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Computation and Verification of Lyapunov Functions∗
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Abstract. Lyapunov functions are an important tool to determine the basin of attraction of equilibria in Dy-
namical Systems through their sublevel sets. Recently, several numerical construction methods for
Lyapunov functions have been proposed, among them the RBF (Radial Basis Function) and CPA
(Continuous Piecewise Affine) methods. While the first method lacks a verification that the con-
structed function is a valid Lyapunov function, the second method is rigorous, but computationally
much more demanding. In this paper, we propose a combination of these two methods, using their
respective strengths: we use the RBF method to compute a potential Lyapunov function. Then we
interpolate this function by a continuous piecewise affine (CPA) function. Checking a finite num-
ber of inequalities, we are able to verify that this interpolation is a Lyapunov function. Moreover,
sublevel sets are arbitrarily close to the basin of attraction. We show that this combined method
always succeeds in computing and verifying a Lyapunov function, as well as in determining arbitrary
compact subsets of the basin of attraction. The method is applied to two examples.
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1. Introduction. Given an autonomous ordinary differential equation (ODE), we are in-
terested in the determination of the basin of attraction of an exponentially stable equilibrium.

The basin of attraction can be computed using a variety of methods: Invariant manifolds
form the boundaries of basins of attraction, and their computation can thus be used to find a
basin of attraction [24, 23]. The cell mapping approach [20] or set oriented methods [4] divide
the phase space into cells and compute the dynamics between these cells; they have also been
used to construct Lyapunov functions [16, 22, 14].

Lyapunov functions [26] are a natural way of analyzing the basin of attraction. A Lya-
punov function is a function which is decreasing along solutions of the ODE; sublevel sets
of the Lyapunov function are subsets of the basin of attraction. The explicit construction of
Lyapunov functions for a given system, however, is a difficult problem.

In the last decades, several numerical methods to construct Lyapunov functions have been
developed; for a review, see [12]. These methods include the SOS (sums of squares) method,
which is usually applied to polynomial vector fields, introduced in [29] and available as a
MATLAB tool box [28]. It can also be applied to more general systems as shown in [30, 31]
and it constructs a polynomial Lyapunov function by semidefinite optimization.
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A different method deals with Zubov’s equation and computes a solution of this partial
differential equation (PDE) [3]; the corresponding generalized Zubov equation is a Hamilton–
Jacobi–Bellmann equation. This equation has a viscosity solution which can be approximated
using standard techniques after regularization at the equilibrium; for example, one can use
piecewise affine approximating functions and adaptive grid techniques [15].

The Continuous Piecewise Affine (CPA) method constructs a CPA (continuous piecewise
affine)1 Lyapunov function using linear optimization [17, 18, 11]. A simplicial complex is fixed
and the space of CPA functions which are affine on each simplex is considered. This space can
be parameterized by the values at the vertices. The conditions of a Lyapunov function are
transformed into a set of finitely many linear inequalities at the vertices, which include error
estimates ensuring that the CPA Lyapunov function has negative orbital derivative inside each
simplex. These linear inequalities are used as constraints of a linear programming problem,
which can be solved by standard methods.

The RBF (Radial Basis Function) method, a special case of mesh-free collocation, con-
siders a particular Lyapunov function, satisfying a linear PDE, and solves it using mesh-free
collocation [7, 13]. For this method, a set of scattered collocation points is used to find an
approximation to the solution of the linear PDE. It is computed by solving a linear system
of equations. Error estimates show that the method always constructs a (smooth) Lyapunov
function if the collocation points are dense enough and placed in the appropriate area. So far,
however, the method lacks a verification of whether the points are dense enough, i.e., if the
computed function fulfills the properties of a Lyapunov function everywhere.

In this paper, we propose a combination of the RBF and CPA methods: we first compute
an approximation VR to a Lyapunov function using the RBF method. Then we interpolate
this function by a continuous piecewise affine (CPA) function VC , affine on each simplex
of a triangulation. To show that VC is a Lyapunov function, we verify a finite number of
inequalities at the vertices of the simplices, ensuring that the function is a Lyapunov function
in the whole set.

We will show that these inequalities can always be fulfilled if both the collocation points
for the RBF approximation are sufficiently dense and the simplices of the triangulation are
sufficiently small. Furthermore, we also show that any given compact subset C of the basin
of attraction can be covered by a sublevel set of VC . Hence, the method can rigorously
establish that C is a subset of the basin of attraction. The new method requires a much
shorter computation time compared to the original CPA method. Examples show that the
method works well in practice.

Let us give an overview of this paper: After introducing some notation, we discuss the
main facts about Lyapunov functions in section 2. In particular, since our method constructs
a function, which is not a Lyapunov function in the classical sense, we introduce the weaker
notion of a Lyapunov function on M\F◦ (cf. Definition 2.5) also known as practical stability
in the literature. Such a function is not required to be decreasing along solutions on a small
neighborhood F of the equilibrium; moreover, as the function is only assumed to be Lipschitz,

1In numerical analysis such functions are often referred to as piecewise linear or linear splines. As there are
methods that compute Lyapunov functions that are truly linear in cones with the origin as apex, we refrain
from this terminology to avoid confusion.
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the decreasing property along solutions is expressed using the Dini orbital derivative. The
section additionally introduces sublevel sets of a Lyapunov function on M\ F◦, and recalls
the existence of a classical Lyapunov function V satisfying a linear PDE.

In section 3, we discuss mesh-free collocation, in particular using RBFs, to solve a gener-
alized interpolation problem. In particular, this is applied to approximately solve the linear
PDE for the Lyapunov function from section 2. Note that an approximation VR to V , if close
enough, is a valid Lyapunov function, i.e., decreases along solutions. Error estimates on the
difference between the approximation VR and the true solution V , both of the functions and
their orbital derivatives, are established.

Section 4 deals with the interpolation and verification. After recalling triangulations of
a set, CPA functions are introduced, which are characterized by their values at the vertices
of the triangulation. The CPA interpolation WC of a C2 function W is defined, and error
estimates between W and WC as well as their derivatives are established. Moreover, it is
shown that if the CPA function WC satisfies finitely many inequalities at the vertices of the
triangulation, WC has a negative Dini orbital derivative in the whole set.

In section 5, the RBF approximation and CPA interpolation are finally combined and
the main theorem, Theorem 5.1, is proved. Given a (small) compact neighborhood F of the
equilibrium and a (large) compact subset C of its basin of attraction, the RBF approximation
VR of V and, subsequently, its CPA interpolation VC are constructed. If both the collocation
points of the RBF approximation are dense enough and the CPA triangulation is fine enough
and in the appropriate area, then VC satisfies finitely many inequalities at the vertices, veri-
fying that it is a Lyapunov function. Moreover, we show through the sublevel sets of VC that
solutions starting in C enter S in finite time.

Finally, we apply the method to a two- and a three-dimensional example in section 6, and
we end the paper with conclusions in section 7.

Remark 1.1. To keep the proof of the main theorem of this paper, Theorem 5.1, at a
reasonable length, we prove several new results in the sections before, namely Lemma 2.4,
Theorem 2.8, parts of Lemma 3.8, and Corollary 4.12. Other results are essentially known,
but are stated in a different form that can be immediately applied in the proof of Theorem
5.1. These are Theorem 3.9, Corollary 4.11, Lemma 4.15, and Theorem 4.16.

1.1. Notation. We denote the natural numbers by N = {1, 2, . . .}, N0 = {0} ∪ N, the
positive real numbers by R+ = {r ∈ R : r > 0}, and the nonnegative real numbers by R+

0 =

{r ∈ R : r ≥ 0}. For a vector x ∈ Rn and p ≥ 1, we define the norm ‖x‖p = (
∑n

i=1 |xi|p)
1/p.

We also define ‖x‖∞ = maxi∈{1,...,n} |xi|. The induced matrix norm ‖ ∙ ‖p is defined by
‖A‖p := max‖x‖p=1 ‖Ax‖p. Clearly, ‖Ax‖p ≤ ‖A‖p‖x‖p.

Let B be a bounded open subset of Rn. The set of m-times continuously differentiable
functions u : B → R, such that the derivatives Dαu, α ∈ Nn

0 a multi-index with |α| :=∑n
i=1 αi ≤ k, can be continuously extended to B is denoted by Cm(B) and we define the norm

‖u‖Ck(B) =
∑

|α|≤k

sup
x∈B

|Dαu(x)|.

The space of Hölder continuous functions u : B → R with exponent 0 < γ ≤ 1 is denoted
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by Ck,γ(B) and the Hölder norm is defined by

‖u‖Ck,γ(B) =
∑

|α|≤k

sup
x∈B

|Dαu(x)| +
∑

|α|=k

[Dαu]C0,γ(B),

where

[u]C0,γ(B) = sup
x,y∈B,x 6=y

|u(x) − u(y)|
‖x − y‖γ

2

.

For k ∈ N0, the Sobolev space W k
2 (B) consists, as usual, of all u with weak derivatives

Dαu ∈ L2(B), |α| ≤ k. Fractional order Sobolev spaces W τ
2 (B), where τ ∈ R+, can be defined,

e.g., by interpolation theory.
We denote the closure of a set M ⊂ Rn by M, the interior of M by M◦, and the

boundary of M by ∂M. Moreover, the complement of a set M ⊂ Rn is denoted by MC =
Rn \ M. Finally, B(δ) is defined as the open ‖ ∙ ‖2-ball with center 0 and radius δ, i.e.,
B(δ) = {x ∈ Rn : ‖x‖2 < δ}. For a compact set M ⊂ Rn and ε > 0 we define the set
Mε := {x ∈ Rn : dist(x,M) < ε}, where dist(x,M) := miny∈M ‖x − y‖2.

2. Lyapunov functions. In this paper we consider a general autonomous Ordinary Dif-
ferential Equation as described in the following definition.

Definition 2.1. Let

(2.1) ẋ = f(x),

where f ∈ Cσ(Rn,Rn), n, σ ∈ N. We assume that the origin is an exponentially stable
equilibrium of the system and we denote the solution of the system with initial value ξ at
time zero by t 7→ Stξ. We denote the origin’s basin of attraction by A := {ξ ∈ Rn :
limt→∞ Stξ = 0}.

Clearly, Stξ is properly defined for all t ≥ 0 whenever ξ ∈ A, and thus defines a Dynamical
System. The origin is an exponentially stable equilibrium of the system (2.1), if and only if
f(0) = 0 and the real parts of all eigenvalues of Df(0) are strictly negative.

A smooth (strict) Lyapunov function for the equilibrium is a continuously differentiable
function V : M◦ → R, where M is a neighborhood of the origin, fulfilling V (0) = 0 and
V (x) > 0 for all x 6= 0 as well as

(2.2) V ′(x) := ∇V (x) ∙ f(x) < 0

for all x ∈ M◦ \ {0}. Here V ′(x) denotes the orbital derivative, the derivative along solutions
of (2.1).

We will relax this definition in two directions, since the construction algorithm will in
general only produce such a relaxed Lyapunov function. First, it is well known that the
condition “continuously differentiable” can be relaxed to “locally Lipschitz continuous” if the
orbital derivative in (2.2) is replaced by the so-called Dini derivative. Second, we will only
assume the condition (2.2) on M◦ \ F , where F ⊂ M◦ is a neighborhood of the origin.

