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Abstract. Lyapunov functions for nonlinear systems, whose dynamics are de-
fined by ordinary differential equations, are computed by solving linear program-
ming feasibility problems in the CPA method. Further, the CPA method is con-
structive and can generate a Lyapunov function on any compact subset of the
basin of attraction of an asymptotically stable equilibrium. Instead of solving
the linear programming feasibility problem, one can use converse theorems to
determine a candidate solution and then verify the constraints of the feasibility
problem. This procedure has the advantage of being usually much faster. Fur-
ther, a partial solution to the feasibility problem that violates the constraints in
some areas can be analyzed, whereas a solver either generates a feasible solu-
tion or assures that a feasible solution does not exist. In this paper we prove that
the numerical quadrature of numerically integrated solutions will deliver a fea-
sible solution to the linear programming problem, given that the time horizon is
large enough and the time steps are small enough in the numerical integration and
quadrature. Further, the relevant theorems are general enough to allow for con-
siderable flexibility in the particular implementation as they cover a wider range
of numerical methods both for integration and quadrature.

Keywords: Lyapunov function, CPA algorithm, Numerical Integration, Numer-
ical Quadrature

1 Introduction

The Lyapunov stability theory is a mathematical abstraction of the concept of dissipa-
tive energy in physics. It is the centerpiece of practical and theoretical stability analysis
and is treated in various detail in virtually all textbooks and monographs on linear and
nonlinear systems, cf. e.g. [28, 45, 46] or [32, 39, 43] for a more recent discussion. In a
physical system the (free) energy is an obvious choice for a Lyapunov function and a
dissipative system approaches a local minimum of the available energy.

For a general dynamical system modelling nonphysical phenomena there is usually
no obvious candidate for a Lyapunov function and there are no analytical methods to
obtain a Lyapunov function. Therefore numerous numerical methods for the numerical
computation of Lyapunov functions have been developed. To name a few, in [41, 42]
the computation of rational Lyapunov functions was studied, in [2, 37] sum-of-squared
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(SOS) polynomial Lyapunov functions were computed using semi-definite optimization
(SOS method), see also [38, 30] for other approaches using polynomials, and in [11] a
Zubov type PDE was numerically solved using radial basis functions (RBF method).
For an overview of more methods see, e.g., the review paper [15].

In [29, 34] linear programming was used to compute continuous and piecewise
affine (CPA) Lyapunov functions; this approach is referred to as the CPA method. In
the CPA method the domain, where the Lyapunov function is to be computed, is trian-
gulated, i.e. subdivided into simplices, and a feasibility problem is derived, such that its
feasible solution can be used to define a CPA Lyapunov function for the system. In [13,
19, 20] it was established that the CPA method can generate a Lyapunov function for a
general nonlinear system with an asymptotically stable equilibrium, if the simplices in
the triangulation are sufficiently small and non-degenerate in a certain sense.

In [14], the CPA and the RBF method were combined to deliver a method that
is as fast as the RBF method and delivers a verified Lyapunov function as the CPA
method. This was achieved by solving a system of linear equations in the RBF method
rather than a linear optimization problem as in the CPA method. At the same time, the
obtained function is verified to be a Lyapunov function by checking that it satisfies the
constraints of the feasibility problem. Further, the authors proved that this approach
is constructive and one is always able to compute a verified Lyapunov function in any
compact subset of an exponentially stable equilibrium’s basin of attraction. In numerous
papers a similar approach has been followed, where one uses numerical solutions of
the system under consideration to generate values for the variables of the feasibility
problem of the CPA method and then verifies the constraints, see [4–6, 9, 10, 23–27,
33] and also [18, 21] for more implementation oriented papers. This technique works
well in practice, but there was no proof available that this approach always works. In
this paper we deliver the proof that this method will always work for sufficiently fine
triangulations and sufficiently accurate numerical approximations.

We consider an ordinary differential equation (ODE) of the form

ẋ = f(x), f ∈Cs(Rn,Rn), s ≥ 1, (1)

with an exponentially stable equilibrium. Without loss of generality we assume that
the equilibrium is at the origin. Recall that exponentially stable means that there are
constants δ,α,M > 0 such that any solution t 7→ φ(t,ξ) to system (1) starting at ξ ∈
Bδ := {x ∈ Rn : ∥x∥2 < δ} at time t = 0 fulfills the inequality

∥φ(t,ξ)∥2 ≤ M∥ξ∥2e−αt for all t ≥ 0.

