relation: two solutions are equivalent if
the difference between them vanishes as time goes to infinity, leading to a partition
of the phase space into equivalence classes of contracting sets.

Seifert 1958 [166] considered a time-periodic ODE ẋ = f(t, x) with x ∈ R2 and
a compact, simply connected region R ⊂ R2. R is assumed to have a certain type
of positive invariance property. Seifert derives conditions on the boundary of R,
such that the evolution of its length with respect to an appropriately chosen metric
converges to 0 and thus proves the existence, uniqueness and asymptotic stability
of a periodic solution.

Opial 1960 [144] considers a two-dimensional, non-autonomous ODE and a simply
connected compact set K ⊂ R2, such that ϕ(t, t0, x) ∈ K for all t0 ∈ R, t ≥ t0,
and x ∈ K. Then asymptotic stability of one solution is equivalent to incremental
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asymptotic stability of all solutions in the set, which he calls asymptotic stability
of the system. He measures the distance between two trajectories by the length of
an appropriate curve between them. If the time derivative of the quadratic form
vTM(x)v, where M(x) ∈ S+

n , satisfies an inequality for all x ∈ K, which in our
notation is

vT
(
∂fT

∂x
M +M

∂f

∂x
+ Ṁ

)
v ≤ −β∥v∥2 (20)

with β ∈ R+, then the system is asymptotically stable, see [144, Th. 2]. Opial
uses these results to compare the behavior of trajectories of different systems, using
auxiliary systems (which is later called synchronization).

Hartman 1961 [82] considers a time-independent metric M(x) = ΘT (x)Θ(x) for
the non-autonomous ODE ẋ = f(t, x). He assumes

ΘT ∂Θ

∂x
f +M

∂f

∂x
< 0;

note that in his notation A < 0 for a possibly non-symmetric matrix means 1
2 (A

T +
A) < 0 in our notation, i.e. the symmetric part(

ΘT ∂Θ

∂x
f +M

∂f

∂x

)T

+ΘT ∂Θ

∂x
f +M

∂f

∂x
=

∂fT

∂x
M +M

∂f

∂x
+ Ṁ,

is negative definite. The conclusion is that the distance with respect to M between
any pair of solutions is decreasing. This condition asserts that if the system is
autonomous and has an equilibrium (which can be shown by a stronger contraction
condition), then it is globally asymptotically stable, see [82, Lem. 1].

Hartman 1964 [83] introduces a criterion for global asymptotic stability of an
equilibrium, which is assumed to exist, based on

fT (x)
∂f

∂x
(x)f(x) ≤ 0 (21)

and another one based on

vT
∂f

∂x
(x)v ≤ 0 for all v ∈ Rn with vT f(x) = 0. (22)

He generalizes the Euclidean metric in (21) to the case of a constant metric [83,
Ch. XIV.10 and 11] and then further to a point-dependent Riemannian metric and
shows implications of the existence of such a contraction metric in [83, Ch. XIV.12
and 13]. Further, the criterion (22) is extended to general contraction metrics in
[83, Ch. XIV.14 to 16], showing contraction between trajectories and deducing a
globally stable equilibrium – note that the criterion is also related to the existence
of limit cycles if there are no equilibria, see Section 2.1.

Krasovskĭi considers a non-autonomous ODE with solution x(t) ≡ 0 and a con-
stant metric M . He derives a criterion that shows global asymptotic stability of an
equilibrium, see Krasovskĭi 1963 [107, Th. 21.1], based on Krasovskĭi 1954 [105] and

Krasovskĭi 1957 [106]. This theorem is also discussed in Hahn 1967 [81, Th. 55.5]
in the autonomous case; the proof uses the Lyapunov function v(x) = xTMx.

Demidovič 1961 [37] considers a non-autonomous ODE and uses a constant (time-
and space-independent) contraction metric to show that all solutions are exponen-
tially stable. He also shows that the system then is dissipative, i.e. every solution
starting at x is in a fixed region of the state space after some time T (x).
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Demidovič 1967 [38] defined and studied convergent systems for general non-
autonomous ODEs. He showed that if

J(t, x) =
1

2

(
∂fT

∂x
(t, x)M +M

∂f

∂x
(t, x)

)
(23)

is negative definite uniformly in (t, x) ∈ R× Rn, where M ∈ S+
n , then the distance

between any two solutions decreases exponentially. If |f(t, x)| ≤ c < ∞ then, in
particular, no finite escape times exist and all solutions are globally uniformly expo-
nentially stable. The proof considers the function 1

2 (x1(t)−x2(t))
TM(x1(t)−x2(t))

along two solutions, and estimates the derivative using the mean value theorem.
If f(t, 0) = 0, then this is Krasovskĭi’s stability theorem, see Krasovskĭi’s 1963
[107]. This result can be applied in case that the Jacobian of f is in the convex
hull of matrices A1, . . . , Ak and there is a solution of the linear matrix inequalities
AT

i M +MAi < 0.
Datko 1966 [36] assumes the existence of an asymptotically stable equilibrium

and a constant contraction metric M ∈ S+
n such that

∂fT

∂x
(x)M +M

∂f

∂x
(x) ≤ 0.

Lohmiller & Slotine 1998 [128] is one of the key references from the 1990s in
contraction analysis, which has been cited by many authors. They consider the
non-autonomous differential equation

ẋ = f(t, x) (24)

where x ∈ Rn.
The main idea is to study the time evolution of the distance between two adjacent

solutions of (24). This can either be done by two solutions, starting a small distance
apart, or by infinitesimal displacements, using the virtual displacement δx. The
dynamics for these virtual displacements are governed by

˙δx =
∂f

∂x
(t, x)δx. (25)

It is shown that if ∂f
∂x (t, x) is uniformly negative definite, i.e.,

∃b > 0 ∀x ∈ Rn ∀t ≥ 0:
1

2

(
∂f

∂x
(t, x) +

∂fT

∂x
(t, x)

)
≤ −bI,

then any (second) trajectory which starts in a ball of constant radius centered about
a given (first) trajectory, and contained in the region where the above condition
holds (the contraction region), remains in that ball and converges exponentially to

the first trajectory. This result is a strengthened version of Krasovskĭi’s theorem on
global asymptotic convergence, see Krasovskĭi 1963 [107]. While these results rely
on the use of the Euclidean metric, another ingredient is a coordinate change or a
different Riemannian metric, see Section 1.3 or (7).

A region in the state space is called contraction region if, see (8) for the formula
for F ,

F (t, x) ≤ −bI or equivalently (26)

∂fT

∂x
(t, x)M(t, x) +M(t, x)

∂f

∂x
(t, x) + Ṁ(t, x) ≤ −2bM(t, x). (27)
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Note that the notation (26) means that the symmetric part of F (t, x)+bI is negative
semidefinite; for the equivalence, see (10).

Any first trajectory which remains in the contraction region for all positive times,
and any second trajectory which starts in a ball of constant radius with respect to
the metric M(t, x) remains in that ball and converges exponentially to the first
trajectory. Semi-contraction is defined by F (t, x) ≤ 0 or equivalently the left-hand
side of (27) being negative semi-definite.

Some consequences include that (i) a convex contraction region contains at most
one equilibrium, (ii) in an autonomous, globally contracting system all trajecto-
ries converge exponentially to a unique equilibrium, (iii) a time-periodic, globally
contracting system tends exponentially to a periodic solution.

The paper also introduces semi-contraction differently by assuming that F is
uniformly negative definite, butM is only positive semi-definite with some principal
directions corresponding to uniformly positive eigenvalues of M . This results in
exponential convergence to zero of the components of δx on the subspace spanned
by the principal directions mentioned above.

Aminzare & Sontag 2014 [3] consider a metric that is independent of both t and
x, defined by a positive definite (constant) matrix, and also generalize the conditions
to infinite-dimensional systems given by reaction-diffusion systems.

Margaliot, Sontag & Tuller 2016 [133] relax the classical contraction condition
by considering contraction after a small transition time.

Botner, Zarai, Margaliot & Grüne 2017 [22] compare the solutions of two systems
ẋ = f(t, x) and ẏ = g(t, y) and assume that the first one is contracting. They derive
bounds on the difference between solutions d(t) = x(t)−y(t). This is applied to the
case when the y-system has “simple” solutions, e.g. if they are known explicitly, or
when ∥f − g∥ admits a simple bound as this term appears in the estimate.

1.7. Reviews and tutorials. The review Jouffroy 2005 [91] puts the definition
from Lohmiller & Slotine 1998 [128] into historical context and cites earlier dis-
cussions of contraction criteria, including some of the ones mentioned above. The
review “Convergent Dynamics” Pavlov et al. 2004 [148] introduces the contribu-
tions of Demidovič and puts them into perspective with other results, the authors
also include the main ideas and some proofs. Sontag 2010 [172] contains an intro-
duction to contraction analysis and proves some basic results. Simpson-Porco &
Bullo 2014 [168] present contraction analysis on Riemannian manifolds, rigorously
using intrinsic geometric concepts.

There are several books about contraction metrics such as Lohmiller & Slotine
2000 [129], an overview and open questions Aminzare & Sontag 2014 [3], and a
tutorial on incremental stability and contraction Jouffroy & Fossen 2010 [92]. The
latter includes a discussion of the conditions

(i) ∂fT

∂x M +M ∂f
∂x + Ṁ ≤ −βI

(ii) ∂fT

∂x M +M ∂f
∂x + Ṁ ≤ −βM

As M(t, x) may become unbounded for t→ ∞, the condition (ii) guarantees expo-
nential convergence, while the condition (i) does not.

Partial contraction analysis, see Slotine & Wang 2005 [170] or the review Jouffroy
& Fossen 2010 [92], constructs an auxiliary (virtual) system, which is contracting
with respect to an additional, auxiliary variable. If a particular solution of this
auxiliary system satisfies a specific property, then all trajectories of the original
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system satisfy this property exponentially, and the original system is called partially
contracting, see also [169, 182].

1.8. Converse theorems for equilibria. The existence of a contraction metric
implies (under certain conditions) that solutions converge exponentially to a unique
equilibrium. Here we deal with the converse, i.e. whether, given an exponentially
stable equilibrium, a contraction metric exists. We have already discussed this in
the case of autonomous linear systems in Section 1.4.1.

