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Abstract. Complete Lyapunov functions for a dynamical system, given by

an autonomous ordinary differential equation, are scalar-valued functions that
are strictly decreasing along orbits outside the chain-recurrent set. In this

paper we show that we can prescribe the (negative) values of the derivative
along orbits in any compact set, which is contained in the complement of the

chain-recurrent set. Further, the complete Lyapunov function is as smooth as

the vector field defining the dynamics. This delivers a theoretical foundation
for numerical methods to construct complete Lyapunov functions and renders

them accessible for further theoretical analysis and development.

1. Introduction. Initial value problems of autonomous differential equations arise
in many applications and define a dynamical system. Many tools have been devel-
oped to study the long-term behaviour of solutions and classify different behaviour
depending on the initial conditions. One of the classical and fundamental tools is a
Lyapunov function, which is a generalization of the energy in a dissipative system.
It is a scalar-valued function, which is non-increasing along orbits of the dynamical
system. Complete Lyapunov functions, introduced by [3, 6], are scalar-valued func-
tions, which are strictly decreasing along orbits outside the chain-recurrent set and
satisfy additional properties for the values on the chain-recurrent set.

A complete Lyapunov function describes the qualitative behaviour of orbits by
separating the phase space into two disjoint areas with fundamentally different be-
haviour of the flow: the chain-recurrent set and its complement, where the flow
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is gradient-like. On the chain-recurrent set the flow is (almost) recurrent, it con-
tains all equilibria, periodic and almost periodic orbits, as well as local attractors
and repellers. The flow on the chain-recurrent set is sensitive to arbitrarily small
perturbations, while the gradient-like flow is robust to sufficiently small perturba-
tions. Moreover, complete Lyapunov functions reveal stability properties of the
chain transitive components of the chain recurrent set as well as the flow between
them.

If the complete Lyapunov function is differentiable, then the conditions can be
expressed by the derivative along solutions, the orbital derivative: points with van-
ishing orbital derivative characterize the chain-recurrent set, while the orbital de-
rivative is strictly negative in the area of gradient-like flow.

The existence of complete Lyapunov functions was first shown on compact phase
spaces [6] and later on noncompact phase spaces [14, 15, 16, 19]. The existence of
C∞ complete Lyapunov functions on compact state spaces was shown in [8], and
in noncompact spaces in [12]. The latter proof used the connection of complete
Lyapunov functions to time functions in general relativity [13]; this relation was
first noted by [9] and further explored in [5], which gave the first general existence
results for C∞ Lyapunov functions on arbitrary manifolds.

The main condition on complete Lyapunov functions is that the orbital derivative
is strictly negative in the gradient-flow part, i.e. the complement of the chain-
recurrent set. Hence, complete Lyapunov functions are not unique and a natural
question is whether one can prescribe the values of the orbital derivative by a given
negative function on the gradient-flow part.

The main result of the paper is that, indeed, the orbital derivative can be pre-
scribed by an arbitrary, sufficiently smooth function on any compact set, which is
contained in the complement of the chain-recurrent set, see Theorem 2.6. In the
proof we first show that we can reduce the problem to the case where the orbital
derivative is fixed to −1 and then we modify an existing C∞ complete Lyapunov
function on the compact set, while preserving it away from it; this is achieved by
modifying it on flow boxes. The resulting complete Lyapunov function is as smooth
as the vector field defining the system.

This result has implications on the numerical construction of complete Lyapunov
functions. There exist a number of numerical approaches to compute complete Lya-
punov functions. One approach divides the phase space into cells and computes the
flow between these cells to construct a complete Lyapunov function [17, 4]. Other
approaches, however, fix the orbital derivative by a prescribed function and use
collocation methods to solve the resulting partial differential equation for the com-
plete Lyapunov function [1, 2] – or optimization methods with a mixture of equality
and inequality constraints [10]. So far no existence result for these approaches us-
ing equations was available. The results of this paper can be used to ensure that
numerical methods for constructing complete Lyapunov functions with prescribed
orbital derivative are successful, and thus they deliver a theoretical foundation for
these methods.

Let us give an overview of the paper: In Section 2 we define complete Lyapunov
functions and state the main result. In Section 3 we prove the results, before we
conclude the paper in Section 4.
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2. Definition & main result. Let U ⊂ Rn be open and let X : U → Rn be Cl

with l ∈ N ∪ {∞}, where N := {1, 2, 3, 4, 5, . . .}. We consider the dynamical system
defined by solutions of the ODE ẋ = X(x).