This can be easily checked by investigating the eigenvalues of the Jacobian Df(0) of f
at the origin. In particular, it is easy to compute a quadratic Lyapunov function for the
linearization, which is locally also a Lyapunov function for the nonlinear system and
thus determines a (usually small) subset of the basin of attraction. We are interested in
the equilibrium’s basin of attraction

A := {ξ ∈ Rn : lim
t→∞

φ(t,ξ) = 0},

and seek to determine subsets of A , which are as large as possible, by sublevel sets
of suitable Lyapunov functions. We will see that the Lyapunov functions that we con-
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struct will not be valid in a small local neighborhood of the equilibrium, where a local
Lyapunov function as described above can be used.

The paper is organized as follows. After introducing some notations, we prove gen-
eral error estimates for the type of Lyapunov function we are approximating in Section
2, and more specific error estimates for the numerical integration and quadrature in Sec-
tion 3 to compute approximations and bound the approximation error of the values of
the Lyapunov function. In Section 4, we define triangulations and CPA functions, while
in Section 5 we outline the CPA feasibility problem and prove our main result, show-
ing that using numerical integration and quadrature always succeeds in computing and
verifying a Lyapunov function if the triangulation is sufficiently fine and the numerical
approximations sufficiently accurate. Finally, we conclude the paper in Section 6.

1.1 Prerequisites and Notation

N denotes the set {1,2, . . . ,} and N0 := {0}∪N, by R+ = {x ∈R | x ≥ 0} we denote the
non-negative reals. We utilize a bold-face font for (column) vectors, e.g. x∈Rn×1 =Rn.
For a vector x we write xi or [x]i for its ith component and we define the norm ∥x∥p =

(∑n
i=1 |xi|p)1/p for p ≥ 1. We also define ∥x∥∞ = maxi∈{1,...,n} |xi|. We will repeatedly

use the norm equivalence relation

∥x∥p ≤ ∥x∥q ≤ nq−1−p−1∥x∥p for p > q.

The induced matrix norm ∥·∥p is defined by ∥A∥p =max∥x∥p=1 ∥Ax∥p. Clearly ∥Ax∥p ≤
∥A∥p∥x∥p. For a matrix A we write AT for its transpose.

We denote by e1,e2, . . . ,en the standard orthonormal basis of Rn and by I the identity
matrix. We denote the interior of a set S ⊂ Rn by S◦ and its closure by S . An open ball
in the Euclidian norm ∥ · ∥2 on Rn, centered at the origin and with radius R > 0, is
denoted BR. A continuous function α : R+ →R+, R+ := [0,∞), is said to be of class K
if α(0) = 0 and it is strictly monotonically increasing. If additionally limx→∞ α(x) = ∞

we say α is of class K∞. Furthermore, we write C ⊂⊂ A if C is a compact subset of A.
A continuous function β : Rn →R is called positive definite, if β(0) = 0 and β(x)>

0 for all x ̸= 0.

2 Error estimates

In the next two lemmas we state and prove some results that will be used later. Recall
that the basin of attraction A is an open set.

Lemma 1. Consider system (1) and let C ⊂⊂ A be a compact subset of its equilib-
rium’s (at the origin) basin of attraction. Then:

i) φ([0,∞),C )⊂⊂ A .
ii) With L > 0 a Lipschitz constant for f on φ([0,∞),C ) and for any δ,T ≥ 0, we have

φ([0,T ],C \Bδ)⊂ φ([0,∞),C )\Bδ∗ , δ
∗ := δe−LT .
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Proof. Proof of i): Let R ≥ r > 0 be such that C ⊂⊂ BR and Br ⊂⊂ A . Since the
origin is exponentially stable and C ∪ Br compact, there exist constants α > 0 and
M ≥ 1 such that ∥φ(t,ξ)∥2 ≤ M∥ξ∥2e−αt for all ξ ∈ C ∪ Br; see e.g. [6, Lem. 1].
Set S = α−1 ln(M2R/r). Then for every ξ ∈ C we have ∥φ(S,ξ)∥2 ≤ MRe−αS ≤ r/M,
i.e. φ(S,C )⊂ Br/M . Since clearly φ([0,∞),Br/M)⊂ Br, it follows that