Lohmiller & Slotine 1998 [128] assume that a non-autonomous system is expo-
nentially convergent with rate β/2. They then define a metric M(t, x(t)) for each
trajectory as the solution of

Ṁ = −βM −M
∂f

∂x
− ∂fT

∂x
M (28)

M(0, x(0)) = kI (29)

and show that M is uniformly positive definite with M ≥ I. However, this metric
M depends on time and may become unbounded as t→ ∞.

Giesl 2005 [58] considers an autonomous equation ẋ = f(x) with an exponentially
stable equilibrium and proves the existence of three contraction metrics: the first
is defined on a compact subset of the basin of attraction, and satisfies a certain
inequality (Theorem 4.1); the second is defined on the whole basin of attraction,
recovers the exponential attraction rate arbitrarily well, but is only continuous and
orbitally continuously differentiable (Theorem 4.2); the third is defined on the whole
basin of attraction, is as smooth as f and satisfies a matrix-valued PDE (Theorem
4.4), which is useful for constructive methods, see Section 3.1.

2. Extensions of contraction analysis. In this section, we present different ex-
tensions of contraction analysis. We start with contraction analysis for periodic
orbits, which only requires contraction in directions transversal to the flow. Then
we consider generalizations of contraction analysis to different classes of systems.
Note however, that there are numerous applications of contraction analysis to other
types of systems studied in the literature and we only highlight a selection in this
review. We will also discuss some additional types, for which numerical methods
have been developed, in Section 3; in particular, we will present switched systems,
differential-algebraic systems, and reaction-diffusion equations together with related
compartmental ODEs.

2.1. Contraction analysis for periodic orbits. If a system has an asymptoti-
cally stable periodic orbit, rather than an asymptotically stable equilibrium, then
contraction in direction of the flow f(x) cannot occur. Hence, the contraction con-
dition

∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x) ≤ −βM(x),

which is equivalent to

vT
(
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x)

)
v ≤ −βvTM(x)v (30)

for all v ∈ Rn is relaxed to (30) for all v ∈ Rn with vTM(x)f(x) = 0. This
restricts the contraction condition of adjacent solutions to difference vectors v that
are perpendicular to the flow at x with respect to the metric M . One can, similarly
to Section 1.2, show that the distance between adjacent trajectories ϕ(t, x) and
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ϕ(t, y) decreases exponentially, however, y − x needs to be perpendicular to f(x)
in the metric M and the time needs to be synchronized such that the difference
vector is perpendicular at each time t. The stability with time synchronization of
trajectories is called Zhukovski stability and is equivalent to orbital stability, see
Leonov, Ponomarenko & Smirnova 1995 [123] and Leonov 2006 [118].

One can also synchronize the times such that the difference vector v is perpen-
dicular to f(x) with respect to the Euclidean metric – this has advantages when
constructing the metric M . Then the condition becomes

vT
(
V T (x)M(x) +M(x)V (x) + Ṁ(x)

)
v

≤ −βvTM(x)v for all vT f(x) = 0 (31)

where V (x) :=
∂f

∂x
(x)−

f(x)fT (x)(∂f
T

∂x (x) + ∂f
∂x (x))

∥f(x)∥2
. (32)

Figure 4. Solutions starting at x and x+ εv, where v is perpen-
dicular to the flow f(x) at x. The time of the solution starting at
x + εv is then synchronized through θ(t) such that the difference
vector ϕ(θ(t), x+εv)−ϕ(t, x) is perpendicular to the flow f(ϕ(t, x))
at ϕ(t, x) for all times t.

Let us give a detailed explanation of this condition: consider two adjacent so-
lutions at ϕ(t, x) and ϕ(t, x + εv) for small ε > 0, where vT f(x) = 0, so v is
perpendicular to f(x). To measure the distance, we synchronize the time, i.e. we
consider the two solution trajectories ϕ(t, x) and ϕ(θ(t), x+ εv), such that the dif-
ference vector ϕ(θ(t), x + εv) − ϕ(t, x) is perpendicular to f(ϕ(t, x)) with respect
to the Euclidean metric; for a schematic depiction see Figure 4. In particular, we
define θ(t) such that θ(0) = 0 and

(ϕ(θ(t), x+ εv)− ϕ(t, x))
T
f(ϕ(t, x)) = 0 for all t ≥ 0. (33)

This is possible due to the implicit function theorem if ε > 0 is sufficiently small
and, in the first instance, also t ≥ 0 is sufficiently small; it will follow for all t ≥ 0
from the contraction condition.
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The implicit function theorem shows that

θ̇(0) =
∥f(x)∥2 − εvT ∂f

∂x (x)f(x)

f(x+ εv)T f(x)
≈ 1− ε

vT (∂f
T

∂x (x) + ∂f
∂x (x))f(x)

∥f(x)∥2 + εvT ∂fT

∂x (x)f(x)
(34)

for small ε > 0.
Now we consider the squared distance between the trajectories with respect to

the Riemannian metric

d(t) = (ϕ(θ(t), x+ εv)− ϕ(t, x))
T
M(ϕ(t, x)) (ϕ(θ(t), x+ εv)− ϕ(t, x)) (35)

and take the derivative. We obtain for small ε > 0, using Taylor expansion and
keeping terms only up to order ε2

d

dt
d(t)

∣∣∣∣
t=0

=
(
θ̇(0)f(x+ εv)− f(x)

)T
M(x)εv + ε2vT Ṁ(x)v

+εvTM(x)
(
θ̇(0)f(x+ εv)− f(x)

)
≈ ε(θ̇(0)− 1)[fT (x)M(x)v + vTM(x)f(x)]

+ε2θ̇(0)

[(
∂f

∂x
(x)v

)T

M(x)v + vTM(x)
∂f

∂x
(x)v

]
+ ε2vT Ṁ(x)v

≈ ε2
[
−
vT (∂f

T

∂x (x) + ∂f
∂x (x))f(x)

∥f(x)∥2
[f(x)TM(x)v + vTM(x)f(x)]

+

(
∂f

∂x
(x)v

)T

M(x)v + vTM(x)
∂f

∂x
(x)v + vT Ṁ(x)v

]
by (34)

= ε2vT
[
V T (x)M(x) +M(x)V (x) + Ṁ(x)

]
v

≤ −βd(t),
by (31), which shows exponential convergence to zero.

Finally, note that conditions such as

vT
(
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x)

)
v ≤ 0 for all vT f(x) = 0 (36)

can also be expressed, under certain conditions, by a matrix inequality of the form

∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x)− cf(x)fT (x) ≤ 0 (37)

for sufficiently large c > 0. The idea is that (37) implies (36), since vT f(x)fT (x)v =
0, while (36) implies (37) for sufficiently large c > 0.

2.2. Historical overview of contraction analysis (periodic orbit). Borg 1960
[21] considers an autonomous ODE and studies a contraction condition transversal
to the flow, using the Euclidean metric, e.g.

vT
(
∂fT

∂x
(x) +

∂f

∂x
(x)

)
v ≤ −β∥v∥2 for all v ∈ Rn with vT f(x) = 0. (38)

He shows that if this condition is satisfied in a positively invariant set which contains
no equilibrium, then all solutions starting in this set converge to a unique periodic
orbit in this set. He uses a synchronization of the time of two adjacent trajectories
such that their difference is perpendicular to the flow through the implicit function
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theorem in order to use (38). In an earlier version, Borg 1953 [20] formulates

the condition in terms of limρ→0
vT (f(x+ρv)−f(x))

ρ < 0 for all v ∈ Rn \ {0} with

vT f(x) = 0 with the implication that all solutions converge to an equilibrium or a
periodic orbit. Borg’s criterion was applied in Sherman 1963 [167] to a 3-dimensional
autonomous ODE arising from a nuclear spin generator.

Stenstroem 1962 [173] generalizes these results to equations on a Riemannian
manifold. He drops the assumption that the set does not contain an equilibrium
and shows that then either solutions converge to an equilibrium or to a periodic
orbit.

Hartman & Olech 1962 [84] consider this condition, using a point-dependent met-
ric on a Riemannian manifold and, moreover, derive a sufficient condition based on
the sum of the two largest eigenvalues. This idea can be generalized to using met-
rics for estimating the dimension of attractors, see Section 2.6. They also consider
non-autonomous equations.

Leonov 1987 [114] generalizes these results to point-dependent metricsM(x) and
replaces the synchronization condition vT f(x) = 0 by the more general condition
vT q(x) = 0, where q(x) = f(x) is a special case.

The Markus-Yamabe conjecture is that an equilibrium at 0 of an autonomous
ODE is globally stable if all eigenvalues of ∂f

∂x (x) have a negative real part for all
x ∈ Rn; this goes back to Aizerman 1949 [11]. The conjecture has later been shown
to be true for dimensions n ≤ 2, and false for dimensions n ≥ 3. Markus & Yamabe
1960 [135] have derived a criterion based on the negativity of the eigenvalues of

the symmetric Jacobian ∂fT

∂x (x) + ∂f
∂x (x), which is based on a more general result

about contraction metrics on Riemannian manifolds. Hartman 1961 [82] generalizes
this result to Riemannian manifolds and Furi, Martelli & O’Neill 2009 [51] further
generalize the result by assuming less smoothness on f .

Cronin 1980 [34] presents a contraction criterion requiring that ∂f
∂x (x) has n −

1 eigenvalues with negative real parts, and the eigenvector corresponding to the
remaining eigenvalue is not perpendicular to f(x).

The criterion

V T (x)M(x) +M(x)V (x) + Ṁ(x) ≤ −2νI (39)

with V given by (32) was introduced by Biochenko & Leonov 1988 [18].
In Leonov 1990 [115], a point-dependent contraction metric with contraction in

directions v with vT q(x) = 0, where qT (x)f(x) ̸= 0, is considered; this generalizes
the choice q(x) = f(x). Then trajectories approach each other as t → ∞ and all
converge to an equilibrium, if one exists.

