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Abstract. A complete Lyapunov function characterizes the behaviour of a

general discrete-time dynamical system. In particular, it divides the state space
into the chain-recurrent set where the complete Lyapunov function is constant

along trajectories and the part where the flow is gradient-like and the complete

Lyapunov function is strictly decreasing along solutions. Moreover, the level
sets of a complete Lyapunov function provide information about attractors,

repellers, and basins of attraction.
We propose two novel classes of methods to compute complete Lyapunov

functions for a general discrete-time dynamical system given by an iteration.

The first class of methods computes a complete Lyapunov function by approx-
imating the solution of an ill-posed equation for its discrete orbital derivative

using meshfree collocation. The second class of methods computes a complete

Lyapunov function as solution of a minimization problem in a reproducing
kernel Hilbert space. We apply both classes of methods to several examples.

1. Introduction. We will consider a general autonomous discrete-time dynamical
system, described by the iteration of a given function g : Rd → Rd:

xn+1 = g(xn), (1)

where x0 ∈ Rd is a fixed initial value. We assume that the function g is continuous,
but will require more smoothness later. We call the sequence (x0, x1, x2, . . .) the
trajectory starting at x0.

We are interested in the dynamics of (1) for different initial conditions. In dy-
namical systems, the phase space Rd can be distinguished into two different parts
with fundamentally different dynamical behaviour: the chain-recurrent set where
infinitesimal perturbations can make the flow recurrent and its complement where
the flow is gradient-like and robust with respect to perturbations.

The chain-recurrent set R is the intersection of all local attractor and repeller
pairs. A point is in the chain-recurrent set, if every ε-trajectory through it comes
back to the point after any given time. An ε-trajectory is close to a true trajectory
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of the system. This indicates (almost) recurrent motion; for a precise definition see,
e.g. [13, 23, 24, 25, 26]. The dynamics in the gradient-like regime are transient.

This distinction into the two sets as well as additional behaviour of solutions of
(1) can be characterized by a complete Lyapunov function (CLF) [13]. A CLF is
a function V : Rd → R which is strictly decreasing along trajectories outside the
chain-recurrent set R, V (R) is a compact, nowhere dense subset of R, and the level
sets of V in R, V −1(r) ∩R 6= ∅, are the chain-transitive components of R.

This implies that a CLF is non-increasing along all trajectories. This property
can be expressed by ∆V (x) ≤ 0 where ∆V (x) = V (g(x))−V (x) denotes the discrete
orbital “derivative”, i.e. the difference between V (xn+1) and V (xn). The values
and level sets of a CLF provide additional information about the dynamics and the
long-term behaviour of the system, e.g. an asymptotically stable equilibrium is a
local minimum of any CLF.

The first proof of the existence of CLFs for dynamical systems was given by
Conley [13] for ODEs on compact metric spaces. Conley’s proof considers each
corresponding attractor-repeller pair and constructs a function which is 1 on the
repeller, 0 on the attractor and decreasing in between. Then these functions are
summed up over all attractor-repeller pairs. Later, Hurley generalized these ideas
to more general spaces [24, 26]. These functions, however, are just continuous
functions. The existence of smooth CLFs for ODEs on compact spaces was shown
in [15] and on noncompact spaces in [32] using results on cone-fields from [9]. Note
that results on CLFs for ODEs and discrete-time systems are strongly related since
a CLF for an ODE is also a CLF for its time-T map. For further results on CLFs,
cf. [16, 24, 26, 31, 1, 30] and [29], where this result is referred to as the Fundamental
Theorem of Dynamical Systems.

We will call any function that satisfies ∆V (x) ≤ 0 a complete Lyapunov function
candidate, abbreviated CLF candidate. The area of the phase space where ∆V (x) =
0 holds contains the chain-recurrent set, and the area where ∆V (x) < 0 holds
displays gradient-flow behaviour. The larger the area where ∆V (x) < 0 holds, the
more information on the flow and location of the chain-recurrent set we obtain from
a CLF candidate. Note that a constant function is trivially a CLF candidate which,
however, does not provide any information about the dynamics. A CLF candidate
resembles the Lyapunov functions considered by Auslander [7].

In the following we will propose methods to compute CLF candidates, ideally
with a large area, where ∆V (x) < 0 holds.

Let us first review computational approaches to construct CLF candidates for
continuous-time dynamical systems, given by an autonomous ODE of the form
ẋ = f(x). In [28, 8, 22] the state space was subdivided into cells, defining a
discrete-time system given by the multivalued time-T map between them, which
was computed using the computer package GAIO [14]. An approximate complete
Lyapunov function was constructed using graph algorithms for the time-T map in
[8]. This approach requires a high number of cells even for low dimensions.

In [10], a CLF was constructed as a continuous piecewise affine (CPA) function,
affine on a fixed simplicial complex.

In [2, 4, 5] a CLF was computed by approximately solving the PDE

V ′(x) = ∇V (x) · f(x) = −1 (2)

using meshfree collocation, in particular using Radial Basis Functions. This is
inspired by constructing classical Lyapunov functions for an equilibrium [17, 20].
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However, (2) cannot be fulfilled at all points in the chain-recurrent set. Meshfree
collocation still constructs an approximation, but error estimates are not available,
as they compare the approximation to the solution of the problem, which does
not exist. The method is able to detect the chain-recurrent set as the area of
the state space where the approximation fails. The method has been improved in
several ways, for example, an iteration was proposed to use the information about
the chain-recurrent set to then formulate a new PDE for a complete Lyapunov
function, which can again be approximated.

Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary. In [18] the problem minimize ‖V ‖H ,
such that V ′(x) = −1 for x ∈ Ω−,

V ′(x) ≤ 0 for x ∈ Ω \ Ω−,
(3)

was considered, where Ω− is a subset of the state space where the flow is gradient-
like. The advantage of this method is that a solution of this problem exists and
it suffices to know any subset of the gradient-flow part. The computation of an
approximate solution was obtained as the norm-minimal solution in a reproducing
kernel Hilbert space after discretization.

Finally, in [19] the following problem was considered{
minimize ‖V ‖2H +

∫
Ω
V ′(x) dx,

such that V ′(x) ≤ 0 for all x ∈ Ω
(4)

It was shown that the problem has a unique solution and any sequence of solutions
to discretized problems with finer and finer subdivisions of Ω converges strongly
to the unique solution. These discretized problems can be formulated as quadratic
programming problems and solved efficiently.

In this paper, we will consider these methods for the computation of CLF can-
didates for continuous-time dynamical systems and adapt them to discrete-time
systems. While some aspects are straight-forward, others require new ideas and
considerations due to the different nature of discrete-time systems. In particular,
the non-locality of the dynamics of discrete-time systems, i.e. the jumps in the sys-
tem state, requires different techniques to be applied. We will consider and compare
the construction of CLF candidates for discrete-time systems by approximating the
solution of the equation ∆V (x) = −1 as well with the methods (3) and (4) using
quadratic programming.

Let us give an overview over the contents: In Section 2 we recall the definition
of reproducing kernel Hilbert spaces. In Section 3 we propose a method to ap-
proximate the solution of ∆V (x) = −1 in a reproducing kernel Hilbert space using
meshfree collocation. In Section 4 we introduce two optimization methods using
quadratic programming to compute CLF candidates. One uses equality and in-
equality constraints, minimizing the norm of the function. The other one minimizes
a combination of the norm and the sum of discrete orbital derivatives, and uses only
inequality constraints. In Section 5 we apply the methods to several examples and
compare the results.