Definition 2.1. The local flow of X is the map Φ: Ω → U , (t, p) 7→ Φt(p) such
that

(i) Ω ⊂ R× U is open with {0} × U ⊂ Ω.
(ii) For every p ∈ U the orbit t 7→ Φt(p) is the unique maximally extended solution

to the initial value problem{
∂
∂tΦt(p) = X(Φt(p))

Φ0(p) = p.

Remark 1. (1) The attribute “local” for the flow refers to local in time. We do
not assume that flowlines of X exist on the whole of R for all initial values
p ∈ U .

(2) With the regularity assumption on X the existence of Φ is implied by the The-
orem of Picard-Lindelöf. Note that the local flow enjoys the same regularity
as the generator X, i.e. Φ ∈ Cl.

Let us now define the chain recurrent set. We denote by ‖.‖ the Euclidian norm
on Rn.

Definition 2.2. Let T > 0 and ε : U → (0,∞) be continuous. A finite collection
of points p0, . . . , pm ∈ U (m ≥ 1) is an (ε, T )-chain if there exist ti ≥ T with

‖Φti(pi)− pi+1‖ ≤ ε(Φti(pi))

for all 0 ≤ i ≤ m− 1.

Definition 2.3. A point p ∈ U is chain recurrent for X if for all T > 0 and all
continuous ε : U → (0,∞) there exists an (ε, T )-chain p0 = p, p1, . . . , pm = p.

Denote by

RX
the set of chain recurrent points for X.

Recall that the chain transitive components of the chain recurrent set are the
equivalence classes with respect to the equivalence relation ∼, where p ∼ q for two
points p, q ∈ RX if there exists T > 0 such that for all continuous ε : U → (0,∞)
there is an (ε, T )-chain p = p0, p1, . . . , pm = p containing q.

The following definition of Lyapunov functions is very closely related to [5, Def-
inition 1.4]. Here we omit the smoothness of the functions in favor of a lower
regularity and consider only the case of vector fields.

Definition 2.4. Let X : U → Rn be Cl with l ∈ N∪{∞}. The function τ : U → R
is a Lyapunov function for X if it is Cl regular,

τ̇(p) := ∇τ(p) ·X(p) ≤ 0

for each p ∈ U , and if, at each regular point p of τ , we have τ̇(p) < 0. Recall that
a point p ∈ U is regular for τ : U → R if ∇τ(p) 6= 0.

In the following we sometimes write τ is Lyapunov if the vector field X is
clear from the context, to indicate that τ is a Lyapunov function in the sense of
Definition 2.4 for X.
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Remark 2. This definition of a Lyapunov function is not the usual one, but par-
ticulary useful when studying numerical methods for the computation of Lyapunov
functions; c.f. [11] where similar Lyapunov functions are referred to as complete
Lyapunov function candidates. Note that a usual strict C1 Lyapunov function for
an equilibrium point (or an invariant set I), i.e. a function satisfying τ̇(p) < 0 for
all p 6∈ I and τ̇(p) = 0 for all p ∈ I, attaining its strict minimum at I, is also a
Lyapunov function in the sense above. On the other hand, a Lyapunov function as
above with the additional assumption that it attains its strict minimum at the equi-
librium (or the invariant set where it is constant), is a usual non-strict Lyapunov
function, i.e. a function satisfying τ̇(p) ≤ 0 for all p, attaining its strict minimum
at I.

In order to state the theorem we adopt the notion of complete Lyapunov function
from [6, II.§6.4], see also [12, Definition 4.5]:

Definition 2.5. A Lyapunov function τ : U → R for the vector field X is complete
if it is strictly decreasing along orbits outside of RX and such that (1) τ(RX) is
nowhere dense and (2) for t ∈ τ(RX) the set τ−1(t) ∩ RX is a chain transitive
component.

Remark 3. The original definition in [6, II.§6.4] of a complete Lyapunov function
requires for t ∈ τ(RX) the preimage τ−1(t) to be a chain transitive component.
In general we cannot expect the critical levels of τ to be equal to chain transitive
components. As an example consider U = R2 and a vector field X = χ · e1 with
χ ≥ 0 and χ(x, y) = 0 iff (x, y) = (0, 0). It is obvious that the chain recurrent set
RX consists only of the origin (0, 0) although the critical level {τ = τ((0, 0))} of
any complete Lyapunov function τ : R2 → R is strictly larger than {(0, 0)}. To see
this note that τ(x, 0) > τ(0, 0) for x < 0 and τ(x, 0) < τ(0, 0) for x > 0, because τ is
continuous and strictly decreasing along solution trajectories. Thus the critical level
{τ = τ((0, 0))} divides the plane into at least two connected components. Since a
single point does not divide the plane we arrive at the conclusion that the critical
level is strictly larger than {(0, 0)}.