For M ⊂ Rn, the (upper right) orbital Dini derivative of a locally Lipschitz function
V : M → R along the solution trajectories of (2.1) is defined at every x ∈ M◦ by

(2.3) D+V (x) := lim sup
h→0+

V (x + hf(x)) − V (x)
h

.
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Figure 1. Schematic figures of the sets defined in Definition 2.3. Left: F ⊂ M◦ contains the origin (black
dot) as an interior point. The set OV,m is the union of {x ∈ M \ F◦ : V (x) < m} and F . In the figure it
consists of three connected components. The connected component of OV,m containing the origin is denoted
OV,m,0. If F ⊂ O◦

V,m,0 ⊂ OV,m,0 ⊂ M◦, as in the figure, we define LV,m := OV,m,0. Otherwise, LV,m := ∅.
Right: Linf

V is the intersection of all LV,m 6= ∅ and Lsup
V is the union of all LV,m. For properties of the sets Linf

V

and Lsup
V when V is a Lyapunov function in the sense of Definition 2.5, see Theorem 2.6.

Since V is locally Lipschitz, it is differentiable almost everywhere and, where V is differen-
tiable, we have D+V (x) = ∇V (x) ∙ f(x). If V is continuously differentiable, then the orbital
Dini derivative coincides with the usual orbital derivative everywhere.

Before we give a precise definition of the type of Lyapunov functions which we will use in
this paper, a few definitions are useful.

We define the set Nn of certain neighborhoods of the origin in Rn that we will repeatedly
use in this paper.

Definition 2.2. Denote by Nn the set of all subsets ∅ 6= M ⊂ Rn that fulfill the following:
(i) M is compact.
(ii) The interior M◦ of M is a simply connected open neighborhood of the origin.
(iii) M = M◦.
For a function V with domain M\F◦, where F ,M ∈ Nn, we define LV,m, which denotes

the connected component of the sublevel set with level m that contains the origin. Figure 1
illustrates the sets in the following definition, Definition 2.3.

Definition 2.3. Let F ,M ∈ Nn, F ⊂ M◦. Let V : M\F◦ → R be a continuous function
and m ∈ R be a constant. Define the set

OV,m := F ∪ {x ∈ M \ F◦ : V (x) < m} ⊂ M.

Denote by OV,m,0 the connected component of OV,m satisfying 0 ∈ OV,m,0 ⊂ OV,m. If
F ⊂ O◦

V,m,0 ⊂ OV,m,0 ⊂ M◦, then we define the sublevel set LV,m := OV,m,0; note that in this
case LV,m is open. If no such OV,m,0 exists, then we define LV,m := ∅. We further define

Linf
V :=

⋂

m∈R
LV,m 6=∅

LV,m and Lsup
V :=

⋃

m∈R

LV,m .
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Observe that it is possible that Linf
V and Lsup

V are empty if OV,m,0 = ∅ for all m ∈ R.
However, when nonempty, Linf

V is a closed set, Lsup
V is an open set, and Linf

V ⊂ Lsup
V (see [2,

Theorem 2.5]), which also holds for general m ∈ R. Before we define a Lyapunov function on
M\F◦, we prove a lemma, relating the sublevel sets of two functions V and W that are close
together.

Lemma 2.4. Let F ,M ∈ Nn, F ⊂ M◦. Let V,W : M\ F◦ → R be continuous functions
and m, c ∈ R be constants, c > 0. If

|V (x) − W (x)| ≤ c

holds for all x ∈ M \ F◦ and LV,m−c,LV,m+c 6= ∅, then LW,m 6= ∅ and

LV,m−c ⊂ LW,m ⊂ LV,m+c.

Proof. Using the notation from Definition 2.3, we have by assumption that

OV,m−c ⊂ OW,m ⊂ OV,m+c.

We want to show, using the notation from Definition 2.3 again, that

OV,m−c,0 ⊂ OW,m,0 ⊂ OV,m+c,0.

Let x ∈ OV,m−c,0, which is open by assumption. By definition, OV,m−c,0 is path-connected,
so there is a continuous function γ : [0, 1] → OV,m−c,0 such that γ(0) = 0 and γ(1) = x. We
want to show that γ(θ) ∈ OW,m,0 for all θ ∈ [0, 1]. Indeed, either γ(θ) ∈ F ⊂ OW,m,0, or
V (γ(θ)) < m − c and, thus, by assumption W (γ(θ)) < m.

To show that LW,m 6= ∅, note that since F ⊂ O◦
V,m−c,0, we have

F ⊂ O◦
V,m−c,0 ⊂ O◦

W,m,0.

Using a similar argument, we can also show

OW,m,0 ⊂ OV,m+c,0 ⊂ M◦

and thus in particular that LW,m 6= ∅.
Now we define a Lyapunov function on M \ F◦ which will have a negative Dini orbital

derivative in M\F◦. This is a weaker assumption than a classical Lyapunov function which
has a negative Dini orbital derivative in M \ {0} and a minimum at 0, usually with value
0. For a classical Lyapunov function, (i) and (ii) in Definition 2.5 follow from these two
assumptions; for the weaker notion of a Lyapunov function on M\F◦ we make the assumptions
of (i) a negative Dini orbital derivative, bounded away from zero and (ii) Linf

V 6= ∅, i.e., the
existence of a sublevel set OV,m of V such that the connected component including 0 satisfies
F ⊂ O◦

V,m,0 ⊂ OV,m,0 ⊂ M◦. Since we do not assume V (0) = 0 (in fact, 0 is not even
necessarily in the domain of V ), the level m ∈ R may be negative.

Definition 2.5. Let F ,M ∈ Nn satisfy F ⊂ M◦. A Lipschitz continuous function V :
M \ F◦ → R is called a Lyapunov function on M \ F◦ for (2.1) if there exists a constant
α ∈ R+ such that
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(i) D+V (x) ≤ −α for all x ∈ M◦ \ F and
(ii) Linf

V 6= ∅.
A classical Lyapunov function provides information about the basin of attraction through

its sublevel sets. For a Lyapunov function on M\F◦ as in Definition 2.5, similar but slightly
weaker statements hold as stated in Theorem 2.6 below. Recall that a set N ⊂ Rn is called
forward invariant if ξ ∈ N implies Stξ ∈ N for all t ≥ 0.

Essentially, solutions starting in Lsup
V enter the forward invariant set Linf

V in a finite time;
they also either stay in F or enter infinitely often. If F is known to be a subset of the basin
of attraction, then so is Lsup

V .
Theorem 2.6. Let F ,M ∈ Nn, F ⊂ M◦, and let V be a Lyapunov function on M\F◦ for

the system (2.1) as in Definition 2.1. Let m ∈ R be a constant such that LV,m 6= ∅. Then we
have the following propositions:
(a) LV,m, Linf

V , and Lsup
V are forward invariant sets.

(b) There is a constant T > 0 such that ξ ∈ Lsup
V implies ST ξ ∈ Linf

V .
(c) For every ξ ∈ Lsup

V there is a sequence (tk)k∈N, tk → +∞, such that Stkξ ∈ F for all k.
(d) If F ⊂ A, then Lsup

V ⊂ A, where A denotes the basin of attraction of the origin.
(e) Set a := maxx∈∂F V (x). Then Linf

V is the connected component of F ∪ {x ∈ M \ F◦ :
V (x) ≤ a} that contains 0. In particular, Linf

V is a closed set.
(f) With b := sup{c ∈ R : LV,c 6= ∅} the set Lsup

V is the connected component of F ∪ {x ∈
M \ F◦ : V (x) < b} that contains 0.
Proof. See [2, Theorem 2.5], where the result is shown for a general stable compact at-

tractor Ω, which here is the equilibrium Ω = {0}; note that the proof works also for general
m ∈ R. Note also that all propositions of the theorem except (d) hold true for any system
ẋ = f(x) with f : M → Rn Lipschitz continuous.

Now we turn to an existence theorem for a smooth Lyapunov function, following [7]. We
first define positive definite functions through class K functions.

Definition 2.7.
(i) A continuous function α : [0, +∞[→ [0, +∞[ is said to be of class K if α(0) = 0 and α

is strictly monotonically increasing.
(ii) Let U be a neighborhood of the origin, and let g : U → R be a locally Lipschitz continuous

function. We say that g is a positive definite function if g(0) = 0 and there exists a
class K function α such that g(x) ≥ α(‖x‖2) for all x ∈ U .

Theorem 2.8 (existence of V ). Consider the system (2.1) and let p ∈ Cσ(Rn,R), σ ≥ 1,
be a positive definite function. Further, let q ∈ Cσ(Rn,R) be a positive function such that
supx[‖f(x)‖2/q(x)] < ∞. Then there exists a unique positive definite function V ∈ Cσ(A,R)
such that

(2.4) V ′(x) := ∇V (x) ∙ f(x) = −p(x)q(x)

holds for all x ∈ A. In particular, V is a strict Lyapunov function for the system (2.1) on A
in the conventional sense.

Further, for every m > 0, the sublevel set KV,m := {x ∈ A : V (x) ≤ m} is in Nn, is
homeomorphic to B(1), and has a Cσ boundary.
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Proof. Consider the system

(2.5) ẋ = g(x), where g(x) :=
f(x)
q(x)

.

This system has the same trajectories in the phase space as the system (2.1), as g ∈ Cσ(Rn,Rn)
is f multiplied by the positive, scalar-valued function x → 1/q(x).

Note that for a positive definite function p : Rn → R we have

inf
x∈Rn\B(ε)

p(x) ≥ α(ε) > 0

for all ε > 0, where α ∈ K is as in Definition 2.7. Further, for p ∈ C1(Rn,R) such that
p(0) = 0, we have

lim
x→0

|p(x) −∇p(0) ∙ x|
‖x‖2

= 0,

i.e., |p(x)| ≤ (1 + ‖∇p(0)‖2)‖x‖2 for all x close enough to the origin.
By [7, Theorem 2.46] the PDE

(2.6) V ′(x) := ∇V (x) ∙ g(x) = −p(x)

possesses a solution V ∈ Cσ(A,R) and by [7, Proposition 2.48] this solution is unique up to
a constant. We thus have a unique solution V ∈ Cσ(A,R) to (2.6) fulfilling V (0) = 0. By
the construction of V in the proof of [7, Theorem 2.46] this function is positive definite. Note
that (2.6) and (2.4) are equivalent. Thus, there is a unique solution to (2.4) that is positive
definite.

To show that KV,m is in Nn we follow the arguments in [7]. As supx∈A ‖g(x)‖2 < ∞,
the level set Ω = {x ∈ A : V (x) = m} is a noncharacteristic hypersurface by [7, Lemma
2.37]; for a definition, see [7, Definition 2.36]. Moreover, Ωi in [7, Definition 2.41] is the set
Ωi = {x ∈ A : V (x) < m}. Hence, by [7, Proposition 2.42] we have that KV,m = Ωi ∪ Ω is
homeomorphic to B(1), which shows in particular that KV,m is simply connected and compact,
and, moreover, Ω = ∂KV,m is Cσ-diffeomorphic to the unit sphere, which shows that KV,m

has a Cσ boundary.
Remark 2.9. A simple choice for the function q(x) in Theorem 2.8 is q(x) = 1 + ‖f(x)‖2

2

and we will use it in the examples.
Considering the PDE ∇V (x)∙f(x) = −p(x)q(x) as in (2.4) instead of ∇V (x)∙f(x) = −p(x)

as in [7, Theorem 2.46] has the advantage that the sublevel sets KV,m of V are necessarily
compact.