2. Reproducing kernel Hilbert spaces. We give a very short introduction to
reproducing kernel Hilbert spaces (RKHS) as needed in this paper; for references
see [6, 34]. Let Ω ⊆ Rd be a nonempty, bounded domain with Lipschitz boundary
and let H(Ω) be a Hilbert space of functions f : Ω→ R.
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Definition 2.1. A Hilbert space H = H(Ω) with inner product 〈·, ·〉H is called a
reproducing kernel Hilbert space (RKHS) if there is a function Φ : Ω×Ω→ R with

1. Φ(·, x) ∈ H for all x ∈ Ω
2. f(x) = 〈f(·),Φ(·, x)〉H for all f ∈ H and all x ∈ Ω.

The function Φ is called the reproducing kernel of H.
The reproducing kernel is called positive definite, if for any set of pairwise distinct

points {x1, . . . , xN} ⊆ Ω the matrix (Φ(xi, xj))i,j=1,...,N is positive definite.

In a RKHS the Riesz representative of a functional λ ∈ H∗ is given by applying
it to one argument of the kernel, i.e., by λyΦ(·, y), where the superscript y denotes
the application of λ with respect to y. Moreover, we have for λ, µ ∈ H∗

λxµyΦ(x, y) = 〈λxΦ(·, x), µyΦ(·, y)〉H . (5)

The reproducing kernel of a RKHS is unique. The Sobolev space H = Hσ(Ω)
with σ > d/2 is a RKHS, and one can choose a positive definite reproducing kernel
of a space that is norm-equivalent to Hσ(Ω), see [19, Lemma 2.2]. For example,
Wendland’s compactly supported radial basis function ψl,k : R+

0 → R with l =

bd2c+ k + 1, k ∈ N, defines a translation-invariant reproducing kernel by Φ(x, y) =
ψl,k(c‖x− y‖2) with c > 0; the corresponding RKHS with this kernel restricted to

Ω2 consists of the functions in Hσ(Ω) with σ = k + d+1
2 , and the space is norm-

equivalent to Hσ(Ω), see [33]. If Hilbert spaces H1 and H2 consist of the same
elements and have scalar products that induce equivalent norms, then we write
H1
∼= H2.

3. Approximate solution of an ill-posed equation. In this section we seek
to adapt the methods of [2, 4, 5, 3] to discrete-time systems. We want to find an
approximate solution to the ill-posed equation

∆V (x) = −1. (6)

Note that this equation does not have a solution for all points x in the chain-
recurrent set, and thus we expect the approximation to be poor in these areas. The
idea is to use this feature to localize the chain-recurrent set. Note that this only
works if our hypothesis is true, that the approximation is notably worse close to the
chain-recurrent set than further away.

3.1. Meshfree collocation. We will introduce a method to approximate the so-
lution of (6) via meshfree collocation. We fix a bounded domain ∅ 6= Ω ⊆ Rd and a
bounded domain S ⊆ Rd with Lipschitz boundary, such that Ω ∪ g(Ω) ⊆ S. Since
Ω and thus g(Ω) are bounded, S can be chosen as BR = {x ∈ Rd | ‖x‖2 < R} with
sufficiently large R > 0. We consider a RKHS H containing C0(S).

Problem (6) is a special version of the following, more general problem with
r ≡ −1 and L(V ) = ∆V :

given a continuous function r : Ω → R, and a linear operator L : H →
C0, determine a V ∈ H that solves LV = r.

In order to approximately solve this problem, we discretize it by defining a set of
pairwise distinct collocation points X = {x1, . . . , xN} ⊆ Ω and define λi = δxi ◦L as
well as ri = r(xi). This defines a finite number of linear operators λ1, . . . , λN ∈ H∗
and values r1, . . . , rN ∈ R. We assume that the λi are linearly independent, and
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will derive conditions on the points xi to achieve this later. We determine the
norm-minimal interpolant of this data in H, i.e.

min{‖v‖H : λi(v) = ri for i = 1, . . . , N}. (7)

It turns out that the interpolant is given by a linear combination of the Riesz
representatives of the λi, see [34, Theorem 16.1]. In the case of a RKHS, the Riesz
representatives can be expressed in terms of the kernel Φ : S2 → R. Then the
solution of (7) is given by

v(x) =

N∑
j=1

αjλ
y
jΦ(x, y), (8)

where the superscript y denotes the application of the operator λj with respect to
y and the αi ∈ R are such that λi(v) = ri for all i = 1, . . . , N , which is equivalent
to

Aα = r, (9)

with A = (aij)i,j=1,...,N , r = (ri)i=1,...,N and

aij = λxi λ
y
jΦ(x, y).

If the problem LV = r has a solution, then error estimates in terms of the fill
distance hX,Ω = supy∈Ω minx∈X ‖x − y‖2 are available on ‖LV − Lv‖H , where v
denotes the norm minimal approximation. The fill distance is a measure of how
dense the collocation points X are in Ω. Note that since the function evaluation
functional is continuous in a RKHS, an estimate ‖LV − Lv‖H in the norm on H
delivers a point-wise bound on |LV (x)− Lv(x)|.

In our case, we consider the equation (6), which does not have a solution. While
the norm-minimal interpolant of the data can still be determined as described above
and (9) has a unique solution, the error estimates cannot be applied, since a solution
V to LV = r does not exist.

We choose the kernel Φ for our reproducing kernel Hilbert space to be a compactly
supported kernel given by a Wendland function, i.e. Φ(x, y) = φ(‖x − y‖2) where
φ(r) = ψl,k(c · r) with c > 0 and ψl,k is a Wendland function, see Section 2. Then
the corresponding RKHS H of functions S → R, where S is bounded and has a
Lipschitz boundary and with Φ restricted to S2, is norm-equivalent to the Sobolev
space Hσ(S) with σ = k + d+1

2 as discussed above. That is H ∼= Hσ(S).
We fix a finite number of pairwise distinct collocation points X = {x1, . . . , xN} ⊆

Rd and define λi = δxi ◦∆, i.e.

λi(v) = v(g(xi))− v(xi).

We further assume thatX does not contain any fixed point nor any entire periodic
orbit of (1). This implies that the λi are linearly independent, see the following
lemma, and, in particular, that the collocation matrix A is nonsingular.

Lemma 3.1. Let Ω, S 6= ∅ be bounded domains in Rd, such that S has a Lipschitz
boundary and Ω, g(Ω) ⊆ S. Let H ∼= Hσ(S) be a RKHS with σ > d/2 as above.
Let X = {x1, x2, . . . , xN} ⊆ Ω be a set of N pairwise distinct points, that does
not contain any fixed point or entire periodic orbit of (1), i.e., if y1, y2, . . . , yp is a
p-periodic orbit, p ∈ N of (1), then there is at least one point of the periodic orbit,
that is not in X.
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Then the set of operators λi = δxi ◦ ∆, i = 1, . . . , N , is in H∗ and linearly
independent. Further, the collocation matrix A with aij = λxi λ

y
jΦ(x, y) is positive

definite and in particular nonsingular.

Proof. First of all, note that λi ∈ H∗. Indeed, note that xi, g(xi) ∈ S and thus

|λi(h)| ≤ |h(g(xi))− h(xi)|
≤ |〈h(·),Φ(·, g(xi))〉H |+ |〈h(·),Φ(·, xi)〉H |
≤ ‖h‖H(‖Φ(·, g(xi))‖H + ‖Φ(·, xi)‖H)

= ‖h‖H(
√

Φ(g(xi), g(xi)) +
√

Φ(xi, xi)) see (5)

= 2
√
φ(0) ‖h‖H

= C‖h‖H ,

where we have used a RKHS H with a translation-invariant reproducing kernel
Φ(x, y) = φ(‖x − y‖2). The statement is correct for any other H ∼= Hσ(S) with a
different constant.