Remark 4. Our definition of a complete Lyapunov function is stricter than that
of Conley: τ is C1, whereas Conley’s function is merely continuous, and in our
definition p ∈ RX implies ∇τ(p) = 0, which is not necessarily the case in Conley’s
work, even for a differentiable τ . The advantage of this stricter definition is that
the decrease condition can be written ∇τ(p) ·X(p) < 0 for every p ∈ U \RX , which
is much more accessible for numerical methods. Note that a complete Lyapunov
function from Definition 2.5 is also a complete Lyapunov function in the sense of
Conley [6] and it was proved in [12] that such a complete Lyapunov function always
exists, i.e. our definition is not more restrictive.

Now we are ready to state our main result:

Theorem 2.6. Let U ⊂ Rn be open and let X : U → Rn be Cl with l ∈ N ∪ {∞}.
Then for every compact set K ⊂ U \ RX and every Cl-function g : UK → (−∞, 0)
defined on a neighborhood UK of K there exists a complete Cl-Lyapunov function

τK : U → R

with τ̇K |K ≡ g and τ̇K < 0 on U \ RX .
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Remark 5. (a) In the proof we will w.l.o.g. assume that the local flow is com-
plete. Note that for every continuous function f : U → (0,∞) the chain
recurrent sets of X and fX coincide.

Further we can choose a C∞-function f : U → R with f |K ≡ 1 such that
the local flow Ψ of fX is complete, i.e.

Ψ: R× U → U, (t, p) 7→ Ψt(p)

is well defined. Note that Ψ coincides with the local flow of X on K. Further
the set RX = RfX is Ψ-invariant. Thus proving Theorem 2.6 for fX instead
of X yields the claim for the initial vector field as well. We will continue to
use the notation X for the vector field under consideration.

(b) Note that the regularity of τK is in general optimal. As an example consider
a vector field X : R2 → R2 of the form X(x, y) = χ(y)e1 for some Cl-function
χ : R → (0,∞) which is nowhere Cl+1; e.g. the lth derivative might be the
Weierstrass function. Let K := [0, 1] × [0, 1] ⊂ R2 and g ≡ −1. By Theorem
2.6 we have a complete Cl-Lyapunov function τK : R2 → R with τ̇K |K ≡ −1.
The flow of X is given by Φt(x, y) = (x+ tχ(y), y) and

τK(x+ tχ(y), y)− τK(x, y) = −t (1)

as long as {(x + sχ(y), y) | s ∈ [0, t]} ⊂ K. Assume that τK is Cl+1 on an
open set V ⊂ K. Choose 0 < t0, (x0, y0) and δ > 0 such that

(x+ tχ(y), y) ∈ V
for all t ∈ [0, t0] and all |x − x0| < δ and |y − y0| < δ. Since τK is Cl+1 by
assumption and for all t and (x, y) ∈ V in question, we have by (1) for all
small enough h > 0 that

τK(x+ h, y)− τK(x, y)

h
=
−1

χ(y)
,

in particular

∂1τK(x, y) = lim
h→0+

τK(x+ h, y)− τK(x, y)

h
=
−1

χ(y)
6= 0.

Further, the level sets {τK = τK(x0, y0)} and {τK = τK(x0 + t0χ(y0), y0)} are
graphs

{(φi(y), y)| y ∈ I}, i = 0, 1

of two Cl+1 functions φ0 : I → R and φ1 : I → R respectively, where I ⊂ R is
a sufficiently small interval around y0. Hence

−t0
φ1(y)− φ0(y)

=
τK(φ1(y), y)− τK(φ0(y), y)

φ1(y)− φ0(y)
=
−1

χ(y)
,

i.e. φ1(y) − φ0(y) = t0χ(y) for all y ∈ I, from which χ ∈ Cl+1(I) follows, a
contradiction to the assumption.