The following example shows that the solution of ∇V (x)∙f(x) = −p(x) has not necessarily
compact sublevel sets. Consider the one-dimensional system ẋ = f(x), where

f(x) =

{
−1

2x for x < 0,

−1
2x(1 + x2)2 for x ≥ 0.

Note that f ∈ C1(R,R). 0 is the only equilibrium; it is exponentially stable with basin of
attraction A = R. The Lyapunov function

V (x) =

{
x2 for x < 0,

x2

1+x2 for x ≥ 0,
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is a C1(R,R) function, satisfying V ′(x) = −x2 for all x ∈ A. However, sublevel sets KV,m

with m ≥ 1 are not compact.

3. Mesh-free collocation. In this section we discuss the RBF method, a mesh-free col-
location method to solve linear PDE’s, in our case the PDE V ′(x) = −p(x)q(x). Mesh-free
collocation provides a powerful tool for solving generalized interpolation problems efficiently,
in particular linear PDE’s [36, 6, 35]. In this paper we use kernels based on Radial Basis
Functions, in particular Wendland’s compactly supported Radial Basis Functions [34]. The
advantages of mesh-free collocation over other methods to solve PDE’s include that collocation
points can be scattered and the approximation is a smooth function.

3.1. Mesh-free collocation and RBFs. In this section we follow [13, 7]. Let H ⊂ C0(B),
where B ⊂ Rn is a domain, be a Hilbert space of functions G : B → R with inner product
〈∙, ∙〉H and corresponding norm ‖ ∙ ‖H . Let H∗ be its dual with inner product 〈∙, ∙〉H∗ and
corresponding norm ‖ ∙ ‖H∗ . We consider a generalized interpolation problem of the following
form.

Definition 3.1. Given N linearly independent functionals λ1, λ2, . . . , λN ∈ H∗ and N values
G1, G2, . . . , GN ∈ R, a generalized interpolant is a function g ∈ H satisfying λj(g) = Gj, j =
1, 2, . . . , N . The norm-minimal interpolant sG is the interpolant that, in addition, minimizes
the norm of the Hilbert space; i.e., sG is the solution to

min{‖g‖H : λj(g) = Gj , j = 1, 2, . . . , N}.(3.1)

It is well known that the norm-minimal generalized interpolant is a linear combination of
the Riesz representers of the functionals and that the coefficients can be computed by solving
a linear system. We will assume that H is a reproducing kernel Hilbert space (RKHS).

Definition 3.2. A reproducing kernel Hilbert space (RKHS) is a Hilbert space H, such that
there exists a unique kernel Ψ: B × B → R, satisfying

(i) Ψ(∙,x) ∈ H for all x ∈ B,
(ii) g(x) = 〈g, Ψ(∙,x)〉H for all x ∈ B and all g ∈ H.

We denote the RKHS with kernel Ψ by H = NΨ.
For a RKHS, the point evaluation functionals δx are continuous, i.e., δx ∈ H∗ [13, Theorem

10.2] and the Riesz representer of a functional λ ∈ H∗ is given by λyΨ(∙,y) [13, Theorem 16.7];
here, λy denotes the application of λ with respect to the variable y.

Lemma 3.3 (see [13, Theorem 16.1]). If H is a reproducing kernel Hilbert space, then the
solution sG of (3.1) is given by

sG(x) =
N∑

j=1

αjλ
y
j Ψ(x,y),

where α ∈ RN is the solution of the linear system Aα = G with A = (aij)i,j=1,...,N =
(λx

i λy
j Ψ(x,y))i,j=1,...,N and G = (Gj)j=1,...,N .

Note that

aij = λx
i λy

j Ψ(x,y) = 〈λx
i Ψ(∙,x), λy

j Ψ(∙,y)〉H = 〈λi, λj〉H∗(3.2)
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(see [13, Theorem 16.7]), and hence A is positive semidefinite. Since the functionals are
assumed to be linearly independent, the matrix is even positive definite and, in particular,
the linear system Aα = G has a unique solution.

The Wendland functions are positive definite functions with compact support, on their
support they are polynomials. They are defined by the following recursion with respect to the
parameter k.

Definition 3.4 (Wendland functions, [34]). Let l ∈ N, k ∈ N0. We define by recursion

ψl,0(r) = (1 − r)l
+,(3.3)

and ψl,k+1(r) =
∫ 1

r
tψl,k(t) dt(3.4)

for r ∈ R+
0 . Here we set x+ = x for x ≥ 0 and x+ = 0 for x < 0. Setting l := bn

2 c + k + 1,
Φ(x) := ψl,k(c‖x‖2) belongs to C2k(Rn) for any c > 0.

For the rest of this paper, we consider kernels of the form Ψ(x,y) = Φ(x − y), where Φ
is given by a Wendland function, and we make the following assumptions, also including the
discussion at the end of section 2.

Assumptions 3.5. Let V be the Lyapunov function from Theorem 2.8. Denote by k the
smoothness index of the compactly supported Wendland function ψl,k where l = bn

2 c+ k + 1;
let k ≥ 2 if n is odd and k ≥ 3 if n is even. Let c > 0 and define the kernel Ψ(x,y) = Φ(x−y)
by the RBF Φ(x) = ψ(‖x‖2), where ψ(r) = ψl,k(cr). Set τ = k + n+1

2 and σ = dτe.
Since the Fourier transform of Φ given by the Wendland function as in Assumptions 3.5

satisfies

c1(1 + ‖ω‖2
2)

−τ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2
2)

−τ , ω ∈ Rn,(3.5)

with τ = k + (n + 1)/2, we have the following result.
Lemma 3.6. For Φ defined by a Wendland function with index k ∈ N0 as in Assumptions

3.5, the RKHS NΦ(Rn) consists of the same functions as the Sobolev space W
k+(n+1)/2
2 (Rn)

and their norms are equivalent [13, Theorem 10.35]. If the domain B ⊂ Rn has a Lipschitz

boundary, then NΦ(B) consists of the same functions as W
k+(n+1)/2
2 (B) and their norms are

equivalent. This can be shown as in [13, Corollary 10.48].

Note that in Lemma 3.6 the Sobolev spaces W
k+(n+1)/2
2 (Rn) and W

k+(n+1)/2
2 (B) are of

fractional order if n is an even number.

3.2. RBF Lyapunov function. In this section we apply the general theory to the gener-
alized interpolation problem given by the linear PDE (2.4) V ′(x) = −p(x)q(x) in a compact
set D ∈ Rn. For more details and the derivation of the formulas, cf. [7].

We choose pairwise distinct points xj ∈ D, f(xj) 6= 0, for j = 1, 2, . . . , N and denote this
set of collocation points by X := {x1,x2, . . . ,xN}.

Given ψ, we define ψ1 and ψ2 by

ψ1(r) =
d
drψ(r)

r
for r > 0,(3.6)

ψ2(r) =
d
drψ1(r)

r
for r > 0.(3.7)
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Note that by the definition of Wendland functions and since k ≥ 2 (see Assumptions 3.5), ψ1

and ψ2 can be extended continuously to 0; for formulas of ψ1 and ψ2, see [7, Appendix B.1].
The linearly independent functionals are now given by λj = (δxj ◦ L), where LV (x) :=

V ′(x) = ∇V (x) ∙ f(x) denotes the linear operator of the orbital derivative and δξ denotes
Dirac’s delta functional, i.e., δξg = g(ξ). They are linearly independent, since the points are
pairwise distinct and no equilibria, which are the only singular points of the linear operator
[13, Definition 3.2, Proposition 3.3]. By Lemma 3.3, the solution sV of the minimization
problem (3.1) is given by

sV (x) =
N∑

j=1

αj(δxj ◦ L)yΦ(x − y),(3.8)

where the superscript y denotes the application of the operator with respect to y. Note that,
since L is a first-order differential operator, we have sV ∈ C2k−1(Rn,R).

The coefficient vector α ∈ RN is determined by the linear system

Aα = G,(3.9)

where the right-hand side of (3.9) is given by Gj = −p(xj)q(xj) for j = 1, 2, . . . , N and the
matrix A has the elements

aij = (δxi ◦ L)x(δxj ◦ L)yΦ(x − y)

= ψ2(‖xi − xj‖2)〈xi − xj , f(xi)〉2〈xj − xi, f(xj)〉2
−ψ1(‖xi − xj‖2)〈f(xi), f(xj)〉2,(3.10)

where ψ1 and ψ2 were defined in (3.6) and (3.7) and 〈∙, ∙〉2 denotes the Euclidean scalar
product. The approximate solution sV and its orbital derivative (sV )′ are given by (see [7])

sV (x) =
N∑

j=1

αj〈xj − x, f(xj)〉2ψ1(‖x − xj‖2),(3.11)

(sV )′(x) =
N∑

j=1

αj

[

ψ2(‖x − xj‖2)〈x − xj , f(x)〉2〈xj − x, f(xj)〉2

−ψ1(‖x − xj‖2)〈f(x), f(xj)〉2

]

.(3.12)

We will show in Lemma 3.8 that the orbital derivative (sV )′ of sV approximates the orbital
derivative V ′ of V . Note that the solution of V ′(x) = −p(x)q(x) is unique up to a constant;
cf. the proof of Theorem 2.8. As we later estimate the error of the RBF approximation to
V , we define VR which is sV shifted by a constant so that VR(0) = 0. We summarize the
definition of the RBF approximation sV and VR.

Definition 3.7 (RBF approximation of a Lyapunov function). Let V be the Lyapunov func-
tion from Theorem 2.8. We now have the following:
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• By the RBF problem with respect to the X = {x1,x2, . . . ,xN} and using the basis
function ψ, we mean the RBF problem (3.9), where Gj = −p(xj)q(xj) and A is given
by (3.10).

• By the solution sV to the RBF problem, we mean the function (3.11) where α is the
solution of (3.9).

• By the RBF approximation VR of V with respect to X and using the basis function ψ,
we mean the function VR(x) := sV (x) − sV (0).

3.3. Error estimates. In this section we first prove in Lemma 3.8 error estimates between
V and the RBF approximation VR in terms of their orbital derivative (3.13). This enables us
in Theorem 3.9 to show that the error between VR and V , both between the functions and
their orbital derivatives, is small if the fill distance of the collocation points is small.

Moreover, we prove uniform bounds on all approximations sV , which only depend on V
and not on the set of collocation points X; see (3.14) to (3.16).

Lemma 3.8. Let Assumptions 3.5 hold. Let B ⊂ A be a bounded open set with C1 boundary
and let X ⊂ B be a set of points with sufficiently small fill distance2 hX := supx∈B minxj∈X ‖x−
xj‖2. Let sV and VR be the RBF approximations of V with respect to X and the RBF ψ in
the sense of Definition 3.7.