φ([0,∞),C ) = φ([0,S],C )∪φ([0,∞),φ(S,C ))⊂ φ([0,S],C )∪Br

and because φ([0,S],C ) is compact, statement i) is proved.
Proof of ii): Note that for ξ ∈ φ([0,∞),C ) and t ≥ 0 we have∣∣∣∣ d

dt
∥φ(t,ξ)∥2

2

∣∣∣∣= ∣∣2φ̇(t,ξ)T
φ(t,ξ)

∣∣= 2
∣∣f(φ(t,ξ))T

φ(t,ξ)
∣∣

≤ 2∥f(φ(t,ξ))∥2∥φ(t,ξ)∥2 ≤ 2L∥φ(t,ξ)∥2
2,

i.e.

−2L∥φ(t,ξ)∥2
2 ≤

d
dt
∥φ(t,ξ)∥2

2.

Hence,

−2L ≤ 1
∥φ(t,ξ)∥2

2

d
dt
∥φ(t,ξ)∥2

2 =
d
dt

ln(∥φ(t,ξ)∥2
2)

and by integrating both sides from 0 to t we obtain

−2Lt ≤ ln(∥φ(t,ξ)∥2
2)− ln(∥ξ∥2

2) = 2ln
(
∥φ(t,ξ)∥2

∥ξ∥2

)
,

i.e.
e−Lt∥ξ∥2 ≤ ∥φ(t,ξ)∥2.

In particular, we have ∥φ(t,ξ)∥2 ≥ δ∗, δ∗ = δe−LT , for t ∈ [0,T ] and ∥ξ∥2 ≥ δ, which
proves statement ii).

Lemma 2. Consider system (1) and let C ⊂⊂ A be a compact subset of its equilib-
rium’s (at the origin) basin of attraction. Let β : Rn →R+ be a continuous and positive
definite function that is Cs on Rn \{0}. Fix δ > 0 such that C \Bδ ̸= /0.

Then there exists a T ∗ ≥ 0 and an m > 0 such that for all T ≥ T ∗ the function

V (x) =
∫ T

0
β(φ(t,x))dt (2)

is a Cs function on C \Bδ, which satisfies

∇V (x) • f(x)≤−m < 0 for all x ∈ C \Bδ. (3)

Proof. Let m := 1
2 minx∈C\Bδ

β(x)> 0 and let r > 0 be so small that

max
x∈Br

β(x)≤ m;
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this is possible by the assumptions on β.
Choose T ∗ > 0 so large such that φ(t + T ∗,C ) ⊂ Br for all t ≥ 0; this is possible

since 0 is asympotically stable and C is compact. Indeed, by the stability there exists
r̃ > 0 such that x∈ Br̃ implies φ(t,x)∈ Br for all t ≥ 0 and by the attractivity there exists
T ∗ such that φ(T ∗,C )⊂ Br̃.

Then, for T ≥ T ∗ and x ∈ C \Bδ, we have

∇V (x) • f(x) =
d
dt

V (φ(t,x))
∣∣
t=0

=
d
dt

∫ T

0
β(φ(t + s,x))ds

∣∣
t=0

=
d
dt

∫ T+t

t
β(φ(s,x))ds

∣∣
t=0

= β(φ(T,x))−β(x)
≤ m−2m.

Note that due to Lemma 1 ii) φ([0, t],C \Bδ) lies outside Bδ∗ and thus V is Cs on C \Bδ,
which proves the lemma.

3 Computing values for Vξ directly

Instead of solving the linear optimization problem generated to obtain a Lyapunov func-
tion, one can use a different method to make educated guesses of their values and
then verify if the linear constraints are fulfilled for these values. For the system (1),
i.e. ẋ = f(x) with an exponentially stable equilibrium at the origin, a Lyapunov function
is given by

V (ξ) =
∫ T

0
β(φ(s,ξ))ds, (4)

where β :Rn →R+ is a continuous and positive definite function, for sufficiently large T
by Lemma 2. The idea for constructing such Lyapunov functions goes back to Massera
[36], see also [31], and is discussed in many textbooks on nonlinear systems, e.g. [32,
43]. Typically β(x) = β∗(∥x∥2), where β∗ : R+ →R+ is of class K∞, but there are other
choices that may be more advantageous, for example