3. Proof of Theorem 2.6. The proof consists of modifying a sufficiently fast
descending Lyapunov function on K while preserving it away from K. This is
accomplished in Proposition 1. The proposition in turn relies on the main technical
Lemma 3.1, which gives the construction on a single flow box (see definition below).
The proof of the proposition is then a repeated application of the lemma.

By [12] we know that X admits a complete C∞-Lyapunov function, τ ′ : U → R.
We define flow boxes as follows. For r ∈ R let Vτ ′,r be a precompact relatively
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open subset of {τ ′ = r} \ RX , i.e. Vτ ′,r is open in {τ ′ = r} \ RX and the closure

Vτ ′,r is a compact subset of U \ RX . The map

Φ: R× Vτ ′,r → U \ RX , (t, q) 7→ Φt(q)

is a diffeomorphism onto its image. For T > 0 the set

Vτ ′,r,T := Φ((−T, T )× Vτ ′,r) ⊂ U \ RX

is called a flow box, cf. Figure 1.

Figure 1. Schematic figure of a flow box Vτ ′,r,T .

Choose r1 > . . . > rN ∈ R and Vτ ′,ri ⊂ {τ ′ = ri} \ RX such that the flow boxes

Vτ ′,ri,1 := Φ((−1, 1)× Vτ ′,ri)

form an open cover of K, i.e.

K ⊂
N⋃
i=1

Vτ ′,ri,1.

Choose precompact relatively open subsets Wτ ′,ri with Vτ ′,ri ⊂Wτ ′,ri ⊂ {τ ′ = ri}.
Then the flow boxes satisfy

Vτ ′,ri,1 ⊂ Wτ ′,ri,i+1 = Φ((−(i+ 1), i+ 1)×Wτ ′,ri).

Choose a constant 0 < C < ∞ such that Cτ̇ ′ < −N − 3 on
⋃N
i=1Wτ ′,ri,i+1. Set

τ := Cτ ′, si := Cri, Vsi := Vτ ′,ri , Wsi := Wτ ′,ri , Vsi,1 := Vτ ′,ri,1, and Wsi,i+1 :=
Wτ ′,ri,i+1. We then have

τ̇(p) < −N − 3 for all p ∈
N⋃
i=1

Wsi,i+1. (2)
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Recall that a function τ : U → R is a Lyapunov function for the Cl-regular vector
field X if it is Cl regular,

τ̇(p) := ∇τ(p) ·X(p) ≤ 0

for each p ∈ U , and if, at each regular point p of τ , we have τ̇(p) < 0. Further
recall that a Lyapunov function τ : U → R for the vector field X is complete if it is
strictly decreasing along orbits outside of RX and such that (1) τ(RX) is nowhere
dense and (2) for t ∈ τ(RX) the set τ−1(t) ∩RX is a chain transitive component.

We will deduce Theorem 2.6 from the following modification result.

Proposition 1. Let X : U → Rn be Cl with l ∈ N ∪ {∞} and let K ⊂ U \ RX
compact be given. If (2) holds, then there exists a complete Cl-Lyapunov function
τK : U → R such that

(i) τK and τ coincide on U \
⋃
iWsi,i+1,

(ii) ∇τK ·X ≡ −1 on a neighborhood of K, and
(iii) the critical set of τK is equal to RX , i.e. {p ∈ U | ∇τK = 0} = RX .

Proof of Theorem 2.6. From Proposition 1 we obtain a complete Lyapunov function
τK which satisfies all claims of Theorem 2.6 except ∇τK · X|K ≡ −1 and not
∇τK ·X|K ≡ g for a given g : UK → (−∞, 0). Choose a closed neighborhood VK of
U \ UK disjoint from K. Extend g to a negative Cl-function on U with g|VK

≡ −1
and consider the vector field Xg := −X/g. Choose a Lyapunov function τK for Xg

according to Proposition 1. Then we have ∇τK ·Xg|K ≡ −1 which is equivalent to
∇τK ·X|K = τ̇K |K ≡ g.

Proposition 1 follows from the next lemma by repeated application.

Lemma 3.1. Let τ : U → R be a complete Cl-Lyapunov function and M ⊂ U \RX
be closed and assume that ∇τ ·X ≡ −1 on a neighborhood of M . Let Vs,Ws ⊂ {τ =
s} \ RX be relatively open precompact sets with Vs ⊂Ws and k ∈ N such that

τ̇(p) < −k − 3 (3)

for all p ∈ Φ([k, k + 1] ×Ws). Then there exists a complete Cl-Lyapunov function
τ̃ : U → R with

(i) τ̃ ≡ τ on U \Ws,k+1 and

(ii) ∇τ̃ ·X ≡ −1 on a neighborhood of Vs,1 ∪M ,

where Vs,1 := Φ((−1, 1)×Vs) and Ws,k+1 := Φ((−(k+ 1), k+ 1)×Ws) are the flow
boxes around Vs and Ws.