Leonov 2006 [118] has defined a moving Poincaré section to synchronize the time
of trajectories. The paper links the definitions of Poincaré (or orbital stability)
with Zhukovski stability, see also [117, 122], i.e. stability of solutions after repa-
rameterization of time. Here, the synchronization is such that the difference vector
is perpendicular to f with respect to the Euclidean metric. He considers Zhukovski
stability of a general solution; in the case of a periodic solution, these results are
the Andronov-Vitt theorem. The reparameterization or synchronization of the time
of adjacent trajectories is used to show that the existence of a contraction metric
implies the existence a unique, exponentially stable periodic orbit to which all tra-
jectories converge, see also Kravchuk, Leonov & Ponomarenko 1992 [108], Yang
2001 [185] or Manchester & Slotine 2014 [130].
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2.3. Converse theorems for periodic orbits. Contraction metrics, where con-
traction only occurs in an (n − 1)-dimensional hyperplane, which is transversal to
the flow f , imply (under certain conditions) that solutions exponentially converge
to a unique periodic orbit. The converse question, namely the existence of such
a contraction metric on the basin of attraction of a given exponentially stable pe-
riodic orbit, has been considered by several authors. A key ingredient, as for the
sufficiency, is the synchronization of the time of adjacent trajectories.

Converse theorems to prove the existence of a Riemannian contraction metric
for a periodic orbit go back to Boichenko & Leonov 1988 [18, Th. 1], constructing
a metric M(t) depending on time. A local version is presented in Hauser & Chung
1994 [85], proving a converse theorem to construct a quadratic Lyapunov function
for an exponentially stable periodic orbit. They use a local coordinate system
around the periodic orbit, separating the tangential and transverse dynamics, and
thus construct a local Lyapunov function – valid in a (possibly small) neighborhood
of the periodic orbit.

A global converse theorem on a compact set is shown in Manchester & Slotine
2014 [130], where also the robustness to parameters is discussed, using the construc-
tion in Leonov 2006 [118].

In Giesl 2019 [60], the existence of a contraction metric in the entire basin of
attraction is shown which recovers the rate of contraction arbitrarily well; here, the
synchronization is such that the difference vector between two adjacent solutions is
perpendicular to f with respect to the Riemannian metric.

Giesl 2021 [61] uses the synchronization with respect to the Euclidean metric
as in [130], and shows the existence of a contraction metric in the entire basin of
attraction A(Ω) of the periodic orbit Ω of the ODE ẋ = f(x) with f ∈ Cs(Rn,Rn).
The contraction metric M ∈ Cs−1(A(Ω),S+

n ) is the unique solution of the linear
PDE (40) with any fixed right-hand side B ∈ Cs−1(A(Ω),S+

n ), and (41) with any
point x0 ∈ A(Ω) and c0 ∈ R+:

V (x)TM(x) +M(x)V (x) + Ṁ(x) = −PxB(x)Px and (40)

fT (x0)M(x0)f(x0) = c0∥f(x0)∥4, where (41)

Px = I − f(x)fT (x)

∥f(x)∥2
(42)

and V is defined as in (32). This can be used to approximateM by solving the PDE
numerically. Note that (40) ensures that the left-hand side is negative definite in
directions perpendicular to f , as Px, see (42), projects onto the (n−1)-dimensional
hyperplane perpendicular to f . Fixing M in f -direction at one point x0 in (41) is
sufficient together with (40) to ensure that M is positive definite in A(Ω).

In the following sections, we present some extensions and aspects of contraction
metrics that have been studied in the literature. We apologize in advance for the
contributions we missed or could not include because of space constraints.

2.4. Uncertain/stochastic systems. In Pham, Tabareau & Slotine 2009 [152],
the incremental stability of Itô stochastic dynamical systems is studied; in particular
stochastic differential equations (SDEs) of the form

dX(t) = f(t,X(t))dt+G(t,X(t))dW (t), (43)
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where f : R+
0 × Rn → Rn, G : R+

0 × Rn×Q → Rn and W : R+
0 → RQ is a Q-

dimensional Wiener process. It is assumed that f(t, ·) and G(t, ·) are globally Lip-
schitz uniformly in t ≥ 0 and then strong solutions

X(t) = X0 +

∫ t

t0

f(τ,X(τ))dτ +

∫ t

t0

G(τ,X(τ))dW (τ),

that are unique and continuous (a.s.) exist. Here X(t0) = X0 in Rn is the initial
distribution and the underlying probability space and the filtration satisfy the usual
conditions, cf. e.g. [100, §21] or [132, §2.3]. The second integral is interpreted in the
Itô sense; note that this also includes the Stratonovich interpretation of the SDE
with modified drift coefficient.

Various stability properties of the zero solution of (43) with f(t, 0) = 0 and
G(t, 0) = 0 for all t ≥ 0 have been studied using Lyapunov functions in the lit-
erature, both theoretically [100, 132, 76] and numerically [78, 17, 29]. Caraballo,
Kloeden & Schmalfuß 2004 [30] proved the existence of exponentially stable non-
trivial solutions to stochastic semilinear partial differential equations generated by
random variables chosen as initial values. Using the pullback method, they establish
a link between the local analysis of the temporal behavior of stochastic partial differ-
ential equations and global analysis in random dynamical systems, see e.g. Arnold
[9].

In Pham, Tabareau & Slotine 2009 [152], the incremental stability of the system

d

(
X1(t)
X2(t)

)
=

(
f1(t,X1(t))
f2(t,X2(t))

)
dt+

(
G(t,X1(t)) 0

0 G(t,X2(t))

)
dW (t) (44)

is studied, where f1, f2 and G1, G2 are of the same dimensions as f and G in
(43), respectively, and W is a 2Q-dimensional Wiener process. Note that (44) can
be interpreted as two different SDEs of the form (43) with independent Wiener
processes.

First, the case f1 = f2 = f and G1 = G2 = G is studied, under the assumption
that the deterministic system ẋ = f(t, x) is uniformly contracting with respect to a
time-varying metric M : R+

0 → S+
n and that tr

(
GT (t, x)M(t)G(t, x)

)
is uniformly

bounded. This means that there are constants a, b, c > 0 such that

M(t) ≥ aI and
∂fT

∂x
(t, x)M(t) +M(t)

∂f

∂x
(t, x) + Ṁ(t) ≤ −2bM(t)

and

tr
(
GT (t, x)M(t)G(t, x)

)
≤ c <∞

for all (t, x) ∈ R+
0 × Rn, and a system fulfilling these conditions is said to be

stochastically contracting in the metric M . It is proved by using the Lyapunov
function V (t, x1, x2) = (x1 − x2)

TM(t)(x1 − x2), that a solution (X1(t), X2(t))
T

with initial distribution (X0
1 , X

0
2 ) at time t = 0 fulfills

E(∥X1(t)−X2(t)∥2) ≤
1

a

(c
b
+ E∥X0

1 −X0
2∥2e−2bt

)
(45)

for all t ≥ 0, where E denotes the expected value of the random variable. The authors
additionally prove that this bound can, in general, not be tighter; in particular, one
cannot expect E(∥X1(t)−X2(t)∥2) → 0 as t→ ∞.

The authors also show that if the setup is altered such that G1(t, x) ≡ 0, i.e. they
add noise to a deterministic system and compare it with the noise-free system, then
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an identical estimate holds with c
b replaced by c

2b . Further, they extend their theory
to interconnected systems of the form

d

(
X1(t)
X2(t)

)
=

(
f1(t,X1(t), X2(t))
f2(t,X1(t), X2(t))

)
dt+

(
G(t,X1(t)) 0

0 G(t,X2(t))

)
dW (t)

and give numerous examples of their approach. However, they do not consider
state-dependent metrics M .

In Bouvrie & Slotine 2019 [23], this last approach is extended under the additional
assumptions that f1 = f2 = f are autonomous, i.e. do not depend explicitly on t,
that G1 = G2 = G : R+

0 × Rn×n → Rn, and G(t, x)GT (t, x) ≥ C2I for a constant
C2 > 0, i.e. GGT is uniformly positive definite. In particular,W is a 2n-dimensional
Wiener process. Then, with µt and νt as the distributions of X1(t) and X2(t),
respectively, one obtains a similar but more informative estimate than (45), namely

W2(µt, νt) ≤
1√
a

(√
c

b
+W2(µ0, ν0)e

−2bt

)
,

where

W2(µ, ν) :=

√
inf

γ∈Γ(µ,ν)

∫
Rn×Rn

∥x− y∥22γ(x, y)dxdy

is the Wasserstein metric, measuring the distance between the distributions µ and
ν. The infimum is taken over all couplings Γ(µ, ν) of µ and ν, i.e. γ ∈ Γ(µ, ν) is a
joint distribution such that

µ(x) =

∫
Rn

γ(x, y)dy and ν(y) =

∫
Rn

γ(x, y)dx,

and one can think of W2(µ, ν) as the minimal cost of transforming the distribution
µ to the distribution ν. In this analogy, one can think of the graphs of µ and ν
picturing piles of earth and the cost of moving a unit mass from x to y is ∥x− y∥22.
The joint distribution γ ∈ Γ(µ, ν) describes the transport plan and W2(µ, ν) is
the square-root of the minimum cost to move earth from the pile described by
µ to obtain the pile described by ν. In computer science, one often refers to the
Wasserstein metric, in particularW1(µ, ν) = infγ∈Γ(µ,ν)

∫
Rn×Rn ∥x−y∥2γ(x, y)dxdy,

as earth mover’s distance; note that in our analogy W1(µ, ν) is the minimum of the
product: amount of earth moved times the (weighted) mean distance of movement.

2.5. Control systems. There are numerous publications on the use of contrac-
tion analysis in control theory, both regarding observers, see e.g. Aghannan & Rou-
chon 2003 [1] and Sanfelice & Praly 2012 [164], and stabilization and control, see
e.g. Fromion, Monaco & Normand-Cyrot 1996 [49], Jouffroy 2003 [90], Slotine 2003
[169], Pavlov, van de Wouw & Nijmeijer 2005/2006 [150, 151], Pogromski & Matveev
2016 [156], Wang, Forni, Ortega, Liu & Su 2017 [181], Brivadis, Sacchelli, Andrieu,
Gauthier & Serres 2021 [26], Liu, Xu & Sun 2021 [127].