Then there exists a constant C, independent of X and the approximations sV and VR,
such that

‖V ′
R − V ′‖L∞(B) ≤ Ch

k− 1
2

X ‖V ‖
W

k+(n+1)/2
2 (B)

,(3.13)

‖sV ‖W
k+(n+1)/2
2 (B)

≤ C‖V ‖
W

k+(n+1)/2
2 (B)

,(3.14)

‖sV − V ‖
W

k+(n+1)/2
2 (B)

≤ C‖V ‖
W

k+(n+1)/2
2 (B)

,(3.15)

‖sV ‖C2(B) ≤ C‖V ‖
W

k+(n+1)/2
2 (B)

.(3.16)

Proof. The first estimate follows from [13, Corollary 4.11], which holds similarly for the
set B.

For the second and third estimate note that by Lemma 3.6 there are constants c1, c2 > 0
such that

c1‖W‖NΦ(B) ≤ ‖W‖
W

k+(n+1)/2
2 (B)

≤ c2‖W‖NΦ(B)

for all W ∈ W
k+(n+1)/2
2 (B). Using that the approximation is norm-minimal in NΦ(B) (see

section 3.1), i.e., in particular ‖sV ‖NΦ(B) ≤ ‖V ‖NΦ(B), we thus get

‖sV ‖W
k+(n+1)/2
2 (B)

≤ c2‖sV ‖NΦ(B)

≤ c2‖V ‖NΦ(B)

≤
c2

c1
‖V ‖

W
k+(n+1)/2
2 (B)

,

which shows the second inequality. The third inequality follows directly from the second one.

2That is, hX needs to be smaller than a constant h∗, only depending on the set B and the Sobolev space
W

k+(n+1)/2
2 (B).
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To obtain the last inequality, we use general Sobolev inequalities, e.g., [5, Chapter 5.7,
Theorem 6]. Note that B is a bounded open subset of Rn with C1 boundary.

Case 1. If n
2 is not an integer (i.e., n is odd), then k + (n + 1)/2 is an integer larger than

n
2 and we have the estimate

‖sV ‖Ck+(n+1)/2−bn
2 c−1,γ(B)

≤ C‖sV ‖W
k+(n+1)/2
2 (B)

,

where the constant C does not depend on sV . We have γ = bn
2 c + 1 − n

2 = 1
2 and the Hölder

space is Ck+(n+1)/2−bn
2
c−1,γ(B) = Ck,1/2(B).

Case 2. If n
2 is an integer (i.e., n is even), then k + n/2 is an integer larger than n

2 and we
have the estimate

‖sV ‖Ck+n/2−bn
2 c−1,γ(B)

≤ C‖sV ‖W
k+n/2
2 (B)

≤ C‖sV ‖W
k+(n+1)/2
2 (B)

,

where the constant C does not depend on sV . The Hölder space is Ck+n/2−bn
2
c−1,γ(B) =

Ck−1,γ(B).
By the definition of the Hölder norm and under the assumptions on k, we have thus in

both cases that sV ∈ C2,γ(B) ⊂ C2(B) and thus

‖sV ‖C2(B) ≤ ‖sV ‖C2,γ(B) ≤ C‖sV ‖W
k+(n+1)/2
2 (B)

≤ C‖V ‖
W

k+(n+1)/2
2 (B)

,

taking (3.14) into account.
In the following theorem we derive error estimates between the RBF approximation VR

and V , both for the orbital derivatives and, by estimates near the equilibrium and integration
along solutions, also for the functions.

Theorem 3.9. Let Assumptions 3.5 hold. Let K ∈ Nn be a subset of A and let B be a
bounded, open, and forward invariant set with C1 boundary such that K ⊂ B ⊂ A.

Then, given any δ > 0 there is an h∗
R > 0 such that for any set of collocation points X ⊂ B

with fill distance hX := supx∈B minxj∈X ‖x−xj‖2 ≤ h∗
R and not including the origin, the RBF

approximation VR to V with respect to X (cf. Definition 3.7) fulfills

|V (x) − VR(x)| ≤ δ and(3.17)

|V ′(x) − V ′
R(x)| ≤ δ(3.18)

for all x ∈ K.
Proof. We denote the RKHS for the kernel defined by the RBF Φ by NΦ(B). By Lemma

3.6 there is a constant C∗ > 0 such that

‖W‖NΦ(B) ≤ C∗‖W‖
W

k+(n+1)/2
2 (B)

for all W ∈ W
k+(n+1)/2
2 (B).(3.19)

Choose m0 > 0 so small that B(m0) = {x ∈ Rn : ‖x‖2 ≤ m0} ⊂ K◦, and

2m0 max
r̃∈[0,m0]

∣
∣
∣
∣

d

dr
ψ(r̃)

∣
∣
∣
∣ ≤

(
δ

2C∗C‖V ‖
W

k+(n+1)/2
2 (B)

)2

(3.20)
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hold where ψ(r) := ψl,k(cr), C∗ was defined in (3.19) and C comes from Lemma 3.8. This is
possible since d

drψ(r) is bounded.
Choose r0 > 0 so small that

Ω := {x ∈ A : V (x) ≤ r0} ⊂ B(m0)

holds. Define
Γ = ∂Ω = {x ∈ A : V (x) = r0} ⊂ B(m0).

Γ is a noncharacteristic hypersurface by [7, Lemma 2.37] and, hence, by [7, Theorem 2.38]
there exists a function θ ∈ Cσ(A \ {0},R) defined implicitly by Sθ(x)x ∈ Γ; θ(x) denotes the
unique time when the solution through x intersects with Γ. Set

θ0 := max
x∈K

θ(x) > 0.

Define h∗
R > 0 such that both the fill distance h∗

R is small enough in the sense of Lemma 3.8
and

C(h∗
R)k− 1

2 ‖V ‖
W

k+(n+1)/2
2 (B)

≤ min

(
δ

2θ0
, δ

)

,(3.21)

where C is from Lemma 3.8. Now fix X ⊂ B with fill distance hX ≤ h∗
R and denote by sV

and VR the RBF approximations to V with respect to X.
We have VR(x) := sV (x) − sV (0) and thus VR(0) = 0 = V (0). For x∗ ∈ B(m0) we have

with δx∗ , δ0 ∈ NΦ(B)∗,

|V (x∗) − VR(x∗)| = |(δx∗ − δ0)(V − sV + sV (0))|

= |(δx∗ − δ0)(V − sV )|

≤ ‖δx∗ − δ0‖NΦ(B)∗ ∙ ‖V − sV ‖NΦ(B)

≤ C∗‖δx∗ − δ0‖NΦ(B)∗ ∙ ‖V − sV ‖W
k+(n+1)/2
2 (B)

≤ C∗C‖δx∗ − δ0‖NΦ(B)∗ ∙ ‖V ‖
W

k+(n+1)/2
2 (B)

(3.22)

using (3.19) and (3.15).
We use (3.2) for the norm in H∗ = NΦ(B)∗. Moreover, Taylor expansion yields the

existence of an r̃ ∈ [0, ρ], where ρ := ‖x∗‖2 ≤ m0 such that

‖δx∗ − δ0‖
2
N ∗

Φ(B) = (δx∗ − δ0)x(δx∗ − δ0)yΦ(x − y)

= (δx∗ − δ0)x [ψ(‖x − x∗‖2) − ψ(‖x‖2)]

= 2 [ψ(0) − ψ(‖x∗‖2)]

= −2
d

dr
ψ(r̃)ρ

≤

(
δ

2C∗C‖V ‖
W

k+(n+1)/2
2 (B)

)2

; cf. (3.20).
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Hence, we have with (3.22)

|V (x∗) − VR(x∗)| ≤
δ

2
for all x∗ ∈ B(m0).(3.23)

For x ∈ Γ, i.e., V (x) = r0, we have x ∈ B(m0) and hence

VR(x) ∈

[

r0 −
δ

2
, r0 +

δ

2

]

for all x ∈ Γ.(3.24)

For the orbital derivatives we have, using (3.13) of Lemma 3.8 and (3.21),

|V ′
R(x) − V ′(x)| ≤ C(h∗

R)k− 1
2 ‖V ‖

W
k+(n+1)/2
2 (B)

≤ min

(
δ

2θ0
, δ

)

(3.25)

for all x ∈ B, which shows (3.18) as K ⊂ B.
We will now show (3.17), namely |V (x) − VR(x)| ≤ δ for all x ∈ K. If x ∈ Ω ⊂ B(m0),

then the statement follows from (3.23).
Now let x ∈ K \ Ω, i.e., in particular that θ(x) ∈ [0, θ0]. Then we have, using Sθ(x)x ∈ Γ,

(3.24) and (3.25)

VR(x) = VR(Sθ(x)x) −
∫ θ(x)

0
V ′

R(Sτx) dτ

≤ r0 +
δ

2
+
∫ θ(x)

0

(

−V ′(Sτx) +
δ

2θ0

)

dτ

≤ V (Sθ(x)x) −
∫ θ(x)

0
V ′(Sτx) dτ

︸ ︷︷ ︸
= V (x)

+
δ

2
+

δ

2

= V (x) + δ.

Similarly, we can show VR(x) ≥ V (x) − δ, which proves the theorem.
The error estimates in Theorem 3.9 show that the RBF method will construct a Lyapunov

function VR such that both the function and its orbital derivative are close to V and V ′,
respectively. In particular, sublevel sets of VR and V are close if the fill distance of the
collocation points is small.

The drawback of this theorem, however, is that the relation between δ and h∗
R, i.e., error

and fill distance, involves unknown quantities such as ‖V ‖
W

k+(n+1)/2
2 (B)

. Hence, the error

estimate provides no direct tool to determine how dense the collocation points must be chosen,
and not even to verify that an approximation VR has negative orbital derivative, i.e., is a
Lyapunov function for the system.

In this paper, we will derive a verification method to ensure that the constructed function
is a Lyapunov function; this is a major improvement compared to the original RBF method.
Note, however, that the verified function is not the RBF approximation itself, but a CPA
interpolation if it.



16 PETER GIESL AND SIGURDUR HAFSTEIN

4. CPA verification. In the remainder of this paper, we will present an algorithm involving
a verification procedure, which will guarantee that we have constructed a Lyapunov function.
This Lyapunov function will not be VR itself, but an interpolation of VR by a CPA function,
denoted VC . The function VC interpolates VR on a triangulation, using the values of VR at
the vertices. If finitely many inequalities are satisfied, then the function VC is a Lyapunov
function. Moreover, we will prove that the algorithm will construct a function VC which can be
verified to be a Lyapunov function by finitely many inequalities, if both the RBF collocation
points and the triangulation are fine enough.

The inequalities are taken from the CPA method to construct Lyapunov functions [18],
where the values of the Lyapunov function at the vertices are determined by linear program-
ming. Here, however, the method is used to verify rather than to construct a Lyapunov
function, so no computationally demanding linear programming problem has to be solved.
This is a major improvement with respect to the computation time compared to the original
CPA method.

We will first discuss the triangulation before we present the CPA interpolation of a function
and the inequalities to verify that a function has negative orbital derivative. In the following
section 5, we will then combine the RBF method to construct and the CPA method to verify
Lyapunov functions, and prove that it always succeeds.

4.1. Triangulation. A triangulation T of a subset of Rn consists of countably many n-
simplices Sν . To simplify notation we often write T = (Sν), where it is to be understood that
ν = 1, 2, . . . , N , if T has a finite number N of (different) simplices, or ν ∈ N, if T is infinite.