Now we assume that
∑N
i=1 diλi = 0 and show that all di = 0. Let x ∈ X be such

that x /∈ g(X).
Let us first show that such a point exists. If for all points x ∈ X there was a point

y ∈ X with x = g(y), then we can construct a sequence of points y0 = x, y−1 = y,
etc. such that g(yk) = yk+1. Since there are finitely many points in X, there is
a (minimal) K ∈ N such that y−K is one of the previous points of the sequence,
i.e. y−K = y−L with N 3 L ≤ K. This means that X contains a fixed point or an
entire periodic orbit, namely y−K , y−K+1, . . . , y−L = y−K , in contradiction to the
assumption.

Since x = xk ∈ X, x /∈ g(X) and all points in X are pairwise distinct, there
is a δ > 0 such that Bδ(x) does not contain any points in g(X) or X \ {x}. Let
h ∈ C∞0 (Rd) be a bump function with supp h ⊆ Bδ(x) and h(x) = 1. Then

N∑
i=1

diλih =

N∑
i=1

di[h(g(xi))− h(xi)] = −dk = 0,

Now consider Xnew = X \ {xk}. If this set is not empty, then we can repeat
the above argument and use that Xnew does not contain a fixed point or a entire
periodic orbit and conclude that another coefficient di must be zero. Thus, we can
show that all coefficients di = 0. The collocation matrix A with aij = λxi λ

y
jΦ(x, y) =

〈λi, λj〉H∗ is positive definite, since for α ∈ RN we have

αTAα =

N∑
i,j=1

αiαjaij =

∥∥∥∥∥
N∑
i=1

αiλi

∥∥∥∥∥
2

H∗

≥ 0

and it is zero if and only if α = 0 due to the linear independence of the λi.

We set ri = −1 for all i = 1, . . . , N . Then the solution (8) is given by

v(x) =

N∑
j=1

αj [φ(‖x− g(xj)‖2)− φ(‖x− xj‖2)], (10)

where α ∈ RN is the solution to the linear system of equation

Aα = r,
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with

aij = λxi [φ(‖x− g(xj)‖2)− φ(‖x− xj‖2)]

= φ(‖g(xi)− g(xj)‖2)− φ(‖xi − g(xj)‖2)− φ(‖g(xi)− xj‖2)

+φ(‖xi − xj‖2). (11)

Note that

∆v(x) =

N∑
j=1

αj [φ(‖g(x)− g(xj)‖2)− φ(‖x− g(xj)‖2)

−φ(‖g(x)− xj‖2) + φ(‖x− xj‖2)]. (12)

Since v interpolates the data, we have ∆v(xi) = ri = −1 at all collocation points.
For other points sufficiently far from the chain-recurrent set, we expect ∆v(x) to
be close to −1, although no error estimates are available as described above. If x
is in the chain-recurrent set, however, we expect ∆v(x) to be close to 0. Thus, the
set of points

{x ∈ Rd : ∆v(x) ≥ γ}
with a threshold γ ∈ (−1, 0], usually close to 0, can be expected to give some idea
of the location of the chain-recurrent set. This method will be applied to examples
in Section 5.

4. Minimization problem. In the previous section we have considered an equa-
tion for ∆V (x), which cannot have a solution for all points x in the chain-recurrent
set.

In this section we will consider the inequality ∆V (x) ≤ 0 instead of an equa-
tion for ∆V (x). Recall that this is the condition which defines a CLF candidate.
The advantages compared to the method discussed in the previous section are that
we know that a solution exists, and we can thus prove convergence in some cases.
We will consider two methods: for the first one we only require minimal informa-
tion on the chain-recurrent set and in the second case no information at all. The
disadvantage of the methods in this section is that instead of solving a system of
linear equations, we will now solve a quadratic programming problem, which is
computationally a more demanding problem.

Let us describe the two approaches in more detail: the first one combines equal-
ity and inequality constraints and requires minimal information about the chain-
recurrent set. More exactly, we need to know at least one point x0 which is not in
the chain-recurrent set and will set ∆V (x0) = −1, while we require ∆V (x) ≤ 0 for
all other points. If there exists a CLF candidate W in our solution space for the
system, then such a function V exists. Indeed, noting that ∆W (x0) < 0, as x0 is
not in the chain-recurrent set, the function V (x) = c0W (x) with c0 = − 1

∆W (x0) > 0

satisfies the assumptions above.
We discretize the problem by choosing a set of pairwise distinct points X =

{x0, x1, . . . , xN}, such that there are no fixed points or entire periodic orbits of (1)
in X, and we consider the following minimization problem, which can be solved by
quadratic programming: for v ∈ H minimize ‖v‖H

subject to ∆v(x0) = −1,
∆v(xi) ≤ 0, i = 1, . . . , N
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where H is a suitable Hilbert space. Note that if we only consider equality con-
straints, this reduces to the method of the previous section.

The second approach goes further and only considers inequality constraints of
the form ∆V (x) ≤ 0. However, the norm-minimal solution of this problem is V ≡ 0.
In order to obtain a nontrivial CLF candidate, which has a strictly negative orbital
derivative in a large area, we minimize ‖v‖2H +

∫
Ω

∆v(x) dx, thus rewarding strict
negativity of ∆v(x). The discretized problem can again be solved by quadratic
programming.

4.1. Equality and inequality constraints. In this section we adapt the theory
from [18] to compute CLF candidates for discrete-time systems.

Let Ω, S 6= ∅ be bounded domains in Rd, such that S has a Lipschitz boundary
and Ω, g(Ω) ⊆ S. Consider a reproducing kernel Hilbert space H with inner product
〈·, ·〉H , norm ‖ · ‖H and kernel Φ: Rd ×Rd → R as described above, which is norm-
equivalent to Hσ(S) where σ > d/2.

Fix a set of pairwise distinct collocation points X = {x0, x1, . . . , xN} ⊆ Ω, which
does not contain any fixed points or entire periodic orbits of (1). Furthermore,
we assume that x0 is not in the chain-recurrent set. We will impose an equality
constraint on the single point x0 and inequality constraints for the other points in
X. Note that the theory equally holds if we impose equality constraints on more
points in X than x0 if none of them is in the chain-recurrent set.

We consider the problem: for v ∈ H minimize ‖v‖H
subject to ∆v(x0) = −1,

∆v(xi) ≤ 0, i = 1, . . . , N
(13)

In [18] the theory for general λi ∈ H∗ is developed and all results hold when
considering λi = δxi ◦ ∆. In particular, [18] shows that the problem (13) has a
unique solution, which is of the form

v(x) =

N∑
j=0

αj(δxj ◦∆)yΦ(x, y), (14)

where the coefficients α = (αj)j=0,...,N are the unique solution of the problem: for
α ∈ RN+1  minimize αTAα

subject to A=α = −1
and A≤α ≤ 0 ∈ RN .

(15)

Here, the inequality is to be read componentwise, the matrix elements aij are defined
by

aij = λxi λ
y
jΦ(x, y)

and the matrices by

A = (aij)i,j=0,...,N ∈ R(N+1)×(N+1) =

(
A=

A≤

)
,

A= = (a0j)j=0,...,N ∈ R1×(N+1),

A≤ = (aij)i=1,...,N,j=0,...,N ∈ RN×(N+1).

Note that the explicit formulas for the matrix A and its sub-matrices A= and
A≤ are the same as in (11). The problem (15) is a quadratic programming problem.
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The explicit formulas for v and ∆v are the same as in (10) and (12), when starting
the sum at 0 rather than 1.

4.2. Inequality constraints. In this section we adapt the theory from [19] to
compute CLF candidates for discrete-time systems.