Including a detailed discussion of contraction analysis for general control systems
in this review would add too much to its length. We therefore only give a short
exposition of control contraction metrics for control-affine systems

ẋ = f̃(t, x, u) = f(t, x) + B(t, x)︸ ︷︷ ︸
=(b1(t,x),...,bm(t,x))

u = f(t, x) +

m∑
i=1

bi(t, x)ui (46)
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as introduced in Manchester & Slotine 2017 [131]. Assume that u(t, x) = k(t, x) +

v(t) is smooth and denote by x(t) = ϕ(t, t0, ξ) the solution to ẋ = f̃(t, x, u) with
initial value ξ ∈ Rn at t0. The associated (matrix) variational equation is obtained
by substituting x(t) for x in (46) and taking the derivative with respect to ξ (recall
the matrix-vector product rule D(Av) = A ·Dv +

∑
i viDai, e.g. [165, App. A])

∂

∂ξ
ẋ(t) =

d

dt

∂x

∂ξ
(t)︸ ︷︷ ︸

=:δx̃(t)

= ˙δx̃(t) =
∂

∂ξ
f̃(t, x(t), u(t, x(t))︸ ︷︷ ︸

=k(t,x(t))+v(t)

) (47)

=
∂f

∂x
(t, x(t))δx̃(t) +B(t, x(t))

∂k

∂x
(t, x(t))δx̃(t)

+

m∑
i=1

ui(t, x(t))
∂bi
∂x

(t, x(t))δx̃(t).

Note that because we are concerned with the matrix variational equation, here
δx̃(t) ∈ Rn×n. The connection to δx(t) ∈ Rn is simple because the ODE is linear:
from the solution δx̃(t) to the matrix variational equation with δx̃(t0) = I, one has
δx(t) = δx̃(t)δx(t0). With

A(t, x, u) :=
∂f

∂x
(t, x) +

m∑
i=1

ui
∂bi
∂x

(t, x) and K(t, x) :=
∂k

∂x
(t, x),

equation (46) can be written in the equivalent form

˙δx =
(
A(t, x(t), u(t, x(t))) +B(t, x(t))K(t, x(t))

)
δx, (48)

which resembles the classical ODE ẋ = (A + BK)x for linear control systems ẋ =
Ax+Bu with linear feedback control u = Kx.

Assume that (46) with u(t, x) = k(t, x) + v(t) is contracting in a metric M(t, x)
with contraction rate b = β/2 > 0. With A := A(t, x, u(t, x)), B := B(t, x),
K := K(t, x), and M =M(t, x) we have by (10) (see also (12)) that

(A+BK)TM +M(A+BK) + Ṁ ≤ −βM. (49)

Note that

yTMB = 0 implies yT (ATM +MA+ Ṁ)y ≤ −βyTMy, (50)

and since B and M are independent of u(t, x), the implication (50) is a necessary
condition for (49) to hold true.

The authors define a uniformly bounded metricM(t, x), i.e. α1I ≤M(t, x) ≤ α2I
for 0 < α1 ≤ α2 to be a control contraction metric, if the implication (50) holds
true for all (t, x, u) ∈ R×Rn×Rm, where B,K,M are as above and A := A(t, x, u).
Note that the implication must hold true for all u ∈ Rm, not only for u = u(t, x) for
a specific function u(t, x). They then show, among other things, that if the system
(46) admits a control contraction metric M(t, x), then it is open-loop controllable
and stabilizable via continuous feedback (universally and exponentially fast).

2.6. Poincaré-Bendixson, dimension of attractors, and entropy. Smith 1980
[171] considers a generalization of the Poincaré-Bendixson theorem to higher di-
mensions. He uses a contraction condition with a constant metric, which has two
negative and n − 2 positive eigenvalues, and hence the solutions converge to a
2-dimensional set, where the Poincaré-Bendixson theorem holds. Smith 1987 [171]
continues this work with the following type of assumptions for the autonomous ODE
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ẋ = f(x), where f is locally Lipschitz on its domain S: there exists a non-singular
matrix M ∈ Rn×n with exactly two negative eigenvalues such that

(x− y)TM [f(x)− f(y) + λ(x− y)] ≤ −ε ∥x− y∥22
for all x, y ∈ S with constants λ, ε > 0. The implications are that closed trajectories
exist and at least one of them is asymptotically stable.

Sanchez 2009 [162] and 2010 [163] generalizes these concepts in the study of cones
of rank 2 and cooperative systems, where a contraction condition of the type

∂fT

∂x
(x)M +M

∂f

∂x
(x) + λ(x)M < 0

holds for a matrix M ∈ Sn with 2 negative and n − 2 positive eigenvalues and
λ(x) > 0 is a continuous function, see also the review Burkin 2015 [28].

Li & Muldowney 1991 [126] generalize Bendixson’s criterion for the nonexistence

of closed orbits. They study the eigenvalues of ∂fT

∂x (x) + ∂f
∂x (x) and show that if

the sum of the largest two is positive for all x or if the sum of the smallest two
is negative for all x, then there are no simple, closed, rectifiable invariant orbits.
Similar conditions for the stability and instability of trajectories are derived in
Kravchuk, Leonov & Ponomarenko 1995 [109].

The (Hausdorff) dimension of an attractor A [14] can be bounded by dimH A ≤
d+ s if there are an integer d ∈ {0, . . . , n− 1} and s ∈ [0, 1) such that

λ1(x) + . . .+ λd(x) + sλd+1(x) < 0 for all x ∈ A, (51)

where λ1(x) ≥ . . . ≥ λn(x) are the eigenvalues of the matrix 1
2 (

∂fT

∂x (x)+ ∂f
∂x (x)), see

Douady & Oesterlé 1980 [41]. A version only considering contraction in directions
v, where vT q(x) = 0 and qT (x)f(x) ̸= 0 is derived in Leonov 1991 [116].

This estimate can be improved by means of a Lyapunov-like function, see Leonov
& Boichenko 1992 [120] and the book Leonov, Burkin & Shepelyavyi 1996 [121],
including applications to, e.g. the Lorenz and the Rössler systems: if v ∈ C1(Rn,R)
is a function such that (51) is replaced by

λ1(x) + . . .+ λd(x) + sλd+1(x) + v̇(x) < 0 for all x ∈ A, (52)

then the same bound on the dimension holds.
A further generalization in Pogromsky & Nijmeijer 2000 [157] uses a Riemannian

metric given by a function M ∈ C1(Rn,S+
n ). The same bound on the dimension

holds if the λi(x) in (51) denote the ordered solutions λ1(x) ≥ . . . ≥ λn(x) to

det

[
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x)− λM(x)

]
= 0. (53)

Note that this includes (51) for M(x) = I and (52) for M(x) = exp
(

2v(x)
d+s

)
I [157,

Cor. 1] as well as a constant matrix-valued function M(x) = M as in Leonov 2012
[119]. For similar results on general Riemannian manifolds, see Noack & Reitmann
1996 [143].

In a similar way, there is a series of results, including Hartman & Olech 1962 [84]
and Leonov, Burkin & Shepelyavyi 1996 [121], to show the following: If

λ1(x) + λ2(x) < 0,

with λ defined as above in (53), holds for all x ∈ D, where D is a bounded,
open, simply connected positively invariant set with some additional conditions,
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then all solutions in D tend to some equilibrium, see Pogromsky & Nijmeijer 2000
[157]. These methods can estimate the dimension without precise localization of the
attractor in the phase space, since it is sufficient to apply them to a set containing
the attractor, see also the book Boichenko, Leonov & Reitmann 2005 [19] and
Kuznetsov & Reitmann 2021 [110].

A contraction metric approach to estimate the topological entropy for continuous-
time systems was introduced in Pogromsky & Matveev 2010/2011 [154, 155], as
well as for discrete-time systems in Matveev & Pogromsky 2016 [136]. Recently,
a converse result for the determination of the so-called restoration entropy via a
Riemannian metric has been obtained in Kawan, Matveev & Pogromsky 2020 [96].
The restoration entropy is an upper bound of the topological entropy and has an
operational meaning in the context of remote state estimation.

2.7. Other extensions. Angeli 2002 [6] presents a framework for incremental sta-
bility, extends it to include the input-to-state stable (ISS) approach and provides
characterizations of incremental stability properties through Lyapunov functions.

In Angeli 2009 [7], incremental integral input-to-state stability is introduced and
a converse result for a continuous Lyapunov function is shown. Furthermore, it is
proved that incremental integral ISS implies incremental ISS.

Andrieu, Jayawardhana & Praly 2016 [5] study transverse stability, namely a
system

ė = F (e, x) (54)

ẋ = G(e, x) (55)

and the stability of the manifold E = {(e, x) | e = 0}, where e ∈ Rne and x ∈ Rnx .
This is related to incremental stability by considering a system ẋ = f(x) and

F (e, x) = f(x+ e)− f(x)

G(e, x) = f(x)

so that e denotes the error between two solutions x(t, ξ1) and x(t, ξ2) with different
initial conditions. In contrast to the horizontal Finsler-Lyapunov function from [46],
the contraction condition on the matrix is only required on E , namely

∂FT

∂e
(0, x)M(x) +M(x)

∂F

∂e
(0, x) + Ṁ(x) ≤ −Q (56)

and p1I ≤ M(x) ≤ p2I for all x; this is called the ULMTE (Uniform Lyapunov
Matrix Transversal Equation), where M(x) ∈ S+

ne
. The authors show that the

following three properties are equivalent: (i) the manifold E is transversally ex-
ponentially decreasing, (ii) the transverse linearization along any solution in the
manifold is exponentially decreasing, and (iii) there exist positive definite quadratic
forms whose restrictions to the transverse direction are decreasing. For the case of
incremental stability, the first two properties relate to the e-(error)-part and the
third one is that for every positive definite matrix Q there exists a matrix M as in
(56) and leads to global results. This is a generalization of a known result for the
manifold being an equilibrium. The results are applied to control problems.

Forni, Sepulchre & van der Schaft 2013 [48] studied differential passivity of phys-
ical systems using differential storage functions, that are also Finsler-Lyapunov
functions.