β(x) = ∥f(x)∥2 or β(x) =
∥x∥2

δ+∥x∥p
2
, δ > 0, p ∈ R, (5)

are used in [5, 6] and [26, 27] respectively.
Note that although (4) gives an explicit formula for a Lyapunov function, this for-

mula includes the solution φ(s,ξ) to the differential equation and the solution is usually
not known. It can, however, be approximated at the vertices VT of a simplicial complex
T with a subsequent verification of the constraints of the linear programming problem.

The idea is now to approximate (4) numerically. There are two approximations nec-
essary: first, we need to approximate the solution φ(s,ξ) (numerical integration) and
finally one needs a quadrature rule to approximate the integral (numerical quadrature).
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For example, we can use the Adam-Bashforth four-step method for obtaining numeri-
cally solutions t 7→ φ(t,ξ) to the initial-value problem

ẋ = f(x), x(0) = ξ,

on [0,T ] and the composite Simpson’s Rule to integrate β(φ(s,ξ)) over the same in-
terval. Both are standard methods that are described in most textbooks on numerical
analysis, cf. e.g. [40].

This, or a similar approach, is followed in, e.g. [4–6, 9, 10, 14, 23, 24, 33], and it
generates the values much faster than solving the linear programming problem. An
additional advantage is that one can localize the area where the constraints are not
fulfilled, whereas a solver will simply state that the linear programming problem does
not possess a feasible solution when that is the case.

In the following subsections we will quantify the error due to the numerical inte-
gration and the numerical quadrature, before estimating the overall error between the
function value V (ξ) and its numerical approximation Vξ.

3.1 Error in the Numerical Integration

We say tha a method to approximate solutions to system (1) is a one step integrator
with order of consistency p ∈ N, if for every compact set K ⊂ Rn there exist constants
C,τ′ > 0 such that the local truncation error satisfies

∥φ(τ,ξ)− φ̃1∥2 ≤Cτ
p+1

independent of ξ ∈ K and 0 < τ ≤ τ′. Here φ̃1 is the approximation by the method to
the true solution φ(τ,ξ) at time t = τ when starting at ξ at time t = 0.

Most one step methods are one step integrators with order of consistency p, e.g. Eu-
ler’s method, where p = 1, and the Runge-Kutta family, where p is the order of the
method.

Lemma 3. Consider the system (1) and a a one step integrator of the system with order
of consistency p≤ s (recall f∈Cs(Rn,Rn)). Let C ⊂⊂A be a neighbourhood of the (ex-
ponentially stable) origin. Then there exists a C ⊂ K ⊂⊂ A , that is forward invariant,
both for the system (1) and the numerical method with time step size τ, 0< τ≤ τ′, where
τ′ > 0 depends on K . Let L > 0 be a Lipschitz constant for f on K . By the assumptions
there exists a constant Cφ > 0 such that the local truncation error satisfies

∥φ1 − φ̃1∥2 ≤Cφτ
p+1

independent of ξ ∈ K and 0 < τ ≤ τ′ (same τ′ > 0 for which K is forward invariant).
Denote by φi := φ(i · τ,ξ) the true solution at time t = i · τ to (1), starting at ξ at time
t = 0, and by φ̃i the approximation at time t = i · τ computed with the integrator.

Then, for a given time interval T > 0, the error at time t = i · τ ≤ T is bounded by

∥φi − φ̃i∥2 ≤Cφ

eLT −1
L

τ
p for 0 ≤ iτ ≤ T. (6)
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For a proof of the lemma see the Appendix in [17]. Note that in general the constant
Cφ depends on the (p+ 1)-st derivatives of φ. If f in (1) is Cp then so are φ and φ̇, see
e.g. [44, III.§13.XI], and we need to assume that f is Cp on K for the estimate to hold
true. Recall that φ̇ = f(φ) and therefore we save one derivative, i.e. we do not have to
assume that f is Cp+1. Further note, that the numerical method is forward invariant on
K means that for any fixed step size 0 < τ ≤ τ′, we have for ξ ∈ K that φ̃i ∈ K for all
i ∈ N0.