Let Ω, S 6= ∅ be bounded domains in Rd, such that S has a Lipschitz bound-
ary and Ω, g(Ω) ⊆ S. While [19] considers the theory for general linear differ-
ential operators L : Hσ(Ω) → Hσ−m(Ω) of order m, we have a linear operator
∆: Hσ(S)→ Hσ(Ω), Ω ⊆ S, that is not a differential operator, i.e. m = 0. Note in
particular that (v ◦ g) ∈ Hσ(Ω) by our assumptions on v and g (see below).

We are concerned with the problem: for v ∈ H{
minimize ‖v‖2H +

∫
Ω

∆v(x) dx

subject to ∆v(x) ≤ 0,∀x ∈ Ω
(16)

Let us first consider a discretized version. We choose a set of pairwise distinct
collocation points X = {x1, . . . , xN} ⊆ Ω, not containing any fixed point or entire
periodic orbit of (1). Furthermore, we fix wi > 0 for all i = 1, . . . , N . Denote by
H a reproducing kernel Hilbert space with inner product 〈·, ·〉H , norm ‖ · ‖H and
kernel Φ as above, which is norm-equivalent to Hσ(S) with σ > d/2 + 1, i.e. we
have in particular Hσ(S) ⊆ C0(S). Note that λi = δxi ◦ ∆ ∈ H∗ and the λi are
linearly independent by Lemma 3.1.

We assume that g in (1) is in Cdσe(Rd). Consider the problem: for v ∈ H{
minimize ‖v‖2H +

∑N
i=1 ∆v(xi)wi

subject to ∆v(xi) ≤ 0, i = 1, . . . , N
(17)

Using the same arguments as in Section 3.1 of [19] with λi = δxi ◦∆ ∈ H∗, which
are linearly independent by Lemma 3.1, we can conclude that (17) has a unique
solution which can be determined by solving a quadratic programming problem.

In particular, the solution v of (17) is of the form

v(x) =

N∑
j=1

αj(δxj ◦∆)yΦ(x, y), (18)

where the coefficient α = (α1, . . . , αN ) ∈ RN is the unique solution of the problem:
for α ∈ RN {

minimize αTAα+ cTα

subject to Aα ≤ 0 ∈ RN .
(19)

Here, the inequality is to be read componentwise and c = (cj)j=1,...,N is defined by

cj =
∑N
i=1Aijwi for j = 1, . . . , N . Moreover, A = (aij)i,j=1,...,N is defined by

aij = (δxi ◦∆)x(δxj ◦∆)yΦ(x, y), i, j = 1, . . . , N.

Note that the explicit formula for the matrix A is the same as in (11). The
problem (19) is a quadratic programming problem. The explicit formulas for v and
∆v are the same as in (10) and (12).

Now consider the original non-discretized problem (16). We will show that the
minimization problem (16) has a unique solution v. Moreover, v is the limit of
minimizers of the corresponding discretized versions (17), which in turn can be
found as solutions of quadratic programming problems.

The relation to the discretized version is that we subdivide the set Ω into finitely

many, pairwise disjoint measurable sets Ωi ⊆ Ω, i = 1, . . . , N , with
⋃N
i=1 Ωi = Ω
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and wi := |Ωi| > 0. Furthermore, we choose points xi ∈ Ωi and define λi ∈ H∗ by
λi(v) = ∆v(xi) for i = 1, . . . , N . The connection between (16) and (17) is that the
second term in the cost function in (17) converges to the integral

∫
Ω

∆v(x) dx as
n→∞.

We consider problem (16) and show that it has a unique solution, which is the
limit of the solutions of the discretized problem. In the theorem, one assumption
is that a function exists, which satisfies the constraints of a CLF candidate. Note
that the constant function V0 ≡ 0 trivially satisfies these constraints. A proof of
the theorem is given in the appendix.

Theorem 4.1. Let Ω, S 6= ∅ be bounded domains in Rd, such that S has a Lip-
schitz boundary and Ω, g(Ω) ⊆ S. Define H ∼= Hσ(S) to be the RKHS with kernel
Φ(x, y) = ψl,k(c‖x− y‖2) restricted to S2, where c > 0 and ψl,k denotes the Wend-

land function with k ∈ N, l =
⌊
d
2

⌋
+ k + 1. Here σ = k + d+1

2 > d/2 + 1. Let

g ∈ Cdσe(Rd).
Consider the problem : for v ∈ H{

minimize ‖v‖2H +
∫

Ω
∆v(x) dx

subject to ∆v(x) ≤ 0 for all x ∈ Ω.
(20)

and the sequence of optimization problems :
Let Ωn1 , . . . ,Ω

n
Nn
⊆ Ω, n ∈ N, be measurable sets with

• |Ωni | > 0 for all i = 1, . . . , Nn,

•
⋃Nn
i=1 Ωni = Ω for all n ∈ N,

• Ωni ∩ Ωnj = ∅ for all i 6= j and all n ∈ N,
• dn := maxi=1,...,Nn d

n
i → 0 as n→∞, where dni = diam Ωni = supx,y∈Ωni

‖x−
y‖2.

For n ∈ N and i = 1, . . . , Nn let xni ∈ Ωni be such that Xn := {xn1 , xn2 , . . . , xnNn} does
not contain any fixed point or entire periodic orbit of (1). For each fixed n ∈ N let
vn be the solution to: for v ∈ H{

minimize ‖v‖2H +
∑Nn
i=1 ∆v(xni )|Ωni |

subject to ∆v(xni ) ≤ 0, i = 1, . . . , Nn.
(21)

Then the optimization problem (20) has a unique solution and the solutions vn
to the optimization problems (21) converge strongly in H to v as n→∞.

Remark 1. One might be tempted to consider a seemingly more general version
of (20): for v ∈ H {

minimize ‖v‖2H +R
∫

Ω
∆v(x) dx

subject to ∆v(x) ≤ 0 for all x ∈ Ω
(22)

with a parameter R > 0. However, this problem is not more general. If v is the
unique minimizer of (20), then w = Rv is the unique minimizer of (22). Assume
for a contradiction that w = Rv is not the minimizer of (22). Then there exists
u ∈ H such that

‖u‖2H +R

∫
Ω

∆u(x) dx < ‖w‖2H +R

∫
Ω

∆w(x) dx = R2

(
‖v‖2H +

∫
Ω

∆v(x) dx

)
and we have

‖ũ‖2H +

∫
Ω

∆ũ(x) dx < ‖v‖2H +

∫
Ω

∆v(x) dx

with ũ = R−1u. Since ũ fulfills the constraints of (20) v cannot be the minimizer.
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In the examples below we will see that the absolute values of the CLF candi-
dates and their orbital derivatives, computed with this method, are very small in
comparison to the other two methods. This is to be expected due to the objective
function of the minimization problem. However, one can obtain a multiple w = Rv
with larger absolute values by introducing a factor R as discussed in Remark 1 with
identical chain-recurrent set.

Example N αHexa-basis #-evaluation xmin xmax ymin ymax zmin zmax

(24) 3, 584 0.072 1,779,556 −2 2 −2 2
(25) 10, 108 0.03 2,003,001 −2 2 −1 1
(26) 1, 440 0.05 1,334,000 −1.5 1.5 −0.5 0.5
(27) 5, 520 0.025 1,334,000 −1.5 1.5 −0.5 0.5
(28) 2, 900 0.08 1,779,556 −2 2 −2 2
(29) 5, 301 0.07 1,030,301 −0.2 0.9 −0.2 0.9 −0.2 0.9

Table 1. Collocation points X for the examples. We have used N
collocation points in a hexagonal grid with parameter αHexa-basis

within a rectangle (x, y) ∈ [xmin, xmax] × [ymin, ymax] or (x, y, z) ∈
[xmin, xmax] × [ymin, ymax] × [zmin, zmax] for the three-dimensional
example (29). The number of evaluation points is also displayed.