Incremental stability of hybrid systems is considered in Biemond et al. 2018 [16].
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Generalizations of the contraction analysis have been made to time-periodic sys-
tems in Giesl 2004 [53] as well as to almost periodic systems, see Giesl & Rasmussen
2008 [71]. Kawano, Besselink & Cao 2020 [98] study contraction analysis for mono-
tone systems.

Giesl & Rasmussen 2012 [72] studied the non-autonomous ODE ẋ = f(t, x) over
a finite time interval [0, T ] and introduced the concept of an area of (exponential)
attraction, which is a set G ⊂ [0, T ]×Rn such that all solutions in G are (exponen-
tially) attractive. In contrast to the domain of attraction, which depends on one
particular solution, the area of attraction does not depend on one special solution.
They showed that G is an area of exponential attraction if and only if there exists
a Riemannian metric M : [0, T ]× Rn → S+

n which satisfies

1

2
max

w∈Rn,wTM(t,x)w=1
wT

(
∂fT

∂x
(t, x)M(t, x) +M(t, x)

∂f

∂x
(t, x) + Ṁ(t, x)

)
w

≤ −ν < 0

for all (t, x) ∈ G, where G ⊂ [0, T ] × Rn is connected and invariant, together with
M(0, x) =M(T, x) = I for all x ∈ Rn. The rate of exponential attraction is linked
to ν.

Ngoc & Trinh 2018 [140] derive contraction criteria for delay differential equations
(functional differential equations) of the form

ẋ(t) = f(t, x(t), xt), t ≥ σ,

where xt(·) is defined by xt(θ) := x(t+ θ), θ ∈ [−h, 0]. Hence, ẋ at time t depends
on the value of the solution x in [t−h, t]. A criterion for the exponential contraction

between two solutions is given, which is based on a uniform bound on ∂f
∂x (t, x, φ),

independent of x and φ. Furthermore, if f is periodic in the first argument, a similar
criterion is presented that shows the existence of a unique periodic solution, which
is globally exponentially stable.

In Ngoc, Trinh, Hieu & Huy 2019 [141], criteria for the contraction of difference
equations with time-varying delays are presented.

The book Leine & van de Wouw 2008 [112] studies contraction analysis for non-
smooth systems. It contains a literature survey of stability and convergent systems
in non-smooth systems (Chapter 1.5) and considers convergent systems in Chapter
8. To study non-smooth systems, the book uses the framework of measure differ-
ential inclusions, which includes systems with state discontinuities. The authors
introduce the concepts of stability, incremental stability and convergence for these
systems. Convergent systems are studied in Chapter 8, based on Leine & van den
Wouw 2008 [113], where the authors consider maximal monotone systems and use,
e.g., incremental stability arguments to show convergence (Theorem 8.7). An early
reference for non-smooth systems is Reissig 1954 [158], deriving conditions for the
convergence of all solutions to a unique solution.

Giesl 2005 [54] considers a one-dimensional time-periodic and nonsmooth ODE
ẋ = f(t, x) with x ∈ R, f(t+T, x) = f(t, x) and f is C1 outside of the line x = 0. He
derives a contraction condition for the existence of an exponentially stable periodic
orbit based on the distance between (t, x) and (t, y) given by

A(t) = eW (t,x)|y − x|,
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whereW (t, x) is a time-periodic function, which is smooth outside of the line x = 0.
The contraction conditions are

∂f

∂x
(t, x) + Ẇ (t, x) ≤ −ν < 0

for x ̸= 0 together with two jump conditions for points (t, 0) where solutions pass the
line x = 0. In Giesl 2007 [55], a converse theorem is proved, showing the existence of
such a metric. Stiefenhofer & Giesl 2019 [174, 175] generalize the sufficient condition
to two spatial dimensions.

Dahlquist 1958 [35] applies contractivity in numerics for solving ODEs. Desoer
1972 [39] uses that contractive systems also satisfy an ISS property to derive bounds
between trajectories of a continuous-time (contractive) system and its discretization.
This is applied to the numerical solution of the ODE system. In Wensing & Slotine
2020 [184], the convergence of the gradient descent algorithm for minimization is
studied using contraction analysis and geodesic convexity, and classical results based
on convexity of the objective function are generalized. Forni & Sepulchre 2019 [47]
develop differential dissipativity theory for the dominance analysis of nonlinear
systems.

3. Numerical construction methods. In this last section, we discuss construc-
tion methods for contraction metrics. We classify them by the numerical methods
employed and briefly describe them. Except for the subgradient method, which uses
optimization on a matrix manifold, these methods have counterparts in the numer-
ical computation of Lyapunov functions, see e.g. Giesl & Hafstein 2015 [64], but are
more involved because a matrix-valued contraction metric, rather than a real-valued
Lyapunov function, is computed.

3.1. Collocation. In this method, a specific contraction metric is characterized by
a partial differential equation (PDE). Then meshfree collocation is used to approx-
imately solve this PDE in a given compact set. The approximation, if sufficiently
close, is itself a contraction metric because it fulfills the required inequalities.

In this section, M(x) stands for a specific contraction metric, satisfying the
equation (59), while S(x) denotes its approximation, which fulfills the inequalities
(57), (58). For S(x) to be a contraction metric of the autonomous system ẋ = f(x),
we require

∂fT

∂x
(x)S(x) + S(x)

∂f

∂x
(x) + Ṡ(x) < 0 (57)

S(x) > 0 (58)

for all x ∈ K, where K ⊂ Rn is a compact set. Converse theorems show the
existence of a contraction metric M(x) satisfying

∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x) = −C (59)

M(x) > εI, (60)

see Giesl 2015 [58, Th. 4.4]. Note that (59) with a given matrix C ∈ S+
n has a unique

solution which satisfies (60) in every compact set within the basin of attraction for
some ε > 0. Hence, a sufficiently close approximation S to M will satisfy (57) and
(58) as well.
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Let us introduce meshfree collocation in more detail. For a general overview, see
Buhmann 2003 [27] or Wendland 2005 [183]; for the case of matrix-valued functions,
see Giesl & Wendland 2018 [73].

In general, one considers a linear operator L : H → H acting on a Hilbert space
H. Here, H = Hσ(Ω,Sn) is a reproducing kernel Hilbert space (RKHS), which
consists of the same functions as the Sobolev space of matrix-valued functions, and
their norms are equivalent. The definition of the kernel Φ : Ω× Ω → L(Sn), where
L denotes the linear space of linear and bounded operators L : Sn → Sn, is based
on the kernel for the RKHS Hσ(Ω,R) of scalar-valued functions. We consider the
linear operator

LM(x) =
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x).

The PDE to be solved can be written as

LM(x) = r(x),

where r : Rn → S+
n is a given function. We choose a finite set of collocation

points x1, . . . , xN ∈ Ω and define the corresponding linear operators λ
(i,j)
k ∈ H∗

by λ
(i,j)
k (M) = (LM(xk))ij , where k = 1, . . . , N and 1 ≤ i ≤ j ≤ n.

The approximation can now be formulated as a generalized interpolation prob-
lem, namely finding the norm-minimal function which solves the PDE at the collo-
cation points, i.e.

min
S∈H

{∥S∥H | λ(i,j)k (S) = (r(xk)ij) for k = 1, . . . , N and 1 ≤ i ≤ j ≤ n}.

The solution of the minimization problem is unique and given by a linear com-

bination of the Riesz representers of the λ
(i,j)
k , where the coefficients are chosen

such that the interpolation conditions hold. Note that the Riesz representer of
λ ∈ H(Ω,Sn)

∗ in the RKHS is given by

vλ(x) =
∑

1≤µ≤ν≤n

λ(Φ(·, x)Es
µν)E

s
µν , x ∈ Ω, (61)

where (Es
µν)1≤µ≤ν≤n is an orthonormal basis of Sn and Φ is the kernel. The in-

terpolation condition is a system of linear equations with collocation matrix of size
Nn(n + 1)/2. To find the coefficients, and thus the solution, this system of linear
equations needs to be solved.

The computation of a contraction metric for an equilibrium using meshfree collo-
cation was studied in Giesl & Wendland 2019 [74]. The construction was achieved
by approximating the contraction metric M satisfying (59). If Ω is in the basin of
attraction of the equilibrium and f is sufficiently smooth, then the approximation
S satisfies

sup
x∈K

∥M(x)− S(x)∥2 ≤ C1∥L(M)− L(S)∥L∞(Ω,Sn) ≤ C2h
σ−1−n/2
X,Ω ∥M∥Hσ(Ω,Sn) (62)

on every positively invariant compact set K ⊂ Ω with some constants C1, C2 > 0.
Here, hX,Ω := minx∈X supy∈Ω ∥y − x∥2 is the so-called fill distance of the set of
collocation points X = {x1, . . . , xN} in Ω [73]. It follows that S fulfills (57) and
(58) and is a contraction metric for the system if hX,Ω is small enough, i.e. if the
collocation points are dense enough.

A contraction metric for systems with an exponentially stable periodic orbit was
first computed for two-dimensional systems, ẋ = f(x), f : R2 → R2, where a metric
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of the form M(x) = exp(2W (x))I exists and thus a scalar-valued function W : R →
R needs to be found. In Giesl 2007 [56], the periodic orbit and the Floquet exponent
were approximated numerically and thenW was found by solving a first-order PDE
for W using meshfree collocation. In Giesl & McMichen 2016 [69], no information
about the periodic orbit is required and W is found by solving a second-order PDE
using meshfree collocation.

In higher dimensions, the metric can in general not be characterized by a scalar-
valued function. Giesl 2009 [57] computes the local metric by numerically approxi-
mating the periodic orbit and computing a metric M(x) using the first variational
equation.

A contraction metric was characterized as the solution of a matrix-valued PDE,
see Giesl 2021 [61] and (40), (41). The computation using meshfree collocation was
achieved in Giesl 2019 [59].

Finally, Giesl & McMichen 2018 [70] consider the one-dimensional, non-autonomous
system ẋ = f(t, x) on a finite time interval, where x ∈ R and t ∈ [T1, T2]. The area
of exponential attraction, see Section 2.7 and [72], can be determined by a con-
traction metric. They show that the contraction metric can be chosen of the form
M(t, x) = exp(2W (t, x)), where the scalar-valued function W satisfies a second-

order PDE involving the second orbital derivative Ẅ (t, x), i.e. the orbital derivative

of the orbital derivative Ẇ (t, x),

Ẅ (t, x) = −
(
∂2f

∂x∂t
(t, x) +

∂2f

∂x2
(t, x)f(t, x)

)
with boundary values W (T1, x) = W (T2, x) = 0. Meshfree collocation is used to
solve this equation numerically and to compute a contraction metric.