Remark 6. It is important for the proof of the lemma (see 3rd step below) as well
as for the application to Proposition 1 that M is disjoint from Φ([k, k + 1] ×Ws).
The intersection of M with

Φ({−(k + 1)} ×Ws) ∪ Φ([−(k + 1), k]× ∂Ws)

is in general nonempty, though.

Proof of Proposition 1. First note that since we assume that τ is a complete Lya-
punov function and the critical values of τ and τK coincide, it follows trivially that
τK is also a complete Lyapunov function.

The construction of τK proceeds by induction over k = 1, . . . , N ; see Figure 2
for a schematic depiction.
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Figure 2. Schematic presentation of the sets Vsi,1 in the con-
struction of the functions τ̃i.

For k = 1 apply Lemma 3.1 to M = ∅ and Vs,1 = Vs1,1 andWs,2 =Ws1,2. Condi-
tion (3) is satisfied by assumption (2). This yields a Lyapunov function τ̃1 : U → R
with τ̃1 ≡ τ on U \Ws1,2 and ∇τ̃1 ·X ≡ −1 on a neighborhood of Vs1,1.

Now let k ≥ 2 and assume that a Lyapunov function τ̃k−1 : U → R with

τ̃k−1 ≡ τ on U \
⋃
i<k

Wsi,i+1

and

∇τ̃k−1 ·X ≡ −1 on a neighborhood of
⋃
i<k

Vsi,1

has been constructed.
Set M =

⋃
i<k Vsi,1. We show that

Φ([k, k + 1]×Wsk) ∩
⋃
i<k

Wsi,i+1 = ∅.

This especially implies Φ([k, k + 1] × Wsk) ∩ M = ∅. Assume on the contrary
that for a p ∈ Wsk and tp ∈ [k, k + 1] there exist for an i < k a q ∈ Wsi and
tq ∈ (−(i + 1), i + 1) such that Φ(tq, q) = Φ(tp, p). Then we have q = Φ(tp − tq, p)
with tp − tq > 0 and it follows that

sk < si = τ(q) = τ(Φ(tp − tq, p)) < τ(p) = sk,

a contradiction.
Thus we have τ̃k−1 ≡ τ on Φ([k, k + 1] ×Wsk). With the assumption of (2) we

conclude that Condition (3) is satisfied.
Now Lemma 3.1 with s = sk yields a complete Lyapunov function τ̃k : U → R

with τ̃k ≡ τ̃k−1 on U \Wsk,k+1, i.e. τ̃k ≡ τ on U \ ∪i≤kWsi,i+1 and

∇τ̃k ·X ≡ −1 on a neighborhood of
⋃
i≤k

Vsi,1.

This finishes the induction. Setting τK = τ̃N completes the proof.
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Proof of Lemma 3.1. Prelude: The construction will not alter τ on a neighborhood
of U \Ws,k+1. It therefore suffices to carry out the construction for τ |Ws,k+1

ensuring

that the new function coincides with τ on a neighborhood of ∂Ws,k+1. Recall that

RX is the set of critical points of the Lyapunov function τ and Ws,k+1 ⊂ U \ RX .
Therefore the restriction of the flow

Φ: [−(k + 1), k + 1]×Ws →Ws,k+1

is a Cl-diffeomorphism. This implies that constructing τ̃ on Ws,k+1 is equivalent

to constructing the function τ̃ ◦ Φ on [−(k + 1), k + 1] ×Ws such that it coincides
with

τ ◦ Φ: [−(k + 1), k + 1]×Ws → R

on a neighborhood of the relative boundary

{−(k + 1)} ×Ws ∪ {k + 1} ×Ws ∪ [−(k + 1), k + 1]× ∂Ws,

where ∂Ws := Ws \Ws. With the same argument we replace M by the preimage
of M under Φ.