Let us first recall the definition of a simplex. Let (x0,x1, . . . ,xm) be an ordered (m +
1)−tuple of vectors in Rn. The set of all convex combinations of these vectors is denoted
by co(x0,x1, . . . ,xm) := {

∑m
i=0 λixi : 0 ≤ λi ≤ 1,

∑m
i=0 λi = 1}. The vectors (x0,x1, . . . ,xm)

are called affinely independent if
∑m

i=1 λi(xi − x0) = 0 implies λi = 0 for all i = 1, 2, . . . ,m.
If (x0,x1, . . . ,xm) are affinely independent, then the set S := co(x0,x1, . . . ,xm) is called an
m-simplex and the vectors x0,x1, . . . ,xm are said to be its vertices. We consider two simplices
S1 and S2 to be equal if they are equal as sets, although we represent them as the convex
combination of an ordered tuple (x0,x1, . . . ,xm) of vertices.

We will briefly describe triangulations suited for our needs; for more details, cf. [9, 10]. We
start by defining general triangulations and CPA functions, then we define the triangulations
which we use in this paper and derive their basic properties.

Definition 4.1 (triangulation). Let T be a collection of n-simplices Sν in Rn. T is called
a triangulation if for every Sν ,Sμ ∈ T , ν 6= μ, either Sν ∩ Sμ = ∅ or Sν and Sμ inter-
sect in a common face. Recall that a face of an n-simplex co(x0,x1, . . . ,xn) is a k-simplex
co(xi0 ,xi1 , . . . ,xik), where 0 ≤ k < n and the 0 ≤ i0, i1, . . . , ik ≤ n are pairwise different
integers.

For a triangulation T we define

VT := {x ∈ Rn : x is a vertex of a simplex in T }

and
DT :=

⋃

Sν∈T

Sν .
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We call VT the vertex set of the triangulation T and we say that T is a triangulation of the
set DT .

We will introduce and use some standard triangulations in this paper; see Definition
4.8. For some figures of these triangulations together with a discussion on how they can be
efficiently generated, see [19, 10].

Definition 4.2 (CPA function). Let T = (Sν) be a triangulation of a set DT ⊂ Rn. A
continuous piecewise affine function P : DT → R can be defined by fixing its value at every
vertex of the vertex set VT .

More exactly, assume that for every x ∈ VT we are given a number Px ∈ R. Then we can
uniquely define a continuous function P : DT → R through the following:

(i) P (x) := Px for every x ∈ VT ,
(ii) P is affine on every simplex Sν ∈ T , i.e., there is a vector aν ∈ Rn and a number

bν ∈ R, such that P (x) = aT
ν x + bν for all x ∈ Sν .

The set of all such continuous piecewise affine functions D → R fulfilling (i) and (ii) is
denoted by CPA[T ] or CPA[(Sν)].

For every Sν ∈ T we define ∇Pν = ∇P |Sν := aν , where aν ∈ Rn is as in (ii). Note that
∇Pν = aν is unique for every simplex Sν .

Remark 4.3. If x ∈ Sν = co (xν
0 ,x

ν
1 , . . . ,x

ν
n) ∈ T , then x can be written uniquely as a

convex combination x =
∑n

i=0 λixν
i , 0 ≤ λi ≤ 1 for all i = 0, 1, . . . , n, and

∑n
i=0 λi = 1 of the

vertices of Sν and

P (x) = P

(
n∑

i=0

λix
ν
i

)

=
n∑

i=0

λiP (xν
i ) =

n∑

i=0

λiPxν
i
.

For a triangulation we can define the set of shape matrices, built from the vectors that
span each simplex. They will be used to define a family of regular triangulations below.

Definition 4.4. Let T = (Sν) be a triangulation.
(i) For a simplex Sν = co (xν

0 ,x
ν
1 , . . . ,x

ν
n) ∈ T , we define its diameter hν through

hν := max
x,y∈Sν

‖x − y‖2.

(ii) For a simplex Sν = co (xν
0 ,x

ν
1 , . . . ,x

ν
n) ∈ T , we define its shape matrix Xν ∈ Rn×n

through
Xν := (xν

1 − xν
0 ,x

ν
2 − xν

0 , . . . ,x
ν
n − xν

0)
T .

Thus, the matrix Xν is defined by writing the entities of the vector xν
i − xν

0 in the ith
row of Xν for i = 1, 2, . . . , n.

(iii) We refer to the set {Xν : Sν ∈ T } as the shape matrices of the triangulation T .
It is not difficult to derive a formula for ∇Pν in terms of of the shape matrix Xν of Sν

and the values of P at the vertices of Sν ; cf. [11, Remark 9].
Lemma 4.5. Let T be a triangulation, let P ∈ CPA[T ], and let Sν = co (xν

0 ,x
ν
1 , . . . ,x

ν
n) ∈

T . Then ∇Pν = X−1
ν p, where p = (p1, p2, . . . , pn)T is a column vector with pi := Pxν

i
− Pxν

0

for i = 1, 2, . . . , n.
We will need triangulations which become finer and finer with a parameter ρ, but still stay

regular, in the sense that the opening angles of the corners of the simplices remain bounded



18 PETER GIESL AND SIGURDUR HAFSTEIN

from below. The precise conditions for a set of triangulation to be regular are given below.
Definition 4.6. Let T = (Sν) be a triangulation. Let h, d > 0 be constants. The triangula-

tion T is said to be (h, d)-bounded if it fulfills the following:
(i) The diameter of every simplex Sν ∈ T is bounded by h, i.e.,

hν = diam(Sν) := max
x,y∈Sν

‖x − y‖2 < h.

(ii) The degeneracy of every simplex Sν ∈ T is bounded by d in the sense that

hν‖X
−1
ν ‖1 ≤ d,

where Xν is the shape matrix of the simplex Sν .
We will focus on a particular type of parameterized triangulations T std

ρ , ρ > 0, that can
be computed easily. We will later show that T std

ρ is an (h, d)-bounded triangulation, where
h >

√
nρ and d only depends on the dimension n and not on h or ρ.

Remark 4.7. For the construction of our triangulations we use the set Sn of all permuta-
tions of the numbers 1, 2, . . . , n, the characteristic function χJ (i) equal to one if i ∈ J and
equal to zero if i /∈ J , and the standard orthonormal basis e1, e2, . . . , en of Rn. Further, we
use the functions RJ : Rn → Rn, defined for every J ⊂ {1, 2, . . . , n} by

RJ (x) :=
n∑

i=1

(−1)χJ (i)xiei.

RJ (x) puts a minus in front of the coordinate xi of x whenever i ∈ J .
Definition 4.8 (standard triangulations). We are interested in two general triangulations T std

and T std
ρ of Rn.

(i) The triangulation T std consists of the simplices

SzJ σ := co
(
xzJ σ

0 ,xzJ σ
1 , . . . ,xzJ σ

n

)

for all z ∈ Nn
0 , all J ⊂ {1, 2, . . . , n}, and all σ ∈ Sn (cf. Remark 4.7 for notation), where

(4.1) xzJ σ
i := RJ



z +
i∑

j=1

eσ(j)



 for i = 0, 1, 2, . . . , n.

(ii) Now choose a constant ρ > 0 and scale the simplices in the triangulation T std by the map-
ping x 7→ ρx. We denote by T std

ρ the resulting set of n-simplices, i.e., co (ρx0, ρx1, . . . , ρ xn)
∈ T std

ρ whenever co (x0,x1, . . . ,xn) ∈ T std.
The following lemma follows directly by step 3 in the proof of [11, Theorem 5].
Lemma 4.9. Consider the triangulation T std

ρ of Rn as in Definition 4.8. It is an (h, d)-
bounded triangulation (cf. Definition 4.6), where h >

√
nρ and d is a constant only dependent

on n.
One can show for T std that indeed ‖X−1

ν ‖2 ≤ 4 for all n ∈ N. Thus T std
ρ is an (h, 4n)-

bounded triangulation of Rn with h >
√

nρ.
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For a given set M ∈ Nn and a given triangulation T , we consider the smallest triangulation
covering M.

Definition 4.10. Let M ⊂ Rn, M ∈ Nn, and T be an (h, d)-bounded triangulation such
that DT ⊃ M. We define the triangulation, restricted to M by

(4.2) T M := {S ∈ T : S ∩M◦ 6= ∅} .

Choosing the standard triangulation T std
ρ as T , we denote its restriction to M by T M

ρ .
Corollary 4.11. Let M ⊂ Rn, M ∈ Nn, and T be an (h, d)-bounded triangulation such that

DT ⊃ M. Then we have the following:
(i) T M is an (h, d)-bounded triangulation,
(ii) DT M ∈ Nn,
(iii) M ⊂ DT M ⊂ Mh.

Note that T std
ρ as in Definition 4.10 with h >

√
nρ and d the constant from Lemma 4.9,

is an example for T .
Proof. Statements (i) and (iii) are obvious: for the inclusion M ⊂ DT M let x ∈ M◦,

then there exists an S ∈ T such that x ∈ S. By definition, S ∈ T M. As M◦ = M and
DT M are compact, the inclusion follows. Statement (ii) follows by [11, Lemma 2]. T M

ρ is an
(h, d)-bounded triangulation by Lemma 4.9.

In the next corollary (for a schematic illustration, see Figure 2), we want to construct
a triangulation T that is between two sets DI and DO in the sense that DI ⊂ DT ⊂ DO.
Moreover, we want to restrict a given triangulation T M further to T M

F by removing some
simplices near the origin. More precisely, we keep the ones that have nonempty intersection
with the complement of F , where F is a small neighborhood of the origin. In particular, we
want to ensure that the remaining simplices T M

F lie between the two sets FI and FO = F as
well, i.e., DI \FO ⊂ DT M

F
⊂ DO \FI . An example of such a triangulation is given by starting

with the standard triangulation T = T std
ρ .

Corollary 4.12. Let FI ,FO =: F ,M := DI ,DO ∈ Nn, where FI ⊂ F◦
O, FO ⊂ D◦

I , and
DI ⊂ D◦

O. Define

h∗ := min
(
d(FI , (FO)C), d(FO, (DI)

C), d(DI , (DO)C)
)
,(4.3)

where d(A,B) = infx∈A,y∈B ‖x − y‖2. Let 0 < h ≤ h∗.
Let T be an (h, d)-bounded triangulation such that DT ⊃ M. Define

T M
F :=

⋃{
S ∈ T M : S ∩ FC 6= ∅

}

=
⋃{
S ∈ T : S ∩M◦ 6= ∅ and S ∩ FC 6= ∅

}
.

Then
• T M is an (h, d)-bounded triangulation of DT M and DI ⊂ DT M ⊂ DO holds.
• T M

F is an (h, d)-bounded triangulation of DT M
F

and we have

DI \ FO ⊂ DT M
F

⊂ DO \ FI .
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Figure 2. Schematic figures of the sets FI ⊂ FO ⊂ DI ⊂ DO in Corollary 4.12 (red outer boundaries).
The shaded area is the set DT M

F
that is triangulated by T M

F . Note that because DI \ FO ⊂ DT M
F

⊂ DO \ FI ,

the triangulated area covers the set M\F .