3.2. Linear matrix inequalities. Linear matrix inequalities (LMIs) are closely
linked to semidefinite optimization problems of the form:

Given C,Bi ∈ Sn, i = 1, . . . , N, and a vector c ∈ RN , determine a vector q ∈ RN

to

minimize cT q subject to

N∑
i=1

qiBi + C ≥ 0, (63)

i.e. the linear functional q 7→ cT q is minimized under the given conditions on the
vector q. If c = 0, the problem (63) is called a feasibility problem and any q ∈
RN such that the constraints are fulfilled, if there are any, is a solution to the
problem. In a sense, LMI problems are a generalization of the Lyapunov equation
ATM +MA = −C, for given A ∈ Rn×n, C ∈ S+

n . Indeed, LMIs are in much use
in control theory and the literature on the use of LMIs is extensive, see e.g. the
monographs [24, 146, 31, 32] for an introduction. Note that an LMI problem like
‘find a symmetric matrix fulfilling M > 0 and ATM +MA < 0’ can be written in
the form (63) and LMIs can be routinely solved using semidefinite programming,
which is a subclass of convex optimization [25]. There are numerous computational
packages available for different platforms, e.g. MATLAB’s Robust Control Toolbox
(formerly LMI toolbox), CVX, YALMIP, and Mosek [176, 75].

Related to LMIs are so-called bilinear matrix inequalities (BMIs), where addition-
ally matrices Aij ∈ Sn, i, j = 1, . . . , N , are given and the objective is to determine
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a vector q ∈ RN solving the problem

minimize cT q subject to

N∑
i,j=1

qiqjAij +

N∑
i=1

qiBi + C ≥ 0. (64)

Such problems are in general not convex and are much harder to solve [179]. In
addition to the computation of contraction metrics, BMIs have also been considered
for the computation of Lyapunov functions for SDEs [77].

In the following sections, we will list several methods developed to reformulate
the computation of a contraction metric to LMIs and one example of the use of
BMIs.

3.2.1. Sum of squared polynomials. SOS is originally an approach to show that a
polynomial is positive, see Parrilo 2000 [146]. A multivariate polynomial p(x) ∈
R[x], where R[x] denotes the polynomials in x ∈ Rn, is SOS (sum of squares) if it
can be written as

p(x) =

m∑
i=1

p2i (x),

where p1(x), . . . , pm(x) ∈ R[x]. It is clear that an SOS polynomial is non-negative,
but not every non-negative polynomial is SOS, see e.g. [139] for a counterexample.

A polynomial is SOS if and only if there exists a positive semidefinite matrix Q
such that

p(x) = ZT (x)QZ(x), (65)

where Z(x) is a vector of monomials of degree less than or equal to half the degree
of p. The link to LMIs of the form (63) is to write Q =

∑
i qiBi where Bi is a basis

of Sn.
Let us explain (65) with an example: consider a polynomial p(x1, x2) of degree

4. Then p(x1, x2) is an SOS polynomial if there is a Q ≥ 0 such that

p(x1, x2) = ZTQZ =
(
1 x1 x2 x1x2 x21 x22

)
Q


1
x1
x2
x1x2
x21
x22

 .

Since Q ≥ 0, it can be written as Q = OTDO, where D = diag(d1, d2, . . . , d6) is
a diagonal matrix with non-negative entries and O is an orthogonal matrix. The
entries pi = pi(x1, x2) of the vector OZ = (p1, p2, . . . , p6)

T are polynomials in
(x1, x2) and

p(x1, x2) = ZTOTDOZ = [OZ]TD[OZ] =

6∑
i=1

(√
di pi(x1, x2)

)2
.

Note that these conditions hold globally in Rn. It is also possible to search for SOS
polynomials on compact domains by use of the Positivstellensatz, i.e. an algebraic
description of all polynomials that are positive, see also Hilbert’s 17th problem.

This has been used, e.g., for the construction of Lyapunov functions by solving
LMI problems numerically, see Chesi 2010 [31] and Anderson & Papachristodoulou
2015 [4] for an overview. There is also a free toolbox for MATLAB available to



REVIEW ON CONTRACTION ANALYSIS 33

compute SOS Lyapunov functions for polynomial systems, see Papachristodoulou
et al. 2013 [145].

For the construction of SOS contraction metrics, see Aylward, Parrilo & Slo-
tine 2008 [13], an SOS matrix [52] needs to be defined: a symmetric matrix with
polynomial entries S(x) ∈ R[x]n×n is an SOS matrix if the scalar polynomial

yTS(x)y

is SOS in R[x, y], where y ∈ Rn. To deal with strict inequalities, they define S(x)
to be a strict SOS matrix if

S(x)− εI

is an SOS matrix for some ε > 0.
The idea is now to find a matrix-valued functionM(x) ∈ Sn such that the entries

are polynomials of a fixed maximal degree d and M(x) as well as

−R(x) := −
(
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x)

)
are strict SOS matrices. Alternatively, to show contraction with a contraction rate
β/2, one requires that

−
(
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + βM(x) + Ṁ(x)

)
and M(x) are strict SOS matrices. In more detail, one writes M(x) with unknown
coefficients (polynomials) and derives the conditions in the unknown coefficients.
The constraints translate into SOS constraints on the scalar polynomials yTM(x)y
and −yTR(x)y. If the SOS solver finds a solution, then it can be used to generate
a contraction metric.

Aylward, Parrilo & Slotine 2008 [13] apply the method to an example and show
that the degree of the polynomials needs to be sufficiently large to construct a
contraction metric; the larger the degree, the better the bound on the rate of con-
vergence. Furthermore, they show that the constructed contraction metric is a valid
contraction metric for a perturbed system and they analyze the range of perturba-
tions.

SOS was also used to construct a contraction metric for a periodic orbit of an
autonomous system in Manchester & Slotine 2014 [130]. To remove the condition
vTM(x)f(x) = 0 from (30) (in autonomous form), they define W (x) = M−1(x)
and w =M(x)v, so that (30) becomes

wT

(
W (x)

∂fT

∂x
(x) +

∂f

∂x
(x)W (x) +W (x)Ṁ(x)W (x)

)
w ≤ −βwTW (x)w.

Since the condition 0 = vTM(x)f(x) = wT f(x) is equivalent to wT f(x)fT (x)w ≤ 0
and the overall condition can be written as

H(x) :=W (x)
∂fT

∂x
(x) +

∂f

∂x
(x)W (x)−Ẇ (x) + βW (x)− ρ(x)f(x)fT (x) ≤ 0

with a function ρ(x) ≥ 0. They now apply SOS to construct a contraction met-
ric, namely to find a polynomial matrix-valued function W (x) and a scalar-valued
function ρ(x) such that W (x), H(x) and ρ(x) are SOS (on a compact set, using the
Positivstellensatz).

In August & Barahona 2011 [10], the authors present sufficient conditions for
global complete synchronization of coupled identical oscillators, which are linear
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matrix inequalities, based on contraction analysis; the point-dependent metric is
then calculated using SOS.

3.2.2. Reaction-diffusion equation. Arcak 2011 [8] studied the reaction-diffusion
equation

ẋ = f(x) +D(−∆)x, where D ∈ Rn×n and (−∆)x = − (∆x1, . . . ,∆xn)
T

(66)

is the vector Laplacian, subject to Neumann boundary conditions ∇xi(t, ξ) ·n(ξ) =
0, ξ ∈ ∂Ω, on a bounded domain Ω. Note that since we write the Laplacian in
its positive definite form −∆, our D is −D in [8]. With λ2 as the second smallest
eigenvalue of the operator −∆ on Ω with vanishing Neumann condition, it is shown
that if there exists a convex set X ⊂ Rn, M ∈ S+

n , and ε > 0, such that

DTM +MD ≤ 0 and(
∂f

∂x
(x) + λ2D

)T

M +M

(
∂f

∂x
(x) + λ2D

)
≤ −εI for all x ∈ X , (67)

then every classical solution x : R+
0 × Ω → X to (66) in X converges exponentially

fast in time t to its average in the L2(Ω)-norm. In formulas, there exist constants
b, C > 0 such that∫

Ω

(x(t, ξ)− x(t))2dnξ ≤ Ce−bt, where x(t) :=
1

|Ω|

∫
Ω

x(t, ξ)dnξ.

Note that the smallest eigenvalue λ1 of−∆ is zero and the second smallest eigenvalue
λ2 is related to the connectedness of the domain Ω and is maximized for a ball-
shaped Ω.

The LMI conditions (67) are then made tractable for a numerical procedure by
assuming

∂f

∂x
(x) ∈ conv{Z1, . . . , Zq}︸ ︷︷ ︸

:={
∑q

i=1 µiZi, µi≥0,
∑q

i=1 µi=1}

+ cone{S1, . . . , Sm}︸ ︷︷ ︸
:={

∑m
i=1 µiSi, µi≥0}

for all x ∈ X .

Then condition (67) is fulfilled for some ε > 0 if

(Zi + λ2D)TM +M(Zi + λ2D) < 0 and ST
j M +MSj ≤ 0

for i = 1, . . . , q and j = 1, . . . ,m.
Alternatively, one can assume that

∂f

∂x
(x) ∈ box{A0, b1c

T
1 , . . . , bℓc

T
ℓ }︸ ︷︷ ︸

:={A0+
∑ℓ

i=1 µibicTi , 0≤µi≤1}

, A0 ∈ Rn×n, bi, ci ∈ Rn, for all x ∈ X .