γ for each method
System ∆v(x) = −1 equality-inequality inequality

(24) −0.1 −10−5 0
(25) −0.2 −10−5 −10−4

(26) −0.1 0 −10−2

(27) −0.1 0 0
(28) −0.1 0 0
(29) −0.1 0 0

Table 2. The value of the parameter γ ≤ 0, close to 0, for all
examples. The chain-recurrent set is approximated by the set
(∆v)

−1
([γ,∞)).

5. Examples. We apply all the previous methods to five two-dimensional systems
and one three-dimensional system, starting from relatively simple dynamics to more
complicated attractors.

For all examples we have used the Wendland function ψ6,4(r) = (1− r)6
+(35r2 +

18r+3) and the kernel Φ(x, y) = ψ6,4(c‖x−y‖2) with c = 1 when solving ∆v(x, y) =
−1 (Section 3), with c = 0.1 for the equality and inequality constraints (Section
4.1), and with c = 0.4 for the inequality constraints only (Section 4.2). The different
c were fixed for the different cases using trial-and-error. Lower c correspond to
larger supports of the radial basis functions, which improves the accuracy in the
approximation at the cost of larger condition numbers of the collocation matrices.
For all planar examples, we have used the extra point x0 = (0.5, 0) for the equality
constraint (see Section 4.1) and for the three-dimensional example (29) we enforced
the equality at x0 = (0.4, 0.4, 0).

In Table 1 we specify the collocation points used: they are the intersection of the
specified rectangle with the (shifted) hexagonal grid (23) with fineness-parameter
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αHexa-basis ∈ R+, see [27], where it is shown that this grid gives the optimum fill
distance for a given density of grid points.

αHexa-basis

{
ωd
2

+

d∑
k=1

ikωk : ik ∈ Z

}
, where (23)

ω1 = (2ε1, 0, 0, . . . , 0)

ω2 = (ε1, 3ε2, 0, . . . , 0)

...
...

ωd = (ε1, ε2, ε3, . . . , (d+ 1)εd) and

εk =

√
1

2k(k + 1)
, k ∈ N.

We check the collocation points in X for fixed points and entire periodic orbits,
which must to be removed from X, for otherwise the collocation matrix is singular.
Further, the evaluation points are the points of a Cartesian grid where we evaluated
v and ∆v to approximate the chain-recurrent set and plot the functions. Note that
only in the case of the method from Section 4.2 using inequalities we know that a
sufficiently dense collocation grid will deliver good results, cf. Theorem 4.1. For the
other methods this is a hypothesis.

For the first method, if the original problem had a solution, then error estimates
are available in terms of the fill distance, which show that the error between true
solution and approximation is bounded by the fill distance of the collocation points.
However, in our case, the original problem does not have a solution for points
in the chain-recurrent set, hence, this argumentation does not hold. Nonetheless,
numerical experiments show that in the continuous-time case also here a denser
collocation grid provides better results.

Our approximation of the chain-recurrent set is the set (∆v)
−1

([γ,∞)), where
γ ≤ 0 is close to zero. Table 2 displays the values of γ used in the examples. In
each case the value for γ was fixed using some experimenting what values gave the
best results. Note that for the last two methods, γ = 0 is the natural choice.

5.1. Linear system. We consider the system (1) with

g(x, y) =

(
1
2x

1
3y

)
. (24)

The origin is an asymptotically stable fixed point, which is the entire chain-recurrent
set. Hence, a CLF should have negative orbital derivative everywhere except for
the origin where it should be 0. The origin should be a minimum of the CLF.

The results are shown in Figure 1 for solving ∆v(x, y) = −1 (Section 3), in
Figure 2 for the equality and inequality constraints (Section 4.1), and in Figure 3
for the inequality constraints (Section 4.2). All three methods manage to find a
good approximation of the chain-recurrent set.

5.2. Saddle point. We consider the system (1) with

g(x, y) =

(
x3

2y

)
. (25)

The origin is a saddle point with stable manifold in x-direction and unstable mani-
fold in y-direction, while (±1, 0) are unstable fixed points with a 2-dimensional
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Figure 1. Example (24) with solving ∆v(x, y) = −1. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (middle) ∆v(x, y) of the
constructed complete Lyapunov function v. ∆v is approximately
zero on the chain-recurrent set (origin) and negative everywhere
else. Bottom: Constructed complete Lyapunov function v(x, y),
which has a minimum at the origin.

unstable manifold. The chain-recurrent set is thus {(0, 0)} ∪ {±1, 0} and a CLF
should have zero orbital derivative at these three fixed points and negative orbital
derivative elsewhere. Moreover, a CLF should have a saddle point at {(0, 0)}, which
is a minimum along the x-axis and a maximum along the y-axis, as well as a local
maximum at (±1, 0). The second and third methods are able to approximate the
chain-recurrent set much better than the first one.

The results are shown in Figure 4 for solving ∆v(x, y) = −1 (Section 3), in Figure
5 for the equality and inequality constraints (Section 4.1), and in Figure 6 for the
inequality constraints (Section 4.2).
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Figure 2. Example (24) with equality and inequality constraints.
Chain-recurrent set (top) approximated by the set {(x, y) |
∆v(x, y) ≥ γ}, see Table 2, and the orbital derivative ∆v(x, y)
of the constructed complete Lyapunov function v (middle). Again,
the orbital derivative ∆v is correctly approximated being zero on
the chain-recurrent set (origin) and negative everywhere else. Bot-
tom: Constructed complete Lyapunov function v(x, y), which has
a minimum at the origin. The point with equality constraint was
(0.5, 0).

5.3. Hénon map. We consider the system (1) with

g(x, y) =

(
1− ax2 + y

bx

)
(26)

and the classical parameters a = 1.4 and b = 0.3. For these parameters, there exists
an attractor A, which is the chain-recurrent set. A CLF should have zero orbital
derivative on A and negative orbital derivative elsewhere. Moreover, it should attain
a local minimum at A with the same value, as this is a chain-transitive component.
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Figure 3. Example (24) with inequality constraints. Chain recur-
rent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥ γ}, see
Table 2, and the orbital derivative ∆v(x, y) of the constructed com-
plete Lyapunov function v (middle). ∆v is approximately zero on
the chain-recurrent set (origin) and negative everywhere else. Bot-
tom: The constructed complete Lyapunov function v(x, y), which
has a minimum at the origin.

The results are shown in Figure 7 for solving ∆v(x, y) = −1 (Section 3), in Figure
8 for the equality and inequality constraints (Section 4.1), and in Figure 9 for the
inequality constraints (Section 4.2). While the first method delivers poor results,
both methods with constraints clearly show the Hénon attractor.

5.4. Time-reversed Hénon map. Note that attractors can be found by simula-
ting forward trajectories. It is more difficult to find repellers. However, our methods
are equally capable of localizing repellers, which are equally important for the chain-
recurrent set and are characterized as local maxima, rather than minima in case
of attractors, of a CLF. Note, that although the connection between CLFs of the
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Hénon map and the time-reversed Hénon map is trivial, we cannot expect our
methods to compute such functions to be invariant in the same sense. This is
because the methods are only considering a subset of the whole phase space and
solution trajectories can and will jump out of this subset.