3.2 Error in the Numerical Quadrature

Assumption 1 Let T > 0 and let α ∈Ck([0,T ]). We use a quadrature rule for the inte-
gral

Iα :=
∫ T

0
α(t)dt

that, for a given NT ∈N, subdivides the interval [0,T ] into intervals of length τ := T/NT
and approximates Iα by a sum of the form

Ĩα := T
NT

∑
i=0

ciαi,
NT

∑
i=0

ci = 1, ci > 0, and αi := α(i · τ).

Moreover, we assume that the difference between Iα and Ĩα is bounded by

|Iα − Ĩα| ≤CIτ
k, (7)

where CI is a constant depending on the derivatives of α up to and including order k.

There are very good quadrature methods, e.g. Gaussian quadrature, that do not use
uniformly distributed evaluations of α, but since we will generate approximations to
α at equidistant points these methods are less appropriate for our purpose. Numerous
classical rules, however, fit into this framework. For example, the composite Trape-
zoidal rule, the composite Simpson’s rule, and the composite Boole’s rule give orders
k = 2, k = 4, k = 6 with constants

CI =
T
12

· max
t∈[0,T ]

|α(2)(t)|, CI =
T

180
· max

t∈[0,T ]
|α(4)(t)|, CI =

2T
945

· max
t∈[0,T ]

|α(6)(t)|,

respectively. All these rules are Newton–Cotes quadrature rules and the latter two are
also obtained using Richardson extrapolation on the Trapezoidal rule. For NT = 2pm,
p,m ∈N, one can even apply Richardson extrapolation p times on the composite Trape-
zoidal rule and thus obtains in general a better estimate on the integral; e.g. in Romberg’s
method this is used to its full extent for NT = 2p. As shown in [22], Richardson extrap-
olation is very cheap computationally in our setting. Further, it does not suffer from
Runge’s phenomenon like some higher-order Newton–Cotes quadrature rules. For a
general error formula for such an extrapolation we refer to formula (3.5.13) in [8] and
for a detailed discussion to [7, Ch. 9.4].
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3.3 Error in Evaluating Vξ

Now we use the previous estimates to obtain a bound on the difference between the
function value V (ξ) and its numerical approximation Vξ.

Theorem 2. Consider system (1) and let δ> 0 and C ⊂⊂A be given such that C \Bδ ̸=
/0.

Further, let β : Rn → R+ be a locally Lipschitz continuous and positive definite
function, that is Cs on Rn \ {0}. Consider a numerical integration method with order
of consistency p ≤ s for system (1) and let K ⊃ φ([0,∞),C ) be forward invariant both
for system (1) and for the numerical method with step size 0 < τ ≤ τ′, as in Lemma 3.
Further, consider a quadrature method of order k, p ≤ k ≤ s as in Assumption 1.

Then, there exists T ∗ > 0 such that for all fixed T ≥ T ∗ and ε> 0 there exists N∗
T ∈N

such that for all NT ∈ N with NT ≥ N∗
T and

Vξ := T
NT

∑
i=0

ciβ(φ̃i), (8)

where the ci are from the quadrature rule (see Assumption 1) and the φ̃i are the approx-
imations of φi := φ(i · τ,ξ) with τ := T/NT (see Lemma 3), we have for all ξ ∈ C \Bδ∣∣V (ξ)−Vξ

∣∣< ε.

Remark 1. Note that we do not assume that β is s-times differentiable at the origin and
the derivatives are even allowed to diverge at the origin. We can do this because we
established in Lemma 1 ii) that the solution trajectories of (1) starting in A \Bδ will
stay away from the origin for t ∈ [0,T ], i.e. ∥φ(t,ξ)∥2 ≥ δ∗ > 0. This results in more
freedom in choosing the function β which is advantageous in applications; e.g. as in (5).