Then, condition (67) is fulfilled for some ε > 0 if there is an

P =


M

q1
. . .

qℓ

 ∈ R(n+ℓ)×(n+ℓ), qi > 0 for i = 1, . . . , ℓ,

such that with B = (b1, . . . , bℓ) ∈ Rn×ℓ and C = (c1, . . . , cℓ) ∈ Rn×ℓ, i.e. the bi and
ci are the columns of the matrices B and C, we have

P
(
A0 + λ2D B

CT −I

)
+

(
A0 + λ2D B

CT −I

)T

P < 0.
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Three examples of the use of these LMIs are presented using analytical and numeri-
cal solutions. Further, an example is presented where the conditions DTM+MD ≤
0 and (67) cannot be simultaneously fulfilled. Finally, the theory is expanded to
compartmental ODEs of the form

ẋk = f(xk) +D
∑
j∈Nk

(xj − xk), D ∈ Rn×n, xk ∈ Rn,

whereNk ⊂ {1, . . . , N} is the set of nodes adjacent to node k. The term
∑

j∈Nk
(xj−

xk) corresponds to a graph Laplacian and the theory can be adapted to this case to
show an exponential rate of synchronization of xk(t) and xj(t) as t→ ∞ for all j, k ∈
{1, . . . , N}. For a more general approach to synchronization using contraction, see
Russo, di Bernardo & Sontag 2013 [161].

3.2.3. Switched systems. In Pavlov, Pogromsky, van de Wouw & Nijmeijer 2007
[149], the convergence of piecewise affine systems with bounded, piecewise continu-
ous inputs is studied and sufficient and necessary LMI conditions are derived. The
approach is motivated by the system ẋ = Ax + w(t) with a Hurwitz A ∈ Rn×n

and bounded, piecewise continuous w : R → Rm. Its solution with x(0) = x0
is x(t) = eAt(x0 +

∫ t

0
e−Aτw(τ)dτ) and one easily verifies that the only solution

bounded on R is the one with initial state x0 =
∫ 0

−∞ e−Aτw(τ)dτ . Further, by

considering the Jordan normal form of A, one has for t ≥ 0 and any solution x∗(t)
with x∗(0) = x∗0 that

∥x∗(t)− x(t)∥2 ≤ ∥eAt(x∗0 − x0)∥2 ≤ Ce−bt∥x∗0 − x0∥2,
where −b < 0 is larger than the real part of any eigenvalue of A, which are all
negative since A is Hurwitz. Thus, for every admissible input w, there is a unique
bounded solution x̄(t) to ẋ = Ax+w(t) and this solution contracts all other solutions
exponentially fast as t→ ∞. A system with these properties is called exponentially
convergent ; see also Section 1.5. Alternatively, one can consider this unique bounded
solution as a non-autonomous pullback attractor, see Kloeden & Rasmussen [103].

With matrices Ai ∈ Rn×n, vectors bi ∈ Rn, and input w ∈ Rn, the authors study
piecewise affine systems of the form

ẋ = Aix+ bi + w, x ∈ Λi, (68)

with Rn divided into a finite number of polyhedral cells Λi by a finite number of
hyperplanes Hj := {x ∈ Rn | vTj x+ hj = 0}, vj ∈ Rn and hj ∈ R.

The authors use Lyapunov functions V (x1, x2) = (x1−x2)TP (x1−x2), P ∈ S+
n ,

of two arguments to study stability. Note that this Lyapunov function measures
the distance between two solutions x1(t) and x2(t). They first show that the LMIs

AT
i P + PAi < 0 for all i (69)

are sufficient for the exponential convergence of the system (68), if its right-hand
side is continuous. Further, they show that the right-hand side is continuous, if and
only if whenever two cells Λi and Λj intersect in a hyperplane Hk, one has

hk(Ai −Aj) = (bi − bj)v
T
k .

If the system (68) does not have a continuous right-hand side, then (69) is not
a sufficient condition and, in the simplified case of a bimodal system with one
hyperplane vTx = 0 and i = 1 for vTx ≥ 0 and i = 2 otherwise, they show
that the following LMI is sufficient for P ∈ S+

n to define a Lyapunov function of
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two arguments as above, that establishes exponential convergence: Define ∆A :=
A1−A2 and ∆b := b1− b2. The (constrained) variables of the LMI are P ∈ S+

n and
real numbers β > 0, γ ≥ 0. The additional constraints arePA1 +AT

1 P + βI P∆A− 1
2vv

T

∆ATP − 1
2vv

T −vvT

 ≤ 0 and P∆b = −γv.

Although these conditions can obviously be implemented in software, the authors
do not provide a numerical example.

In Fiore, Hogan & Bernardo 2016 [45], these results were advanced using regu-
larization and numerous analytically solved examples were presented.

3.2.4. Differential-algebraic systems. In Nguyen, Vu, Slotine & Turitsyn 2021 [142],
the contraction in nonlinear differential-algebraic equations (DAEs) was studied.
DAEs are concerned with system descriptions of the form

ẋ = f(x, y), g(x, y) = 0, (70)

where x ∈ Rn, y ∈ Rm, and g : Rn+m → Rm models dynamics that are assumed
to be infinitely fast in comparison to the dynamics modelled by f : Rn+m → Rn.
Given a point (x0, y0) ∈ Rn+m such that g(x0, y0) = 0 and ∂g

∂y (x0, y0) ̸= 0, the

implicit function theorem ensures the existence of a unique function ϕ such that
ϕ(x0) = y0 and g(x, ϕ(x)) = 0 in a neighbourhood of (x0, y0). Inductively applying
this argument, one obtains a maximal domain

R =

{
x ∈ Rn | g(x, ϕ(x)) = 0 and det

(
∂g

∂y
(x, ϕ(x))

)
̸= 0

}
for the function ϕ; the authors talk of a specific solution branch R, on which they

concentrate their analysis. Define J(x, y) as the Jacobian of (x, y) 7→
(
f(x, y)
g(x, y)

)
and

define the matrices A,B,C,D as functions of x on the solution branch R through
the formulas

J(x, y) =

∂f
∂x (x, y)

∂f
∂y (x, y)

∂g
∂x (x, y)

∂g
∂y (x, y)

 and

(
A B
C D

)
:= J(x, ϕ(x)). (71)

By the chain rule,

0 =
d

dx
g(x, ϕ(x)) =

∂g

∂x
(x, ϕ(x)) +

∂g

∂y
(x, ϕ(x))

∂ϕ

∂x
(x) = C +D

∂ϕ

∂x
(x),

and hence

d

dx
f(x, ϕ(x)) =

∂f

∂x
(x, ϕ(x)) +

∂f

∂y
(x, ϕ(x))

∂ϕ

∂x
(x) = A−BD−1C.

The generalized reduced Jacobian matrix Fr with respect to the coordinate trans-
formation Θ(x) is then defined as

Fr(x, ϕ(x)) :=
(
Θ̇(x) + Θ(x)[A−BD−1C]

)
Θ−1(x)

with the matrix Θ̇(x) = (Θ̇ij(x))ij = (∇Θij(x) · f(x, ϕ(x)))ij ; see Section 1.3 for
similar considerations in the context of ODEs. Since the system (70) is given by ẋ =
f(x, ϕ(x)), on R we have by (11) exponential contraction in δz(t) = Θ(x(t))δx(t) if
µ(Fr(x(t), ϕ(x(t)))) ≤ −c < 0. For a coordinate transformation ρ, the exponential
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contraction of δw(t) := ρ(ϕ(x(t)))δy(t), where δy is defined through the ‘differential’
Cδx+Dδy = 0 of g(x, y) = 0, follows from sup ∥ρD−1CΘ−1∥ <∞.

Now assume that I ⊂ Rn is a positively invariant set for system (70) and that
the contraction condition µ(Fr(x, ϕ(x))) ≤ −c < 0 holds for all x ∈ C, I ⊂ C; C is
called contraction region. By introducing for matrices Q ∈ Rm×m and R ∈ Rm×n

the generalized unreduced Jacobian matrix

F =

(
Fr +ΘRTCΘ−1 ΘRTDρ−1

QTCΘ−1 QTDρ−1

)
, (72)

the authors show µ(Fr) ≤ µ(F ) for a matrix measure µ with respect to any p-
norm ∥ · ∥p, 1 ≤ p ≤ ∞. This implies that µ(F ) < 0 is a sufficient condition for
contraction. Note that

F

(
δz
δw

)
=

(
FrΘδx+ΘRT (Cδx+Dδy)

QT (Cδx+Dδy)

)
.

To adapt this ansatz to a tractable numerical method, the authors make some
simplifying assumptions. We work the computations out in detail because there
seems to be a slight error in the formulas in [142]: first, it is assumed that Θ ∈ Rn×n

and ρ = I ∈ Rm×m are constant, from which Fr = Θ[A − BD−1C]Θ−1 follows.

Defining the metric M := ΘTΘ and setting R = R̃+D−TBT in (72), delivers

F =

(
Θ(A+ R̃TC)Θ−1 Θ(R̃T +BD−1)D

QTCΘ−1 QTD

)
=

(
Θ(A+ R̃TC)Θ−1 Θ(B + R̃TD)

QTCΘ−1 QTD

)
and then(

δz
δw

)T

F

(
δz
δw

)
=
(
δxTΘT δyT

)(Θ(A+ R̃TC)Θ−1 Θ(B + R̃TD)
QTCΘ−1 QTD

)(
Θδx
δy

)
=
(
δxT δyT

)(ΘTΘ(A+ R̃TC) ΘTΘ(B + R̃TD)
QTC QTD

)(
δx
δy

)
=

(
δx
δy

)T (
M 0
0 I

)(
I R̃T

0 QT

)
︸ ︷︷ ︸

=:ZT

(
A B
C D

)
︸ ︷︷ ︸
=J(x,ϕ(x))

(
δx
δy

)
.