Moreover, for any 0 < ρ < h/
√

n with d the constant from Lemma 4.9 we have that
T := T std

ρ is a triangulation satisfying the assumptions on T .
For a schematic figure of the sets FI ,FO,DI ,DO and the area DT M

F
triangulated by T M

F ,
see Figure 2.

Proof. Most statements follow directly from Corollary 4.11. The inclusion DI ⊂ DT M ⊂
DO and thus DT M

F
⊂ DO follows from (iii) of that corollary. To show that DT M

F
⊂ DO \ FI ,

let S ∈ DT M
F

, i.e., S ∩FC 6= ∅. Hence, there exists an x ∈ S \ FO and for all y ∈ S we have
‖x − y‖2 < h, i.e., y 6∈ FI . This shows that S ∩ FI = ∅.

To show the inclusion DI \ FO ⊂ DT M
F

, let x ∈ DI \ F . Since DT M ⊃ DI , there is an

S ∈ T M with x ∈ S. Since x 6∈ F , S ∈ T M
F .

4.2. CPA interpolation. In this section we define the CPA interpolation of a function P
by choosing the values of P at the vertices of a given triangulation, and thus defining a CPA
function.

Definition 4.13. Let P : U → R, U ⊂ Rn, be a function and let T be a triangulation with
DT ⊂ U . We call the function Q ∈ CPA[T ], where Qx := P (x) for every x ∈ VT , the CPA
interpolation of the function P on T . We denote the CPA interpolation of P by PC .

The next lemma shows that if finitely many inequalities (4.5) at the vertices are satisfied,
then the orbital derivative is negative for all points in a simplex. This implies later that the
Dini orbital derivative is negative, i.e., we can show that V is a Lyapunov function.

Lemma 4.14. Consider the system from Definition 2.1 and assume that σ ≥ 2. Let T be a
triangulation and let V ∈ CPA[T ].

Fix Sν ∈ T and define

(4.4) Bν ≥ max
m,r,s=1,2,...,n

z∈Sν

∣
∣
∣
∣

∂2fm

∂xr∂xs
(z)

∣
∣
∣
∣ .

Assume there exists a constant α > 0 such that for every vertex xi ∈ Sν

(4.5) ∇Vν ∙ f(xi) + nBνh
2
ν‖∇Vν‖1 ≤ −α
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holds true. Then we have

∇Vν ∙ f(x) ≤ −α for all x ∈ Sν .

Proof. The proof follows by [2, Theorem 4.12].
In the next lemma we give an estimate of the error between a C2 function W and its CPA

interpolation WC . This will be used in Theorem 4.16 to show that the CPA interpolation WC

of a Lyapunov function W is also a Lyapunov function and, moreover, this can be verified as
WC satisfies inequalities of the form (4.5).

Lemma 4.15. Let T = (Sν) be an (h, d)-bounded triangulation, let DO ∈ Nn, and let
DO ⊃ DT . Let W ∈ C2(DO) and define

C := 1 +
dn3/2

2
.(4.6)

Denote by WC the CPA interpolation of W on T ; cf. Definition 4.13. Then the following
estimates hold true:

|WC(x) − W (x)| ≤
√

nh2‖W‖C2(DO) for all x ∈ DT ,(4.7)

‖∇(WC)ν −∇W (x)‖1 ≤ hC‖W‖C2(DO) for all Sν ∈ T and all x ∈ Sν ,(4.8)

‖∇(WC)ν‖1 ≤ (1 + hC)‖W‖C2(DO) for all Sν ∈ T .(4.9)

Proof. Let x ∈ DT . We use Proposition 4.1, 4.2, and Lemma 4.2 from [1] to obtain

|WC(x) − W (x)| ≤ h2 max
z∈DT

‖HW (z)‖2 ≤
√

nh2‖W‖C2(DO),

where HW (z) denotes the Hessian of W at z; this shows (4.7).
Inequality (4.8) can be shown as in step 4 of the proof of [11, Theorem 5]. The inequality

(4.9) follows immediately from (4.8) and ‖∇W (x)‖1 ≤ ‖W‖C2(DO).
The following theorem, Theorem 4.16, shows that given a C2 Lyapunov function W on

M\F◦, its CPA interpolation WC with respect to a triangulation which is fine enough, is not
only a Lyapunov function on M \ F◦, too (see (c)), but we can verify this through finitely
many inequalities (4.11) at the vertices of the triangulation; see (b). Moreover, by (a), W and
WC are close together.

Theorem 4.16. Consider the system from Definition 2.1 and assume that σ ≥ 2. Let the
sets FI ,FO =: F ,M := DI ,DO ∈ Nn be as in Corollary 4.12.

Let W ∈ C2(DO) and assume that

∇W (x) ∙ f(x) ≤ −β for all x ∈ DO \ F◦
I

holds for a constant β > 0. Let

B ≥ max
m,r,s=1,2,...,n

z∈DO

∣
∣
∣
∣

∂2fm

∂xr∂xs
(z)

∣
∣
∣
∣ ,

and let c, d > 0 and 0 < α < β be arbitrary constants.
Then there exists a constant h > 0 such that for every (h, d)-bounded triangulation T with

DT ⊃ M we have for the CPA interpolation WC ∈ CPA[T ] of W :
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(a)

(4.10) |WC(x) − W (x)| ≤ c for all x ∈ DT M .

(b) For every Sν ∈ T M
F and every vertex xi of Sν we have

(4.11) ∇(WC)ν ∙ f(xi) + nBh2
ν‖∇(WC)ν‖1 ≤ −α.

(c) Inequality (4.11) implies

D+(WC)(x) ≤ −α for all x ∈ D◦
T M
F

.

Moreover, for any 0 < ρ < h/
√

n we have that T := T std
ρ is a triangulation satisfying the

assumptions on T with d the constant from Lemma 4.9.
Proof. Define F := maxx∈DO

‖f(x)‖∞ and let the constant C be defined as in Lemma
4.15. Let h > 0 be so small that both

h‖W‖C2(DO)CF + nBh2 (1 + hC) ‖W‖C2(DO) ≤ β − α(4.12)

and
√

nh2‖W‖C2(DO) ≤ c hold(4.13)

and that h ≤ h∗, where h∗ > 0 is defined in (4.3) of Corollary 4.12, so that every (h, d)-
bounded triangulation T with DT ⊃ M satisfies DT M ⊂ DO and DI \FO ⊂ DT M

F
⊂ DO \FI ;

the same corollary also shows that T std
ρ satisfies these assumption.

Now (4.10) follows from Lemma 4.15, in particular (4.7), applied to T M, which shows (a)
using (4.13).

Further, to show (b), let xi be an arbitrary vertex of an arbitrary simplex Sν ⊂ DT M
F

⊂

DO \ FI . Then by Lemma 4.15, in particular (4.8) and (4.9), applied to T M
F , we have

∇(WC)ν ∙ f(xi) ≤ ∇W (xi) ∙ f(xi) + ‖∇(WC)ν −∇W (xi)‖1‖f(xi)‖∞
≤ −β + h‖W‖C2(DO)CF

and
nBh2

ν‖∇(WC)ν‖1 ≤ nBh2 (1 + hC) ‖W‖C2(DO).

Together, the last two inequalities deliver with (4.12)

∇(WC)ν ∙ f(xi) + nBh2
ν‖∇(WC)ν‖1 ≤ − β + h‖W‖C2(DO)CF

+ nBh2 (1 + hC) ‖W‖C2(DO)

≤ −α,

i.e., (4.11).
To show (c), note that the inequality (4.11) implies (4.5), so that, using Lemma 4.14, this

shows ∇(WC)ν ∙ f(x) ≤ −α for all x ∈ Sν and all Sν ∈ T M
F . The statement (c) can now be

shown following the argumentation of [8, Proof of Theorem 2.6].
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5. RBF-CPA Lyapunov function. In this section we combine the RBF approximation
with the CPA interpolation. We first approximate the function V by the RBF approxima-
tion VR. Then we interpolate VR to obtain a CPA interpolation VC of VR. The first step
involves a set of RBF collocation points with fill distance hR ≤ h∗

R, and the second step an
(h∗

C , d)-bounded triangulation. If h∗
R and h∗

C are small enough, then VC fulfills finitely many
inequalities (5.1) which can be verified and imply that VC is a Lyapunov function on M\F◦,
in particular Linf

VC
6= ∅. Given any small set S and large set C ⊂ A, we have Linf

VC
⊂ S and

C ⊂ Lsup
VC

.
Theorem 5.1. Let Assumptions 3.5 hold. Let S, C ∈ Nn, S ⊂ C◦ ⊂ C ⊂ A.
Then there are sets F ,M ∈ Nn and an open and bounded set B with F ⊂ S and C ⊂

M ⊂ B ⊂ A and constants h∗
C , h∗

R > 0, such that
• for all RBF approximations VR ∈ C2k−1(Rn,R) of the Lyapunov function V of The-

orem 2.8 with respect to the RBF ψ and the collocation points X ⊂ B \ {0} with fill
distance hR ≤ h∗

R; cf. Definition 3.7
• and all CPA interpolations VC of the above VR with respect to an (h∗

C , d)-bounded
triangulation T such that DT ⊃ M.

We also have the following:
(a) for every Sν ∈ T M

F and every vertex xi of Sν :

(5.1) ∇(VC)ν ∙ f(xi) + nBh2
ν‖∇(VC)ν‖1 ≤ −α

holds, where

B ≥ sup
m,r,s=1,2,...,n

z∈B

∣
∣
∣
∣

∂2fm

∂xr∂xs
(z)

∣
∣
∣
∣ ,

(b) ∅ 6= Linf
VC

⊂ S,
(c) note that (a) and (b) imply that VC is a Lyapunov function on M\F◦,
(d) Lsup

VC
⊃ C.

Moreover, for any 0 < ρ < h∗
C/

√
n we have that T := T std

ρ is a triangulation satisfying the
assumptions on T with d the constant from Lemma 4.9.

Proof. Step 1: Definition of sets. Denote sublevel sets of the Lyapunov function V by

KV,m = {x ∈ A : V (x) ≤ m};

by Theorem 2.8 they are all in Nn and with a C1 boundary for any m > 0.
Since V (0) = 0, V (x) > 0 for x 6= 0, and V is continuous, there is l := minx∈∂S V (x) > 0

such that KV,l ⊂ S. We show that K◦
V,l ⊂ S◦, from which KV,l ⊂ S follows. Indeed, assume

in contradiction that x ∈ K◦
V,l \ S

◦, then there exists a continuous map γ : [0, 1] → K◦
V,l such

that γ(0) = 0 and γ(1) = x. Since γ(0) ∈ S◦ and γ(1) 6∈ S◦, there exists a θ ∈ [0, 1] such that
γ(θ) ∈ ∂S. We have V (γ(θ)) < l, since γ(θ) ∈ K◦

V,l and V (γ(θ)) ≥ minx∈∂S V (x) = l, which
is a contradiction.