Note that since Φ is the flow of X we have X(p) = DΦ(t, q)e1 for p = Φ(t, q),
where e1 is the direction of the R-factor of R × Ws. Thus τ ◦ Φ is a Lyapunov
function for the constant vector field e1 on [−(k + 1), k + 1]×Ws, because

τ̇(p) = ∇τ(p) ·X(p) = ∇τ(p) ·DΦ(t, q)e1 = ∇(τ ◦ Φ)(t, q) · e1.

Further, we can equivalently write the orbital derivative ∇(τ ◦Φ) · e1 as ∂e1(τ ◦Φ).
The construction will now work with the function τ ◦ Φ on [−(k + 1), k + 1] ×Ws

and the constant vector field e1. We will drop the notation τ ◦ Φ for simply τ in
the following.

The proof proceeds in several steps. In the first step we construct τ̃ in a neigh-
borhood of [−1, 1]× Vs. The second step then carefully interpolates τ̃ with τ near
{−(k+1)}×Ws in order not to destroy the property that ∂e1τ ≡ −1 on a neighbor-
hood of M . The third step then takes care of the interpolation near {k + 1} ×Ws.
Finally the fourth step interpolates τ̃ with τ near [−(k + 1), k + 1] × ∂Ws again
carefully in order not to destroy the property that ∂e1τ ≡ −1 on a neighborhood of
M ∪ [−1, 1]×Vs. As a result we obtain a Lyapunov function τ̃ which coincides with
τ outside of Ws,k+1 and whose orbital derivative on a neighborhood of Vs,1 ∪M
equals −1.

1st step:
In this first step we will construct a Lyapunov function τ1 on [−(k+1), k+1]×Ws

with ∂e1τ1 ≡ −1 on [−1, 1]× Vs, see Figure 3.
Choose a smooth monotone function µ− : R→ [0, 1] with:

(1) µ− ≡ 0 for t ≤ −3/2 and
(2) µ− ≡ 1 for t ≥ −5/4.

Define τ1 : [−(k + 1), k + 1]×Ws → R by

τ1(t, q) := (1− µ−(t))τ(t, q) + µ−(t)

[
τ(−1, q)−

(
t+

3

2

)]
.
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Figure 3. The first step. Note that M can intersect the boundary
of [−(k+1), k+1]×Ws at {−(k+1)}×Ws and [−(k+1), k+1)×∂Ws,
but not at {k + 1} ×Ws (right side).

It is easy to see that τ1 is Cl-regular with ∂e1τ1 < 0 on [−(k + 1), k + 1]×Ws and
∂e1τ ≡ −1 on [−5/4, k + 1]×Ws. Indeed we have

∂e1τ1 =(1− µ−(t))∂e1τ(t, q)− µ−(t)

+ µ′−(t)

[
τ(−1, q)−

(
t+

3

2

)
− τ(t, q)

]
.

The term

(1− µ−(t))∂e1τ(t, q)− µ−(t)

is everywhere negative, since τ is a Lyapunov function for e1 and constant to −1
for t ≥ −5/4. The term

τ(−1, q)− τ(t, q)−
(
t+

3

2

)
is negative for −3/2 ≤ t ≤ −5/4 because τ(t, q) ≥ τ(−1, q). Since µ′− ≥ 0 and
suppµ′− ⊂ [−3/2,−5/4] we conclude that τ1 is Lyapunov. Note that τ1 ≡ τ on

[−(k + 1),−3/2]×Ws.
2nd step: In this step, we construct a function τ2 from τ1, such that ∂e1τ2 ≡ −1

on an appropriate set involving M and [−1, 1]× Vs, see Claim 3.2 and Figure 4.
Fix a neighborhood UM ⊂ [−(k+ 1), k+ 1]×Ws of M (in the relative topology),

such that ∂e1τ |UM
≡ −1. For (t, p) ∈M ∩ [−3/2,−5/4]×Ws consider the level set

{τ = τ(t, p)} ∩ [−7/4,−1]×Ws.
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Figure 4. The second step.

Choose a neighborhood Up of p in Ws such that there exists an open interval Ip
containing τ(t, p) and

{τ ∈ Ip} ∩ [−7/4,−1]× Up ⊂ UM .