Note that the matrix Z is affine in the components of the metric M = ΘTΘ,
and one can get an appropriate Θ from M by the Cholesky decomposition. With
α = (x, y(x)), the authors then consider the system (70) close to an equilibrium
α∗ and assume that J(α) = J∗ +

∑
k αkJk is a reasonable approximation, i.e. that

J(x, ϕ(x)) = J(α) is affine in the components αk corresponding to the components
of x and y. Then µ(F ) ≤ −β < 0, where µ is the matrix measure with respect to
the Euclidean norm ∥ · ∥2, can be written as the bilinear matrix inequality (BMI)

ZTJ(α) + JT (α)Z ≤ −βI. (73)

The paper is concluded by discussing how to generate positively invariant sets
around α∗ and use numerical methods for BMIs, e.g. from [102, 101], to generate
contraction metrics for concrete systems, which is then used to show contraction of
a two-bus system.
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3.2.5. Continuous, piecewise affine contraction metrics. Given a shape regular tri-
angulation T = {Sν} of a compact set D ⊂ Rn, i.e. a subdivision of D into simplices
Sν that pairwise intersect in a common face or not at all, one can parameterize
continuous, piecewise affine (CPA) functions by fixing their values at the vertices
V of the simplices. Alternatively, one can approximate a function g : D → R by
interpolating its values over the simplices, using its values at the vertices of the
simplices; called CPA interpolation and denoted by gCPA. This has been used to
compute CPA Lyapunov functions for nonlinear systems using linear programming,
see e.g. [93, 134, 63], and has more recently been adapted to compute CPA contrac-
tion metrics using LMIs. The idea is to construct a contraction metric M : D → Sn

that is a CPA function. To this end, inequalities for the conditions of a contraction
metric in the values Mx ∈ S at the vertices x ∈ V are derived. This results in
LMIs and one can incorporate estimates for each simplex in such a way that M
parameterized by a feasible solution is a true contraction metric for the system.

Let us explain this in more detail. Each simplex Sν = conv{xν0 , . . . , xνn} is the
convex hull of (n + 1) vertices in V and every y ∈ Sν can be written uniquely as
a convex combination of the vertices. If we assign to each vertex x ∈ V a value
Mx = ([Mij ]x) ∈ Sn, we can define a function M : D → Sn through

M(y) =

n∑
k=0

λkMxν
k
, where y =

n∑
k=0

λkx
ν
k, λk ≥ 0,

n∑
k=0

λk = 1.

Each entry Mij of the function M = (Mij) is continuous and affine on each simplex

in T . In particular, Mij can be written as Mij(y) = (∇[Mij ]ν)
T
(y − xν0) + [Mij ]xν

0

on Sν , where the vector ∇[Mij ]ν ∈ Rn is constant on the simplex Sν and linear in
the values [Mij ]xν

k
.

In Giesl & Hafstein 2013 [62], this was used to derive LMIs, or a semidefinite op-
timization problem, for systems ẋ = f(t, x), where f is T -periodic, i.e. f(t+T, x) =
f(t, x) for all (t, x) ∈ R × Rn. A feasible solution of the semidefinite optimiza-
tion problem can be used to parameterize a contraction metric for the system that
asserts the existence and exponential stability of a periodic solution, which is a
periodic orbit on the manifold S1

T × Rn, where S1
T is the circle of circumference T .

Further, it is shown that if the system has an exponentially stable periodic solution,
then the optimization problem always has a feasible solution if the domain under
consideration is subdivided into sufficiently small simplices.

In Hafstein & Kawan 2019 [79], a similar approach is followed, but additionally
combining methods from the dimension estimation of attractors, to obtain upper
bounds on the restoration entropy of nonlinear systems. Note that semidefinite op-
timization is not as mature a subject as linear programming and of higher compu-
tational complexity. In particular, large semidefinite optimization problems cannot
be solved efficiently with state-of-the-art methods and hardware. Therefore, a sim-
plified procedure is proposed, computing a constant metric in the first optimization
problem. Then the second optimization problem simplifies to a linear programming
problem and this method is used to obtain an upper bound on the restoration en-
tropy for the Lorenz system. In more detail, first a metric is computed, which is
subsequently fed into a different semidefinite optimization problem that delivers a
Lyapunov-like function, and together the metric and the Lyapunov-like function
deliver an upper bound on the restoration entropy.
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In Giesl, Hafstein & Mehrabinezhad 2021 [66], a different strategy is followed
to compute contraction metrics for nonlinear systems with an exponentially sta-
ble equilibrium. First, a semidefinite optimization problem is proposed, of which
every feasible solution delivers a contraction metric for the system. The essential
constraints of the problem for a system ẋ = f(x) are of the form

∂fT

∂x
(xνj )Mxν

j
+Mxν

j

∂f

∂x
(xνj ) +

(
∇[Mij ]ν · f(xνj )

)
+ h2νEνI ≤ −εI (74)

for all vertices xνj , j = 0, . . . , n, of all simplices Sν in the triangulation. Here, hν is
the diameter of the simplex Sν and Eν is an error term involving an upper bound
on M on Sν and ∥∇[Mij ]ν∥1, which are implemented through auxiliary variables.
Instead of solving this optimization problem, collocation as in Section 3.1 is used
to compute values for the variables Mx and then the constraints (74) are verified.
If all constraints are fulfilled, then the CPA interpolation of the metric computed
by collocation is a contraction metric for the system. This results in a method that
combines the numerical efficiency of the collocation method (solving equations)
with the rigour of the LMI approach. Further, it is proved that this method is
able to compute a contraction metric for any system with an exponentially stable
equilibrium, given that one uses a sufficiently dense collocation grid and sufficiently
small simplices. In [67], this method is adapted to compute contraction metrics for
systems with exponentially stable periodic orbits and in [68] to demonstrate the
robustness of the metrics computed by this method.

3.3. Subgradient method. A subgradient algorithm can be used to estimate the
restoration entropy, see Kawan, Hafstein & Giesl 2021 [95]. According to [97], the
restoration entropy of a system given by the autonomous ODE ẋ = f(x) with
f ∈ C1(Rn,Rn), on a compact positively invariant set K ⊂ Rn, satisfies

hres(f,K) = inf
M∈C1(K,S+

n )
max
x∈K

max
0≤k≤n

k∑
i=1

ζMi (x) (75)

with ζM1 (x) ≥ ζM2 (x) ≥ · · · ≥ ζMn (x) being the solutions ζ(x) of

det

[
∂fT

∂x
(x)M(x) +M(x)

∂f

∂x
(x) + Ṁ(x)− ζ(x)M(x)

]
= 0. (76)

In the numerical approach to solve the minimization problem posed by (75), only
Riemannian metrics on K of the form

M(x) = epa(x)P

are considered, where P ∈ S+
n , pa(x) =

∑
α∈I aαx

α is a polynomial and I ⊂ Nn
0 a

finite set of multi-indices. Hence, the search for the optimal metric is restricted to
the space R|I| × S+

n , where R|I| is equipped with the usual Euclidean metric and
S+
n with its standard Riemannian metric, the so-called trace metric given by

⟨V,W ⟩P := tr(P−1V P−1W ) for all P ∈ S+
n , V,W ∈ TpS+

n = Sn.

The optimization is performed using the Riemannian subgradient algorithm for
geodesically convex functions on the Riemannian product manifold M := R|I|×S+

n ,
cf. [44, 43]. The required geodesic convexity of the objective function

(a, P ) 7→ max
x∈K

max
0≤k≤n

k∑
i=1

ζe
pa(·)P

i (x)
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for this approach is shown in [95].
For the algorithm, one first fixes an initial metric, e.g.M0(x) = I (i.e. a0 = 0 and

P0 = I), and a sequence of step sizes tj satisfying
∑∞

j=1 tj = ∞ and
∑∞

j=1 t
2
j <

∞. Then, in the j-th step of the algorithm, one computes a subgradient Sj of the
objective function at the current point (aj , Pj), normalizes Sj to unit length by
putting S̄j := Sj/|Sj |, and then updates the point (i.e. the Riemannian metric) by

(aj+1, Pj+1) := (aj − tjS̄
1
j , expPj

(−tjS̄2
j )).

Here, expPj
(·) is the Riemannian exponential map of S+

n at Pj ∈ S+
n , and S̄1

j ∈
R|I|, S̄2

j ∈ TPjS+
n = Sn are the two components of S̄. To compute the required

subgradient Sj , one first determines a point x∗ ∈ K that maximizes

g(x;Mj) := max
0≤k≤n

k∑
i=1

ζ
Mj(·)
i (x), (77)

where Mj(x) = epj(x)Pj , and then computes a subgradient of the function (a, P ) 7→
max0≤k≤n

∑k
i=1 ζ

epa(·)P
i (x∗) at Mj . The computed subgradient is then also a sub-

gradient of the objective function. Each bj := g(x∗;Mj) is an upper bound on
the restoration entropy. Note that, in general, the subgradient algorithm does
not deliver a monotonically decreasing sequence bj , but it can be shown that
cj := min0≤i≤j bi converges to the infimum of the objective function restricted to
M and the corresponding Mj converge to a minimizing metric, if such a minimizer
exists. If no minimizer exists, then still limj cj = lim infj bj is equal to the infimum
of the restricted objective function.

This method was used in [95] to compute estimates of the restoration entropy
for continuous- and discrete-time systems, and formulas for the subgradients as
discussed above are provided. A description of the software can be found in Kawan,
Hafstein & Giesl 2021 [94].

In a similar way, the subgradient algorithm can be used for the computation of
contraction metrics for equilibria and periodic orbits as well as the estimation of
the dimension of attractors. In the case of the equilibrium [65], e.g., (77) is replaced
by the maximal ζMj(·), namely

g(x;Mj) := ζ
Mj(·)
1 (x). (78)

Due to the maximization involved in the computation of a subgradient, the sub-
gradient method in the form described here suffers drastically from the curse of
dimensionality. However, for higher dimensional systems it is very likely that a
small-gain approach as developed in [137] can be used to reduce the complexity
by exploiting a decomposition of the system into low-dimensional interconnected
subsystems and performing the costly computations only for those low-dimensional
systems.

Concluding Remarks. In this review, we have presented the basic ideas behind
contraction analysis, its connection to the Lyapunov stability theory, and its histor-
ical development. Further, we have discussed the different criteria for contraction
and convergence, the relationships between them, and various extensions of the
theory to different classes of systems. Finally, we have described how collocation,
semidefinite optimization, and the subgradient method on matrix manifolds, can be
applied to compute contraction metrics for various kinds of systems. The computa-
tional methods are of high complexity and thus currently only capable of computing
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contraction metrics in low-dimensional systems. However, this could be improved
in the future by either using small-gain approaches, improved numerical methods
or other developments. It is the hope of the authors that this review is useful for
researchers interested in contraction analysis, its applications to real-world systems,
and numerical methods for their computation.
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