There is also L := maxx∈C V (x) > l such that KV,L ⊃ C. Choose c > 0 so small that
c ≤ l

7 . Set m := l − 2c and M := L + 3c. We have m − 4c = l − 6c ≥ l
7 > 0. Moreover,

set F := KV,m−3c and M := KV,M+3c. Then KV,k = LV,k 6= ∅ for all m − 3c < k < M + 3c,
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noting that all of these sets are in Nn and homeomorphic to the unit ball; for the definition
of LV,k, see Definition 2.3. We define the following sets, in decreasing order:

B := K◦
V,M+5c,

DO := KV,M+4c,

M := DI := KV,M+3c,

note that C ⊂ LV,M−3c ⊂ LV,M−2c,

S ⊃ LV,m+2c,

F := FO := KV,m−3c,

FI := KV,m−4c.

Furthermore, set

ε :=
1
3

min
x∈DO\F◦

I

p(x)q(x) > 0.(5.2)

Step 2: RBF approximation. Choose h∗
R > 0 so small that Theorem 3.9 holds with B,

which is bounded, open, forward invariant, and has a C1 boundary, K = DO and δ = min(ε, c).
Then

(5.3) |V (x) − VR(x)| ≤ c and |V ′(x) − V ′
R(x)| ≤ ε

for all x ∈ DO. By the first inequality of (5.3) and Lemma 2.4 we get

(5.4) FO ⊂ LV,m−2c ⊂ LVR,m−c ⊂ LV,m ⊂ LVR,m+c ⊂ LV,m+2c ⊂ S

since the sets LV,∙ in (5.4) are not empty and

(5.5) C ⊂ LV,M−2c ⊂ LVR,M−c ⊂ LV,M ⊂ LVR,M+c ⊂ LV,M+2c ⊂ DI

since the sets LV,∙ in (5.5) are not empty. By the second inequality of (5.3) we obtain

V ′
R(x) ≤ V ′(x) + ε ≤ −2ε by (5.2) and (2.4)

=: −β for all x ∈ DO \ F◦
I .

Step 3: Triangulation. We choose h∗
C as the minimum of h∗ of Corollary 4.12 and h of

Theorem 4.16 with FI ,FO,DI ,DO ∈ Nn and c > 0 as above, α = ε, β = 2ε, and W = VR.
Then by Corollary 4.12 for every (h∗

C , d)-bounded triangulation T such that DT ⊃ M we
have DI ⊂ DT M and DI \ FO ⊂ DT M

F
⊂ DO \ FI . The standard triangulation T std

ρ with

0 < ρ < h∗
C/

√
n is an example for such a triangulation with d the constant from Lemma 4.9.

Step 4: CPA interpolation. We now apply Theorem 4.16 with FI ,FO,DI ,DO ∈ Nn and
c > 0 as above, α = ε, β = 2ε, and W = VR. Then (4.10) holds in DI ⊂ DT M and thus with
Lemma 2.4 and (5.4) we get

(5.6) FO ⊂ LVR,m−c ⊂ LVC ,m ⊂ LVR,m+c ⊂ S
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since the sets LVR,∙ are not empty, which implies that ∅ 6= Linf
VC

⊂ LVC ,m ⊂ S, proving (b).
Moreover, using Lemma 2.4 and (5.5) we obtain

(5.7) C ⊂ LVR,M−c ⊂ LVC ,M ⊂ LVR,M+c ⊂ DI

since the sets LVR,∙ are not empty, which implies that Lsup
VC

⊃ LVC ,M ⊃ C, proving (d). The
inequality (4.11) shows for every Sν ∈ T M

F and every vertex xi of Sν

(5.8) ∇(VC)ν ∙ f(xi) + nBh2
ν‖∇(VC)ν‖1 ≤ −ε,

proving (a).
In particular, by Theorem 4.16 (c), D+(VC)(x) ≤ −ε holds for all x ∈ D◦

T M
F

. Since

M\F◦ ⊂ DT M
F

, VC is a Lyapunov function on M\F◦, proving (c).
Theorem 5.1 requires the collocation points for the RBF approximation as well as the

triangulation for the CPA interpolation to be uniformly dense in the sense that the fill distance
of X is smaller than h∗

R and the triangulation is an (h∗
C , d) triangulation. In practice, we start

with a coarse set of collocation points and a coarse triangulation and refine them until the
estimate (5.1) holds. In contrast to uniform refinement, local refinements, only where the
estimate (5.1) is violated, could result in the same estimate with fewer collocation points and
less simplices. While Example 2 in the next section shows that this indeed can work well in
examples, the general result in Theorem 5.1 involves global quantities. The following remark
explains that local refinements are desirable, but not straightforward.

Remark 5.2 (local refinements). From Lemma 4.15 one easily deduces that the local error
in the ‖ ∙ ‖C1 norm of the CPA interpolation of a function is only dependent on the diameter
and degeneracy of the local simplices. Thus, it is possible to refine the simplicial complex
only in the area where the CPA interpolation fails to have a negative orbital derivative. Note,
however, that one must take care that the resulting triangulation is regular in the sense of
Definition 4.1 and that its degeneracy in the sense of Definition 4.6 does not increase. Such a
refinement is not trivial and is a matter of current research.

For the RBF approximation the estimate (3.13) depends on the fill distance of the whole
set of collocation points, which is not a local property. Thus, one cannot deduce by Lemma
3.8 that the local error decreases when the fill distance is smaller locally. However, as the
third run in Example 2 suggests, this might be the case and we are currently examining this.
For further studies on refinement for the RBF method, see also [27].

In this context, note also that a Lyapunov function is a global object on the basin of
attraction of an attractor. One can, in general, not change it locally without influencing the
object as a whole. In particular, estimates on the basin of attraction are obtained from the
sublevel sets of a Lyapunov function; they are globally influenced by a local change.

6. Examples. The examples were computed on a PC (i4790K@4.6GHz, 32GB RAM).
We programmed in Visual C++ Express 2013 and included the matrix library Armadillo [32],
that uses LAPACK and BLAS for the actual computations. To generate the pictures we
used Scilab [33] for Example 1 and MATLAB for Example 2. All the software used, except
MATLAB, is available for free on the internet.

As discussed earlier, our method is guaranteed to construct a Lyapunov function VC on
M\F◦, but, in general, there are simplices near the equilibrium, where VC has nonnegative
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orbital derivative. However, if we can guarantee that F is in the basin of attraction, then
sublevel sets of VC lie in the basin of attraction; cf. Theorem 2.6 (d).

As the equilibrium is assumed to be exponentially stable, we can show F ⊂ A using a
quadratic Lyapunov function for the linearized system near the equilibrium, which is locally
a Lyapunov function for the nonlinear system. Such a quadratic Lyapunov function can be
computed by standard means by solving the continuous-time Lyapunov equation.

The complexity of our method is the same as the RBF method, i.e., solving a linear system
of equations where the number of equations is the same as the collocation points used in the
RBF method. To get an idea of how much faster our method is compared with the rigorous
CPA method solving a linear optimization problem, cf., e.g., [25], where it takes more than two
hours to solve a two-dimensional problem with 3,641 vertices. The second run of Example 1 in
this paper with 3,120 points for the RBF method and 80,000 triangles for the CPA verification
altogether took 3.11 seconds. A direct comparison of computation times for Example 1 is not
possible because the LP problem in the CPA method is not feasible. This is because there is
no CPA Lyapunov function on this triangulation.

A further advantage of the combined method is that it delivers information on where the
orbital derivative of VC fails to be negative, whereas the CPA method either constructs VC

such that the orbital derivative is negative everywhere or delivers the message that such a
function does not exist.

6.1. Example 1. We consider the following system from [17, Example 2]:

(6.1) ẋ = f(x), with f(x, y) =

(
y

−x + 1
3x3 − y

)

.

It is simple to verify that this system has equilibria at (0, 0) and (±
√

3, 0) and that the
equilibrium at the origin is exponentially stable.

By linearizing and solving the continuous-time Lyapunov function, the quadratic Lyapunov
function Vq(x) = xT Px with

P =
1
2

(
3 1
1 2

)

is obtained for the linearized system. In [17, p. 673] a generally applicable method is used
to prove that Vq has negative orbital derivative in the cube [−0.52, 0.52]2 for the nonlinear
system (6.1). Sublevel sets of Vq in this cube are subsets of the basin of attraction.

We use the Wendland function for k = 3,

ψ5,3(cr) = (1 − cr)8+[32(cr)3 + 25(cr)2 + 8cr + 1]

with c = 1; for the formulas of ψ1 and ψ2, see [7, Appendix B.1]. We solve the RBF problem

V ′(x) = −p(x)q(x), with p(x) = ‖x‖2
2 and q(x) = 1 + ‖f(x)‖2

2.

The collocation points used to solve the RBF problem are the vertices of a hexagonal grid as
described in [7, p. 134]. Such a grid is optimal for the RBF method (cf. [21]) in the sense
that it has a small fill distance, but at the same time a large separation distance; note that
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if two points are close to each other, i.e., the separation distance is small, then the condition
number of the interpolation matrix is large.

More exactly, we define the vectors

g1 = (1, 0)T , g2 =

(
1
2
,

√
3

2

)T

, and g0 = (g1 + g2)/2.

For a parameter cR > 0 the set of collocation points XcR consists of all points

XcR := {x = cR(g0 + z1g1 + z2g2), z1, z2 ∈ Z}∩ ] − 2.6, 2.6[2.

The fill distance hR of XcR
is proportional to cR, and XcR

does not include any equilibrium
point due to the shift by g0.

For the CPA method we used triangulations T M
ρ with M = [−2.5, 2.5]2 and different

parameters ρ > 0; cf. Definition 4.10. The constants Bν in the CPA problem were assigned
the values

Bν = 2 max
(x,y)∈Sν

|x| for all simplices Sν .

We did two different runs with different parameters for both the RBF and the CPA
method.

In the first run we set cR = 0.2 and ρ = 0.05. The set X0.2 contains 780 points and the
triangulation T M

0.05 20,000 triangles. The RBF problem was created and solved in 0.033 sec.,
delivering VR. The triangulation and the inequalities were created in 0.25 sec. and the values
of VR were written in the inequalities of the CPA problem in 0.11 seconds. The negativity of
the orbital derivative of VC was verified in 0.003 sec. with the result that it was negative in
all but 428 or 2.14% of the simplices. In Figure 3 some level sets of VC are drawn in blue and
the simplices where the orbital derivative V ′

C is nonnegative are marked with red dots. For
comparison the largest sublevel set of Vq, E = {x ∈ R2 : Vq(x) ≤ 0.225}, which is guaranteed
to be a subset of the basin of attraction, is drawn in black. With these parameters for the
RBF and CPA method, we can conclude the positive invariance of the innermost sublevel set
of VC in the figure, but not that it is a subset of the basin of attraction.