Proof. We choose T ∗ > 0 according to Lemma 2 and choose T ≥ T ∗. We have

V (ξ) = Iβ(φ(·,ξ)) :=
∫ T

0
β(φ(t,ξ))dt. (9)

Note that by Lemma 1 i) and Lemma 3 we only need to consider f on the compact set
K , φ([0,∞),C ) ⊂ K ⊂⊂ A , and β on a ball BR ⊃ K . By assumption f has a Lipschitz
constant Lf > 0 on K and β has a Lipschitz constant Lβ > 0 on B∗

R ⊃ K .
Note that an error bound constant CI for the functions t 7→ β(φ(t,ξ)), t ∈ [0,T ],

uniformly for ξ ∈ K \Bδ∗ exists, because CI is bounded above by derivatives of t 7→
β(φ(t,ξ)), which are continuous on the compact set K \Bδ∗ . However, CI does depend
on the set C and the parameters δ > 0 and T > 0, because δ∗ = δe−LT .

Choose N∗
T ∈ N so large that τ∗ := T/N∗

T fulfills τ∗ ≤ τ′ and

CI(τ
∗)k +LβTCφ

eLfT −1
Lf

(τ∗)p < ε. (10)

Fix NT ≥ N∗
T and τ = T/NT ≤ τ∗. Let ξ ∈ C \Bδ. By the assumptions on the numer-

ical quadrature method we have∣∣∣Iβ(φ(·,ξ))− Ĩβ(φ(·,ξ))

∣∣∣≤CIτ
k. (11)
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Further, we have

∥φi − φ̃i∥2 ≤Cφ

eLfT −1
Lf

τ
p ≤Cφ

eLfT −1
Lf

T p

by Lemma 3. Then, because the numbers T and ci and the function β are nonnegative,
we have ∣∣∣Ĩβ(φ(·,ξ))−Vξ

∣∣∣= ∣∣∣∣∣T NT

∑
i=0

ciβ(φi)−T
NT

∑
i=0

ciβ(φ̃i)

∣∣∣∣∣
≤ T

NT

∑
i=0

ci

∣∣∣β(φi)−β(φ̃i)
∣∣∣

≤ T
NT

∑
i=0

ciLβ∥φi − φ̃i∥2

≤ LβTCφ

eLfT −1
Lf

τ
p.

Using (9) and (10) we obtain∣∣V (ξ)−Vξ

∣∣≤ ∣∣∣Iβ(φ(·,ξ))− Ĩβ(φ(·,ξ))

∣∣∣+ ∣∣∣Ĩβ(φ(·,ξ))−Vξ

∣∣∣
≤CIτ

k +LβTCφ

eLfT −1
Lf

τ
p < ε.

This concludes the proof of the theorem.

Hence, we have established that we can approximate V (ξ) arbitrarily well numerically
for every ξ ∈ C \ Bδ. In the next sections we first introduce triangulations and CPA
functions and then show that the feasibility problem with these values Vξ fulfills certain
linear constraints that verify a CPA Lyapunov function.

4 Triangulations and CPA functions

In this section we will introduce triangulations and CPA functions as well as the defini-
tion of (h,d)-bounded triangulations.

Definition 1. We define the following :

i) The convex-combination of vectors x0,x1, . . . ,xm ∈ Rn, denoted

co{x0,x1, . . . ,xm},

is the set of all sums
m

∑
i=0

λixi, where
m

∑
i=0

λi = 1

and ∀ i : 0 ≤ λi ≤ 1.
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ii) The vectors x0,x1, . . . ,xm ∈ Rn are said to be affinely-independent if
m

∑
i=0

λixi = 0 and
m

∑
i=0

λi = 0

implies λ0 = λ1 = · · ·= λm = 0.
iii) If x0,x1, . . . ,xm ∈ Rn are affinely-independent, then the set S = co{x0,x1, . . . ,xm}

is called an m-simplex. The vectors x0,x1, . . . ,xm are called the vertices of S. The
set of vertices for an m-simplex is sometimes denoted by veS = {x0,x1, . . . ,xm}.
In Rn an n-simplex is often referred to as just a simplex.

iv) For an m-simplex S, define its diameter as:

diam(S) := max
x,y∈S

∥x−y∥2.

We now define a triangulation. It simplifies the discussion to have the order of the
vertices of every simplex in the triangulation fixed, as in e.g. [14]. Note however, that
this is not necessary and the results are essentially the same for any ordering, see [16].
For an n-tuple of vertices C = (x0,x1, . . . ,xn) we define coC = co{x0,x1, . . . ,xn} and
for the simplex S = coC we define veC = {x0,x1, . . . ,xn} as the set of the vertices.