We consider the system (1) with

g(x, y) =

(
y
b

x− 1 + a
b2 y

2

)
(27)

and the classical parameters a = 1.4 and b = 0.3. This is the inverse of the map in
(26) and thus system (26) with inverse time. Hence, the Hénon attractor A of (26)
is a repeller for (27). A CLF should have zero orbital derivative on A and negative
orbital derivative elsewhere. Moreover, it should attain a local maximum at A with
the same value, as this is a chain-transitive component.

The results are shown in Figure 10 for solving ∆v(x, y) = −1 (Section 3), in
Figure 11 for the equality and inequality constraints (Section 4.1), and in Figure 12
for the inequality constraints (Section 4.2). While the first method delivers slightly
better results than for the attractor in the previous example, both methods with
constraints are still superior and clearly show the Hénon repeller.

5.5. Duffing map. We consider the system (1) with

g(x, y) =

(
y

−bx+ ay − y3

)
(28)

and the classical parameters a = 2.75 and b = 0.2. For these parameters, there exists
an attractor A, which is the chain-recurrent set. A CLF should have zero orbital
derivative on A and negative orbital derivative elsewhere. Moreover, it should attain
a local minimum at A with the same value, as this is a chain-transitive component.

The results are shown in Figure 13 for solving ∆v(x, y) = −1 (Section 3), in
Figure 14 for the equality and inequality constraints (Section 4.1), and in Figure 15
for the inequality constraints (Section 4.2). The methods with constraints clearly
show the attractor, while the first method’s results are not as clear.

5.6. Three-dimensional Hénon map. We consider the three-dimensional ver-
sion of the Hénon map, described e.g. in [21]. We consider the system (1) with

g(x, y, z) =

 y
z

M1 +Bx+M2y − z2

 (29)

and the parameters M1 = 0, B = 0.7 and M2 = 0.85. For these parameters,
there exists an attractor A, which is the chain-recurrent set. A CLF should have
zero orbital derivative on A and negative orbital derivative elsewhere. Moreover, it
should attain a local minimum at A with the same value, as this is a chain-transitive
component.

For this three-dimensional example the figures show the approximation of the
chain-recurrent set {(x, y, z) | ∆v(x, y, z) ≥ γ} and projections of this set on planes.
Figure 16 shows the results for solving ∆v(x, y, z) = −1 (Section 3), Figure 17 for
the equality and inequality constraints (Section 4.1), and Figure 18 for the inequality
constraints (Section 4.2). For this example, the first and last method show the best
results, while the second method, using equality and inequality constraints, delivers
the worst results.
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6. Discussion. We have presented three methods to compute a complete Lya-
punov function candidate (CLF) for a general discrete-time dynamical system. The
first method approximates the equation ∆V (x) = −1 using meshfree collocation
by solving a system of linear equations. The equation does not have a solution on
the chain-recurrent set, and hence no error estimates are available. Nevertheless,
for the simpler examples this method produces reasonable approximations of the
chain-recurrent set.

The other two methods use quadratic optimization with equality-inequality con-
straints or inequality constraints, respectively. Generally, the optimization methods
with equality-inequality and inequality constraints are computationally much more
demanding than solving a system of linear equations and do not allow for as many
collocation points. For the equality-inequality constraints, we need to identify one
point outside the chain-recurrent set. This method gives in general inferior results.
For the inequality constraints, no information about the chain-recurrent set is re-
quired, and we have shown that the solutions of the discretized problems converge
to a complete Lyapunov function candidate. This method delivers the best results
in the examples and should be considered superior to the others for computing CLF
candidates for discrete-time systems. Additionally, for this method we were able to
develop theory that asserts that the solutions to the discretized problems converge
to the solution of the continuous problem, and that its solution is a non-trivial CLF
candidate with γ = 0.
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Set wi,n := |Ωni |, λx := δx ◦ ∆ ∈ H∗ for x ∈ Ω, and λi,n := λxni in the following,

and denote by λyxΦ(·, y) ∈ H and λyi,nΦ(·, y) ∈ H the Riesz representers of λx and
λi,n respectively.
Step 1. boundedness of (vn)n∈N and weakly converging subsequence

We have, using (5),

‖λyi,nΦ(·, y)‖2H = λxi,nλ
y
i,nΦ(x, y)

= Φ(g(xni ), g(xni ))− Φ(xni , g(xni ))− Φ(g(xni ), xni ) + Φ(xni , x
n
i )

= 2φ(0)− 2φ(‖g(xni )− xni ‖2)

≤ C2.

We have, see e.g. [34, Theorem 16.7],

−
Nn∑
i=1

λi,n(vn)wi,n = −
Nn∑
i=1

wi,n〈vn, λyi,nΦ(·, y)〉H

≤ |Ω|‖vn‖HC

≤ 1

2
(‖vn‖2H + |Ω|2C2), i.e.

−|Ω|2C2 − ‖vn‖2H ≤ 2

Nn∑
i=1

∆vn(xni )wi,n. (30)

Note that V0 ≡ 0 fulfills the constraints of (20) and (21). Using (30) as well as that
vn is the minimizer of (21) we have

−|Ω|2C2 + ‖vn‖2H ≤ 2

(
‖vn‖2H +

Nn∑
i=1

∆vn(xni )wi,n

)

≤ 2

(
‖V0‖2H +

Nn∑
i=1

∆V0(xni )wi,n

)
= 0.

Thus,

‖vn‖H ≤ C0 := |Ω|C (31)

is bounded for all n. Since bounded sets are relatively compact in the weak topology
of H there is a weakly convergent subsequence of the vn.

In the following we consider any weakly convergent subsequence of the vn with
weak limit v ∈ H, and denote the subsequence again by vn. We show that any such
subsequence converges strongly to the unique minimizer of problem (20), and we
will show the strong convergence of the original sequence at the end of the proof.

Note that we have

‖v‖H ≤ lim sup
n→∞

‖vn‖H ≤ C0. (32)

Step 2. ∆v(x) ≤ 0 for all x ∈ Ω
Now we use the kernel representation to show that the limit v ∈ H from Step 1

fulfils the constraint of (20), i.e. that ∆v(x) ≤ 0 for all x ∈ Ω.
First note that for every x ∈ Ω we have with λx = δx ◦∆

|∆v(x)−∆vn(x)| = |λx(v − vn)| = 〈v − vn, λyxΦ(·, y)〉H −→ 0 (33)
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as vn converges weakly to v.
We can write the kernel as Φ(x, y) = Ψ(x−y) with Ψ: Rd → R. Since σ > d/2+1

the Sobolev embedding theorem shows that Hσ(Rd) ⊆ W 1
∞(Rd) ∩ C1(Rd). Hence,

there is an M > 0 such that ‖∇Ψ(ξ)‖2 ≤M for all ξ ∈ Rd. Since g ∈ C1(Rd), there
is Mg > 0 such that ‖Dg(ξ)‖2 ≤Mg for all ξ ∈ co S.

For x, y ∈ Ω there are ξ, η ∈ Rd on the line segment between 0 and x − y such
that

|∆vn(y)−∆vn(x)|

= |vn(g(y))− vn(y)− vn(g(x)) + vn(x)|

= |〈vn(·),Φ(·, g(y))− Φ(·, y)− Φ(·, g(x)) + Φ(·, x)〉H |

≤ ‖vn‖H (‖Φ(·, g(y))− Φ(·, g(x))‖H + ‖Φ(·, y)− Φ(·, x)‖H)

≤ ‖vn‖H
[

(Φ(g(y), g(y)) + Φ(g(x), g(x))− 2Φ(g(y), g(x)))
1/2

+ (Φ(y, y) + Φ(x, x)− 2Φ(y, x))
1/2 ]

≤ ‖vn‖H
[
(2Ψ(0)− 2Ψ(g(y)− g(x)))

1/2
+ (2Ψ(0)− 2Ψ(y − x))

1/2
]

≤
√

2‖vn‖H
[
(‖∇Ψ(g(ξ))‖2‖Dg(ξ)‖2‖y − x‖2)

1/2
+ (‖∇Ψ(η)‖2‖y − x‖2)

1/2
]

≤
√

2MC0

√
1 +Mg‖y − x‖1/22

≤ C1‖y − x‖1/22 (34)

for all n ∈ N by (31), denoting C1 =
√

2MC0

√
1 +Mg.