Note that ∂e1τ ≡ −1 on {τ ∈ Ip} ∩ [−7/4,−1] × Up according to the choice of
UM . By the Implicit Function Theorem there exists a Cl-function

φp : Up → [−7/4,−1]

with τ(u, q) = τ(t, p) iff u = φp(q), i.e. a parameterization of a part of the level
set {τ = τ(t, p)} (if necessary, shrink Up). Note that we can assume (possibly after
further shrinking Up) that

τ(u, q) = τ(φp(q), q)− u+ φp(q) (4)

in a neighborhood of {(φp(q), q)| q ∈ Up} since the points (φp(q), q) belong to UM
and ∂e1τ ≡ −1 on UM . Define a function

σp : [−(k + 1), k + 1]× Up → R,

σp(u, q) :=

{
τ(u, q), for u ≤ φp(q)
τ(φp(q), q)− u+ φp(q) for u ≥ φp(q).

The function σp is Cl-regular by (4). Further we have ∂e1σp < 0 everywhere with
≡ −1 on {(u, q)| u ≥ φp(q)} ⊂ [−(k + 1), k + 1]× Up.

We select a finite subcover {Uj := Upj}j=1,...,R of the compact set

Ms := {p ∈Ws| ∃t ∈ [−7/4,−5/4] : (t, p) ∈M}.
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Let {λj}j be a smooth partition of unity subordinate to {Uj}j . Then

σ : [−(k + 1), k + 1]×
⋃

1≤j≤R

Uj → R,

σ(t, q) :=
∑
j

λj(q)σpj (t, q)

is a Cl-function with ∂e1σ ≡ −1 on [−1, k + 1] × (∪jUj). Note that σ ≡ τ on
[−(k + 1),−7/4]× (∪jUj).

Let U1 be a neighborhood of Ms (in the relative topology of Ws) with closure in
∪jUj and let ν1 : Ws → [0, 1] be smooth with ν1|U1

≡ 1 and suppν1 ⊂ ∪jUj .
Now the function

τ2 : [−(k + 1), k + 1]×Ws → R,
τ2(t, q) := ν1(q)σ(t, q) + [1− ν1(q)]τ1(t, q)

is Cl and Lyapunov for e1.

Claim 3.2. We claim that ∂e1τ2 ≡ −1 on a neighborhood of

M ∪ [−1, 1]× Vs.

Proof of the claim: We have ∂e1σ ≡ −1 on a neighborhood of [−1, k+1]×suppν1
and ∂e1τ1 ≡ −1 on [−5/4, k + 1]×Ws. Therefore

∂e1τ2(t, q) = ν1(q)∂e1σ(t, q) + (1− ν1(q))∂e1τ1(t, q) ≡ −1

and the claim is obvious on a neighborhood of [−1, k + 1] ×Ws. In particular we
obtain ∂e1τ2 ≡ −1 on a neighborhood of (M ∩ [−1, k + 1] ×Ws) ∪ [−1, 1] × Vs ⊂
[−1, k + 1]×Ws.

It only remains to consider the set M ∩ [−(k + 1),−1) × Ws because M ⊂
[−(k + 1), k + 1]×Ws.

For (t, p) ∈ M with t ∈ (−5/4,−1) there are two cases: If p /∈ suppν1 we
have τ2 ≡ τ1 in a neighborhood of (t, p). It follows that ∂e1τ2 ≡ ∂e1τ1 ≡ −1 in
a neighborhood of (t, p). If p ∈ suppν1 note that ∂e1σpj ≡ −1 in a neighborhood
of (t, p) for all 1 ≤ j ≤ N such that p ∈ Uj . This implies ∂e1σ ≡ −1 near (t, p).
Since ∂e1τ1 ≡ −1 in a neighborhood of (t, p) we obtain again ∂e1τ2 ≡ −1 in a
neighborhood of (t, p).

For (t, p) ∈ M with t ∈ [−3/2,−5/4] we have ν1 ≡ 1 near p. As in the previous
case we have ∂e1σ ≡ −1 in a neighborhood of (t, p), i.e. ∂e1τ2 ≡ −1 near (t, p).

Finally for (t, p) ∈ M with t ∈ [−(k + 1),−3/2) we again distinguish two cases:
First assume p /∈ suppν1. Then τ2 ≡ τ1 ≡ τ in a neighborhood of (t, p). Since
(t, p) ∈ M we conclude ∂e1τ2 ≡ −1 near (t, p). Now assume p ∈ suppν1. For
1 ≤ i ≤ N such that φi(p) is defined, i.e. p ∈ Upi , and t < φi(p) we have σpi ≡ τ
near (t, p) ∈ M , i.e. ∂e1σpi ≡ −1 near (t, p). For 1 ≤ i ≤ N such that φi(p) is
defined and t ≥ φi(p) we have ∂e1σpi ≡ −1 in a neighborhood of (t, p) trivially by
construction. Since τ1 ≡ τ near (t, p) and (t, p) ∈M we also have ∂e1τ1 ≡ −1 near
(t, p). Summing up we conclude ∂e1τ2 ≡ −1 in a neighborhood of (t, p).