In the second run we set cR = 0.1 and ρ = 0.025. The set X0.1 contains 3,120 points
and the triangulation T M

0.025 80,000 triangles. The RBF problem was created and solved in
1.19 sec., delivering VR. The triangulation and the inequalities were created in 1.04 sec. and
the values of VR were written in the inequalities of the CPA problem in 0.87 seconds. The
negativity of the orbital derivative of VC was verified in 0.01 sec. with the result that it was
negative in all but 146 or 0.18% of the simplices. In Figure 4 some level sets of VC are drawn
in blue and the simplices where the orbital derivative V ′

C is nonnegative are marked with red
dots. For comparison the largest sublevel set of Vq, E = {x ∈ R2 : Vq(x) ≤ 0.225}, which is
guaranteed to be a subset of the basin of attraction, is drawn in black. With these parameters
for the RBF and CPA method, we can conclude that the innermost sublevel set of VC in the
figure is in the basin of attraction. Indeed, all simplices in this sublevel set where the orbital
derivative of VC is nonnegative fit in the ball B(0.075) which lies inside E . By choosing the
set F ⊂ E such that the simplices marked in red lie in F , and choosing M larger than the
innermost sublevel set, but not including any of the simplices marked red outside E , we can
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Figure 3. First set of parameters. Some level sets of VC (blue), the triangles where the orbital derivative
of VC is nonnegative (red), and the largest level set of Vq (dashed black) which lies in the basin of attraction.
We can conclude that the innermost sublevel set of VC is forward invariant, but not that it is in the basin of
attraction.

apply Theorem 2.6 (d). In Figure 5, the graph of the computed Lyapunov function VC is
drawn.

6.2. Example 2. We consider the following three-dimensional system (cf. [7, Example 6.4]
and [27, Example 4]): 





ẋ = x(x2 + y2 − 1) − y(z2 + 1),

ẏ = y(x2 + y2 − 1) + x(z2 + 1),

ż = 10z(z2 − 1).

The system has an exponentially stable equilibrium at (0, 0, 0) and its basin of attraction is
given by the cylinder

A = {(x, y, z) ∈ R3 : x2 + y2 < 1, |z| < 1}.

In [7, Example 6.4], an RBF approximation with 137 points in a hexagonal grid resulted in a
large area near the equilibrium with positive orbital derivative.

As generally the basin of attraction is not known, [27, Example 4] chose to place the
collocation points in the set K = [−0.9, 0.9]3, which is not a subset of the basin of attraction.
The authors of [27, Example 4] started with a coarse set and applied a refinement algorithm
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Figure 4. Second set of parameters. We display some level sets of VC (blue), the triangles where the orbital
derivative of VC is nonnegative (red), and the largest level set of Vq (dashed black) which lies in the basin of
attraction. We can conclude that the innermost sublevel set of VC is in the basin of attraction.

to refine the set for the RBF method. The resulting RBF approximation was checked to be
negative on a fine grid, but no verification was given.

In this paper we first determine a subset of the basin of attraction using the quadratic
Lyapunov function Vq(x) = xT Px with

P =




1/2 0 0
0 1/2 0
0 0 1/20



 .

A direct calculation shows that V ′
q (x) = r2(r2 − 1) + z2(z2 − 1), where r =

√
x2 + y2, so that

V ′
q (x) < 0 for all x ∈ A. Hence

E =

{

(x, y, z) ∈ R3 : V (x, y, z) =
1
2

(
x2 + y2

)
+

1
20

z2 <
1
20

}

is the largest sublevel set of Vq that is a subset of the basin of attraction; see Figure 6.
We use the Wendland function for k = 3

ψ5,3(cr) = (1 − cr)8+[32(cr)3 + 25(cr)2 + 8cr + 1]

with c = 0.6; for the formulas of ψ1 and ψ2, see [7, Appendix B.1]. We solve the RBF problem

V ′(x) = −p(x)q(x), with p(x) = ‖x‖2
2 and q(x) = 1 + ‖f(x)‖2

2.
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Figure 5. The computed Lyapunov function VC for the system (6.1) with the second set of parameters.

The collocation points of the RBF problem were from the hexagonal grid as described in [21];
see also [7, p. 134]. More exactly, we define the vectors

g1 = (1, 0, 0)T , g2 =

(
1
2
,

√
3

2
, 0

)T

, g3 =

(
1
2
,

1

2
√

3
,

√
2
3

)T

,

and g0 = (g1 + g2 + g3)/2. For a parameter cR > 0 the set XcR consists of all points

XcR := {x = cR(g0 + z1g1 + z2g2 + z3g3), z1, z2, z3 ∈ Z} ∩ A.

The fill distance hR of XcR is proportional to cR.
For the CPA method we used triangulations T M

ρ with M = [−0.99, 0.99]3 and different
parameters ρ > 0; cf. Definition 4.10. Note that M has areas which do not lie in A. The
constants Bν in the CPA problem were assigned the values

Bν = max
(x,y,z)∈Sν

max{6|x|, 6|y|, 60|z|} for all simplices Sν .

We did three different runs with different parameters for the RBF method and the CPA
method. For creating the CPA problem we used a code that actually creates an LP problem,
but instead of solving the LP problem we assign values to the variables of the problem and
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Figure 6. The largest sublevel set E of the quadratic Lyapunov function Vq which lies in the origin’s basin
of attraction.

then verify them. We have not optimized this code for our application in this paper. In
the runs below we used ρ = 0.045, resulting in the triangulation T M

0.045 consisting of 511,104
tetrahedra, and ρ = 0.03 resulting in 1,724,976 tetrahedra. The creation times of the resulting
LP problems are 13 sec. and 46 sec., respectively. Note that after the LP problem has been
created, different values can be written in its variables.

In the first run we set cR = 0.24 and ρ = 0.045. The set X0.24 contains 658 points and
the RBF problem was created and solved in 0.06 sec., delivering VR. The values of VR were
written in the inequalities of the CPA problem in 2.1 seconds. The negativity of the orbital
derivative of VC was verified in 0.11 sec. with the result that it was negative in 85.4% of the
simplices. In Figure 7 the simplices where the orbital derivative V ′

C is nonnegative are marked
with blue points. The simplices where V ′

C is nonnegative are spread around the planes z = −1,
z = 0, and z = 1. These results are not useful for getting a better estimate for the basin of
attraction than delivered by the sublevel sets of the quadratic Lyapunov function Vq. Setting
ρ = 0.03 in the CPA interpolation and using the same parameter value cR = 0.24 for the RBF
method delivered qualitatively similar results.

In the second run we set cR = 0.15 and ρ = 0.045. The set X0.15 contains 2,658 points
and the RBF problem was created and solved in 2.2 sec., delivering VR. The values of VR

were written in the inequalities of the CPA problem in 4.8 seconds. The negativity of the
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Figure 7. First set of parameters: cR = 0.24 and ρ = 0.045. The simplices where the orbital derivative V ′
C

is nonnegative are marked with blue points.

orbital derivative of VC was verified in 0.1 sec. with the result that it was negative in 87%
of the simplices. The orbital derivative is nonnegative predominantly in the planes z = −1
and z = 1. In Figure 8 the level set V −1

C (0.88) is depicted together with the simplices where
the orbital derivative V ′

C fails to be negative. Inside the sublevel set all simplices where V ′
C

is nonnegative are contained in the ball B0.077. This ball fits with ease in the sublevel set E
of the quadratic Lyapunov function Vq and the sublevel set depicted on Figure 8 is thus a
much better lower bound on the basin of attraction than delivered by the quadratic Lyapunov
function Vq; cf. Theorem 2.6 (d). Setting ρ = 0.03 in the CPA interpolation and using the
same parameter value cR = 0.15 for the RBF method delivered qualitatively similar results,
but the radius of the ball at the origin containing the simplices where V ′

C fails to be negative
can be reduced to 0.028.

For the third run we used a set of collocation points for the RBF method, which was not
a uniform refinement from the first to the second run, but a local one. We started with the
same collocation points for the RBF method as in the first run, and added a denser layer
around the plane z = 0, the area inside of M where the calculations failed to deliver VC with
a negative orbital derivative. More exactly, we added the points of X0.12, corresponding to
cR = 0.12, directly above and below the plane z = 0, i.e., the points (x, y, z) ∈ X0.12 and
|z| < 0.1. The RBF problem then has 1,162 collocation points. For the CPA verification we
used the same triangulation as in the first and second run with 511,104 tetrahedra. The RBF
problem was created and solved in 0.24 sec., delivering VR. The values of VR were written in
the inequalities of the CPA problem in 2.7 seconds. The negativity of the orbital derivative
of VC was verified in 0.1 sec. with the result that it was negative in 84.3% of the simplices,
with exceptions predominantly at the boundary of M. In Figure 9 the level set V −1

C (0.88)
is depicted together with the simplices where the orbital derivative V ′

C fails to be negative.
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Figure 8. Second set of parameters. The level set V −1
C (0.88) for VC computed in the second run (red) and

simplices where the orbital derivative of VC fails to be negative (blue). Inside the sublevel set all simplices such
that the orbital derivative V ′

C is nonnegative are contained in a ball centered at the origin with radius 0.077.

Inside the sublevel set all simplices where V ′
C is nonnegative are contained in the ball B0.1.

The results are thus only marginally worse than in the second run, although we used much
fewer collocation points. Especially, we can conclude that the sublevel set in Figure 9 is in
the origin’s basin of attraction. Note that after the LP problem from the CPA method has
been created in 13 sec. the computation time for creating and solving the RBF problem and
the verifying the negativity of V ′

C is reduced from 7.1 sec. in the second run to 3.04 sec. in the
third run.

Setting ρ = 0.03 in the CPA interpolation we got, again, qualitatively similar results, but
the radius of the ball at the origin containing the simplices where V ′

C fails to be negative can
be reduced to 0.028; the same improvement as in the second run. Note that the theory of this
paper is only applicable to simplices of the triangulation which lie in the basin of attraction
and indeed, in this area a finer triangulation improves the results as shown in the second and
third run.

7. Conclusions. In this paper we have presented a method to both compute and verify a
Lyapunov function for a general nonlinear ODE in Rn with an exponentially stable equilibrium.
The computation of a Lyapunov function candidate is achieved using mesh-free collocation
and Radial Basis Functions, solving a linear PDE. Then the function is interpolated by a
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Figure 9. Third set of parameters. The level set V −1
C (0.88) for VC computed in the third run (red) and

simplices where the orbital derivative of VC fails to be negative (blue). Inside the sublevel set all simplices such
that the orbital derivative V ′

C is nonnegative are contained in a ball centered at the origin with radius 0.1.

continuous piecewise affine (CPA) function on a triangulation and, checking finitely many
inequalities at the vertices of the triangulation, the properties of a Lyapunov function can be
rigorously verified. Hence, sublevel sets of the Lyapunov function are subsets of the basin of
attraction of the equilibrium.

We have proved that this method succeeds in the computation and verification of a Lya-
punov function if both the collocation points for the mesh-free collocation are dense enough
and the triangulation for the CPA interpolation is fine enough. Moreover, sublevel sets of the
computed Lyapunov function cover any given compact subset of the basin of attraction, hence,
the method can determine compact subsets arbitrarily close to the (open) basin of attraction.

The proposed method improves the existing RBF method as it adds a verification which
proves that the constructed function is indeed a Lyapunov function. It improves the original
CPA method by reducing the computation time considerably. Further research will include
suitable local refinements of both the set of collocation points and the triangulation to reduce
the number of points and thus the computation time further.

The combination of the RBF and CPA methods is a powerful method which was demon-
strated on a two- and a three-dimensional example. Combining the strengths of both existing
methods, the new method is both as computationally efficient as the RBF method and includes
rigorous estimates as the CPA method, and thus will be useful for applications, particularly



COMPUTATION AND VERIFICATION OF LYAPUNOV FUNCTIONS 35

in higher dimensions.
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