We will now show that the fill distance hXn,Ω = supx∈Ω minj=1,...,Nn ‖x − xnj ‖2
satisfies

lim
n→∞

hXn,Ω = 0. (35)

Fix n ∈ N. For a point x ∈ Ω, there is an i ∈ {1, . . . , Nn} with x ∈ Ωni . We have

min
j=1,...,Nn

‖x− xnj ‖2 ≤ ‖x− xni ‖2 ≤ sup
y,z∈Ωni

‖y − z‖2 = dni ≤ dn.

Hence, we also have

hXn,Ω = sup
x∈Ω

min
j=1,...,Nn

‖x− xnj ‖2 ≤ dn.

This shows the statement, since dn → 0 as n→∞.
We will show that for all x ∈ Ω we have ∆v(x) ≤ 0. We do this by fixing x ∈ Ω

and showing that for all ε > 0 we have ∆v(x) < ε. Fix ε > 0. By (33), there is
N1 ∈ N such that for all n ≥ N1 we have

|∆vn(x)−∆v(x)| <
ε

2
. (36)

By (35) there is N2 ∈ N such that for all n ≥ N2 there exists xni ∈ Xn with

‖x− xni ‖2 <
ε2

4C2
1

. (37)
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For n ≥ max(N1, N2) we have by (36), (34) and (37) as well as ∆vn(xni ) ≤ 0, see
(17),

∆v(x) ≤ (∆v(x)−∆vn(x)) + (∆vn(x)−∆vn(xni )) + ∆vn(xni )

<
ε

2
+ C1

ε

2C1
+ 0 = ε.

Step 3. weakly converging subsequence is strongly converging
Since ∆v(x) ≤ 0 holds for all x ∈ Ω, as shown in Step 2, v satisfies the constraints

of (17) and thus

‖vn‖2H +

Nn∑
i=1

∆vn(xni )wi,n ≤ ‖v‖2H +

Nn∑
i=1

∆v(xni )wi,n (38)

since vn is the minimizer.
We will show that for ε > 0 there exists N0 such that

∣∣∣∣∣
Nn∑
i=1

∆vn(xni )wi,n −
Nn∑
i=1

∆v(xni )wi,n

∣∣∣∣∣ < ε (39)

for all n ≥ N0. This implies that the weakly converging subsequence (vn)n∈N from
Step 1 is actually strongly converging to v, because (38) and (39) together imply
that lim supn→∞ ‖vn‖H ≤ ‖v‖H , cf. e.g. [12, Prop. 3.32].

Now we show (39). Define µ(v) :=
∫

Ω
∆v(x) dx. We have µ ∈ H∗ since H ∼=

Hσ(S) and for a constant Cemb independent of v

|µ(v)| ≤
∫

Ω

[v(g(x))− v(x)] dx

≤ 2|Ω| sup
x∈S
|v(x)|

≤ 2|Ω|Cemb‖v‖Hσ(S)

by Theorem 1.4.6 in [11] because σ > d/2+1 > d/2 and S has a Lipschitz boundary.
Hence, we have, with µyΦ(·, y) ∈ H as the Riesz representative of µ ∈ H∗,

∫
Ω

(∆vn(x)−∆v(x)) dx = 〈vn − v, µyΦ(·, y)〉H −→ 0

as n → ∞ since vn converges weakly to v in H. Hence, there is N1 ∈ N such that
for all n ≥ N1 we have

∣∣∣∣∫
Ω

(∆vn(x)−∆v(x)) dx

∣∣∣∣ < ε/3. (40)
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Then we have∣∣∣∣∣
∫

Ω

∆vn(x) dx−
Nn∑
i=1

wi,n∆vn(xni )

∣∣∣∣∣ =

∣∣∣∣∣
Nn∑
i=1

∫
Ωi

∆vn(x) dx−
Nn∑
i=1

∫
Ωi

∆vn(xni ) dx

∣∣∣∣∣
≤

Nn∑
i=1

∫
Ωi

|∆vn(x)−∆vn(xni )| dx

≤ C1

Nn∑
j=1

∫
Ωi

‖x− xni ‖1/2 dx by (34)

≤ C1

Nn∑
j=1

d1/2
n

∫
Ωj

dx

= C1d
1/2
n |Ω| (41)

Note that the same estimate holds for v instead of vn, since (34) holds with the
same constant by (32).

Since dn → 0 as n → ∞ there is N2 ∈ N such that for all n ≥ N2 we have

dn <
ε2

9C2
1 |Ω|2

. For n ≥ N0 := max(N1, N2) we have∣∣∣∣∣
Nn∑
i=1

∆vn(xni )wi,n −
Nn∑
i=1

∆v(xni )wi,n

∣∣∣∣∣ ≤
∣∣∣∣∣
Nn∑
i=1

∆vn(xni )wi,n −
∫

Ω

∆vn(x) dx

∣∣∣∣∣
+

∣∣∣∣∫
Ω

∆vn(x) dx−
∫

Ω

∆v(x) dx

∣∣∣∣
+

∣∣∣∣∣
∫

Ω

∆v(x) dx−
Nn∑
i=1

∆v(xni )wi,n

∣∣∣∣∣
< ε

by (41) and (40), which shows (39).

Step 4. v is unique minimizer
Finally, we seek to show that v is the unique minimizer. First, let us show that

v is a minimizer. Assume that V ∈ H is any function satisfying the constraints of
(20). For every n, V also satisfies the constraints of the discrete problem, so we
have

‖vn‖2H +

Nn∑
i=1

∆vn(xni )wi,n ≤ ‖V ‖2H +

Nn∑
i=1

∆V (xni )wi,n

As n→∞, this becomes

‖v‖2H +

∫
Ω

∆v(x) dx ≤ ‖V ‖2H +

∫
Ω

∆V (x) dx (42)

as ‖vn‖H → ‖v‖H due to the strong convergence,
∑Nn
i=1 ∆vn(xni )wi,n →

∫
Ω

∆v(x) dx

using (40) and (41) and
∑Nn
i=1 ∆V (xni )wi,n →

∫
Ω

∆V (x) dx similar to (41). Equation
(42) shows that v is a minimizer.

To show that there is not more than one minimizer, we first assume that s ∈ H
is a minimizer and v ∈ H satisfies the constraints of (20) and show that

2〈s, v − s〉H +

∫
Ω

∆(v − s)(x) dx ≥ 0. (43)
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For this assume that 2〈s, v− s〉H +
∫

Ω
∆(v− s)(x) dx < 0. Let α ∈ [0, 1]. Note that

t = αv + (1− α)s satisfies the constraints and we have

‖t‖2H +

∫
Ω

∆t(x) dx = ‖s+ α(v − s)‖2H +

∫
Ω

∆[s+ α(v − s)](x) dx

= ‖s‖2H + 2α〈s, v − s〉H + α2‖v − s‖2H

+

∫
Ω

∆s(x) dx+ α

∫
Ω

∆(v − s)(x) dx

< ‖s‖2H +

∫
Ω

∆s(x) dx

for a suitable α > 0. This is a contradiction to s being a minimizer.
Now let s1, s2 ∈ H be minimizers. Then by (43) we have 2〈s1, s2 − s1〉H +∫

Ω
∆(s2 − s1)(x) dx ≥ 0 and 2〈s2, s1 − s2〉H +

∫
Ω

∆(s1 − s2)(x) dx ≥ 0.
This implies

0 ≤ 2‖s1 − s2‖2H
= −2〈s1, s2 − s1〉H − 2〈s2, s1 − s2〉H
= −2〈s1, s2 − s1〉H − 2〈s2, s1 − s2〉H

−
∫

Ω

∆(s2 − s1)(x) dx−
∫

Ω

∆(s1 − s2)(x) dx

≤ 0

which shows s1 = s2.