This concludes the proof of the claim.
3rd step: Next we modify τ2 on [k, k + 1] ×Ws so that it coincides with τ near

{k+ 1}×Ws, see Figure 5. We start with estimating τ2(k+ 1, q) from below. Note
that by construction

τ1(k + 1, q) = τ(−1, q)− k − 5/2
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M

Figure 5. The third step

and for q ∈ Uj we have

σpj (k + 1, q) = τ(φpj (q), q)− (k + 1) + φpj (q)

≥ τ(−1, q)− (k + 1)− 7/4,

because φpj (q) ∈ [−7/4,−1]. Combining both, the definition of τ2 implies

τ2(k + 1, q) ≥ τ(−1, q)− k − 11/4

for all q ∈Ws. By (3) we have

τ(k + 1, q) ≤ τ(k, q)− k − 3 ≤ τ(−1, q)− k − 3

and therefore there exists ε ∈ (0, 1/2) such that τ < τ2 on [k + 1− 2ε, k + 1]×Ws.
Choose a smooth monotone function µ+ : R→ [0, 1] with:

(1) µ+ ≡ 0 for t ≤ k + 1− 2ε and
(2) µ+ ≡ 1 for t ≥ k + 1− ε

Define τ3 : [−(k + 1), k + 1]×Ws → R by

τ3(s, q) := (1− µ+(s))τ2(s, q) + µ+(s)τ(s, q).

As before we see that τ3 is Lyapunov for e1, using τ < τ2 on the support of the
derivative of µ+. Note that by assumption (3) the sets M and [k, k + 1] ×Ws are
disjoint. Since τ3 ≡ τ2 on [−(k+ 1), k+ 1−2ε]×Ws and k < k+ 1−2ε we continue
to have ∂e1τ3 ≡ −1 on a neighborhood of

M ∪ [−1, 1]× Vs.

Moreover, τ ≡ τ3 near {−(k + 1), k + 1} ×Ws.
4th step: It remains to interpolate τ3 with τ near [−(k + 1), k + 1] × ∂Ws, see

Figure 6. Choose a neighborhood U2 of Vs with closure in Ws and a smooth function
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Figure 6. The fourth step

ν2 : Ws → [0, 1] with ν2 ≡ 1 on U2 and suppν2 ⊂Ws. Then

τ4 : [−(k + 1), k + 1]×Ws → R,
τ4(s, q) := ν2(q)τ3(s, q) + (1− ν2(q))τ(s, q)

is a Cl-function which coincides with τ near the boundary of [−(k+ 1), k+ 1]×Ws

and ∂e1τ4 ≡ −1 on a neighborhood of [−1, 1]× Vs ∪M . Indeed the property holds
for τ3, and for τ outside of [−1, 1] × Vs. Since ν2|[−1,1]×Vs

≡ 1 the claim follows

immediately. Setting τ̃ := τ4 concludes the proof.

4. Conclusions. We consider a dynamical system, given by the flow of a Cl-vector
field X : U → Rn. For any compact subset K of the complement of the chain re-
current set U \ RX and any Cl-function g : U → (−∞, 0), we have established
the existence of a Cl-regular complete Lyapunov function τ for the system that
fulfills τ̇(p) = ∇τ(p) · X(p) = g(p) for every p ∈ K. These results are of essen-
tial importance for methods to numerically compute complete Lyapunov functions.
Indeed, they present a major leap forward in analyzing and improving several meth-
ods that rely on solving PDEs or convex optimization problems containing equal-
ity constraints. Note that there exist efficient numerical methods, e.g. based on
set-oriented algorithms [7] or [18], which compute an overestimation of the chain
recurrent set. By fixing the values of the complete Lyapunov function on the com-
plement of the overestimation, i.e. where the flow in gradient-like, one can compute
a complete Lyapunov function and reduce the overestimation of the chain recurrent
set. To compute a complete Lyapunov function, one can fix the values outside the
chain-recurrent set and use inequality constraints τ̇(p) ≤ 0 on the (overestimation
of the) chain-recurrent set, see [10].
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