Step 5. full sequence is strongly convergent
Finally, we remove the subsequence assumption on (vn)n∈N from Step 1. For a

contradiction assume that the original sequence (vn)n∈N does not converge strongly
to v. Then there is an ε > 0 and a subsequence (vnk) such that

‖vnk − v‖H ≥ ε for all k ∈ N. (44)

Since
‖vnk − v‖H ≤ 2C0,

i.e. (vnk − v)k∈N is bounded, it has a weakly convergent subsequence, but then
necessarily vnk converges weakly to v, as we have just shown that every subsequence
of vn converges to the unique minimizer v. This is a contradiction to (44) and thus
the original sequence converges strongly to v.
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Figure 4. Example (25) with solving ∆v(x, y) = −1. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
The approximated chain-recurrent set includes the equilibria at
the origin and (±1, 0), but is much larger, in particular around the
origin. Bottom: Constructed complete Lyapunov function v(x, y),
which has a saddle point at the origin and a local maximum at the
unstable equilibria (±1, 0).
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Figure 5. Example (25) with equality and inequality constraints.
Chain-recurrent set (top) approximated by the set {(x, y) |
∆v(x, y) ≥ γ}, see Table 2, and the orbital derivative (second)
∆v(x, y) of the constructed complete Lyapunov function v over the
chain-recurrent set. The third figure shows the orbital derivative in
a larger set. ∆v is approximately zero on the chain-recurrent set,
consisting of three equilibria at the origin and (±1, 0), and neg-
ative everywhere else. The approximation of the chain-recurrent
set (the equilibria) is much better than when solving the equation
∆v(x, y) = −1. Bottom: Constructed complete Lyapunov function
v(x, y), which has a saddle point at the origin and local maxima
at the unstable equilibria (±1, 0). Note that they have different
levels, which is due to the extra point with equality constraint at
(0.5, 0), resulting in an unsymmetric approximation.
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Figure 6. Example (25) with inequality constraints. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
∆v is approximately zero on the chain-recurrent set, consisting of
three equilibria at the origin and (±1, 0), and negative everywhere
else. The approximation of the chain-recurrent set (the equilib-
ria) is much better than when solving the equation ∆v(x, y) = −1.
Bottom: Constructed complete Lyapunov function v(x, y), which
has a saddle point at the origin and local maxima at the unstable
equilibria (±1, 0).
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Figure 7. Example (26) with solving ∆v(x, y) = −1. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
Bottom: Constructed complete Lyapunov function v(x, y). The
approximated chain-recurrent set does not resemble the Hénon at-
tractor very well, neither using the orbital derivative nor as the
local minimum of the constructed function.
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Figure 8. Example (26) with equality and inequality constraints.
Chain-recurrent set (top) approximated by the set {(x, y) |
∆v(x, y) ≥ γ}, see Table 2, and the orbital derivative (second)
∆v(x, y) of the constructed complete Lyapunov function v over the
chain-recurrent set. The third figure shows the orbital derivative
in a larger set. The characteristic shape of the Hénon attractor is
clearly visible. Bottom: Constructed complete Lyapunov function
v(x, y) with a local minimum at the Hénon attractor. The point
with equality constraint was (0.5, 0).
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Figure 9. Example (26) with inequality constraints. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
The characteristic shape of the Hénon attractor is clearly visible.
Bottom: Constructed complete Lyapunov function v(x, y) with a
local minimum at the Hénon attractor.
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Figure 10. Example (27) with solving ∆v(x, y) = −1. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
Bottom: Constructed complete Lyapunov function v(x, y). The
approximated chain-recurrent set shows the Hénon repeller better
than the Hénon attractor in the previous example, but still not very
clearly. It is not clearly visible as local maximum of the constructed
function either.
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Figure 11. Example (27) with equality and inequality constraints.
Chain-recurrent set (top) approximated by the set {(x, y) |
∆v(x, y) ≥ γ}, see Table 2, and the orbital derivative (second)
∆v(x, y) of the constructed complete Lyapunov function v over the
chain-recurrent set. The third figure shows the orbital derivative
in a larger set. Bottom: Constructed complete Lyapunov func-
tion v(x, y), showing the Hénon repeller as a local maximum. The
repeller is clearly visible in all figures. The point with equality
constraint was (0.5, 0).
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Figure 12. Example (27) with inequality constraints. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
Bottom: Constructed complete Lyapunov function v(x, y), show-
ing the Hénon repeller as a local maximum. The repeller is clearly
visible in all figures.
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Figure 13. Example (28) with solving ∆v(x, y) = −1. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
Bottom: Constructed complete Lyapunov function v(x, y). The ap-
proximated chain-recurrent set shows the attractor relatively well
in the orbital derivative, but not very clearly as local minimum of
the constructed function.
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Figure 14. Example (28) with equality and inequality constraints.
Chain-recurrent set (top) approximated by the set {(x, y) |
∆v(x, y) ≥ γ}, see Table 2, and the orbital derivative (second)
∆v(x, y) of the constructed complete Lyapunov function v over the
chain-recurrent set. The third figure shows the orbital derivative
in a larger set. Bottom: Constructed complete Lyapunov function
v(x, y), showing the attractor as a local minimum. The attractor is
clearer than in the previous method, both using the orbital deriva-
tive and as local minimum of the constructed function. The point
with equality constraint was (0.5, 0), where the orbital derivative
is fixed at −1.



COMPUTING COMPLETE LYAPUNOV FUNCTIONS 333

Figure 15. Example (28) with inequality constraints. Chain-
recurrent set (top) approximated by the set {(x, y) | ∆v(x, y) ≥
γ}, see Table 2, and the orbital derivative (second) ∆v(x, y) of the
constructed complete Lyapunov function v over the chain-recurrent
set. The third figure shows the orbital derivative in a larger set.
Bottom: Constructed complete Lyapunov function v(x, y), show-
ing the attractor as a local minimum. The attractor is clearer than
in the first method, both using the orbital derivative and as local
minimum of the constructed function.
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Figure 16. Example (29) with solving ∆v(x, y, z) = −1.
Top: Chain-recurrent set approximated by the set {(x, y, z) |
∆v(x, y, z) ≥ γ}, see Table 2. The other figures show projec-
tions of this set: projections to the xy− (second), yz− (third)
and xz−plane (bottom).
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Figure 17. Example (29) with equality-inequality constrains.
Top: Chain-recurrent set approximated by the set {(x, y, z) |
∆v(x, y, z) ≥ γ}, see Table 2. The other figures show projec-
tions of this set: projections to the xy− (second), yz− (third)
and xz−plane (bottom). The figures are not as good as with the
previous method. The point with equality constraint is (0.4, 0.4, 0).
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Figure 18. Example (29) with inequality constrains. Top: Chain-
recurrent set approximated by the set {(x, y, z) | ∆v(x, y, z) ≥
γ}, see Table 2. The other figures show projections of this set:
projections to the xy− (second), yz− (third) and xz−plane (bot-
tom).
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