Definition 2 (Triangulation). Let I be a set of indices. A triangulation T = {Sν}ν∈I in
Rn is a set of n-simplices Sν with ordered vertices Cν =

(
xν

0,x
ν
1, . . . ,x

ν
n
)

for all ν ∈ I,
such that

Sµ ∩Sν = coveSµ ∩ coveSν = co(veSµ ∩veSν) (12)

for all µ,ν ∈ I. We call T locally finite, if for every compact C ⊂ Rn the set {Sν ∈
T |Sν ∩C ̸= /0} is finite.

The domain of T is defined as

DT :=
⋃
ν∈I

Sν

and its complete set of vertices is denoted by

VT :=
⋃
ν∈I

veSν.

Further, we define the diameter of T as

diam(T ) := supS∈T diam(S).

Given a triangulation T , a continuous and piecewise affine function, i.e. CPA func-
tion, can be defined by fixing its values at VT .

Definition 3 (CPA function). Let T be a triangulation in Rn. We denote by CPA[T ]
the set of all continuous functions

W : DT → R

that are affine on each simplex Sν ∈ T , i.e. for each Sν ∈ T there exists a vector gν ∈Rn

and a number aν ∈ R such that

W (x) = gν
• x+aν for all x ∈ Sν.

We define the (column) vector ∇Wν := gν for every Sν ∈ T .
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Let W ∈ CPA[T ] and x ∈ DT . Then there is a simplex Sν = co(x0,x1, . . . ,xn) ∈ T such
that x ∈ S. Further, x has a unique representation as the convex combination of the
vertices of Sν, i.e. there are unique numbers λx

i ∈ [0,1], i = 0,1, . . . ,n, such that

x =
n

∑
i=0

λ
x
i xi and

n

∑
i=0

λ
x
i = 1.

Since for every x ∈ Sν we have

W (x) = gν
•

n

∑
i=0

λ
x
i xi +aν =

n

∑
i=0

λ
x
i (gν

• xi +aν) =
n

∑
i=0

λ
x
i W (xi),

each W ∈ CPA[T ] is completely determined by its values in the vertex set VT .
To have concrete examples of triangulations useful for the CPA algorithm we recall

the definition of the standard triangulation Tstd as given in [1]; for a graphical represen-
tation see Figure 1.

Definition 4 (The Standard Triangulation of Rn). The Standard Triangulation is a
triangulation Tstd = {Sν}ν∈I with indices ν = (z,σ,J)∈Nn

0×Sym(n)×{−1,+1}n =: I
and vertices Cν = (xν

0,x
ν
1, . . . ,x

ν
n) given by:

xν

k = RJ

(
z+

k

∑
l=1

eσ(l)

)
= RJz+RJ uσ

k . (13)

Here, J = (J1,J2, . . . ,Jn)
T ∈ {−1,+1}n and RJ = diag(J) ∈ Rn×n is a matrix corre-

sponding to the reflection specified by J ∈ {−1,+1}n. Further, Sym(n) denotes the set
of permutations σ : {1,2, . . . ,n}→ {1,2, . . . ,n} and

uσ

k =
k

∑
l=1

eσ(l).

We now define the shape-matrix of a simplex, of which the vertices are in a partic-
ular order. This is needed to define (h,d)-bounded triangulations. We will explain the
importance of shape-matrices in computing CPA Lyapunov functions below.

Definition 5. For an n-simplex Sν of a triangulation with vertices Cν = (x0,x1, . . . ,xn)
its shape-matrix Xν is defined by

Xν :=


(x1 −x0)

T

(x2 −x0)
T

...
(xn −x0)

T

 ∈ Rn×n.

Remark 2. The vectors ∇Wν = gν in Definition 3 are given by the formula

∇Wν = gν = X−1
ν vν where vν :=


W (x1)−W (x0)
W (x2)−W (x0)

...
W (xn)−W (x0)

 , (14)

see e.g. [13, Rem. 9].
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Fig. 1. The standard triangulation Tstd in R2 on [−5,5]2

We define the degeneracy of a triangulation and (h,d)-bounded triangulations as in
[14]. Note that the degeneracy depends on the order of the vertices of the simplex, but
it was shown in [16] that if a triangulation is (h,d)-bounded then any reordering of the
vertices will results in a (h,d∗)-bounded triangulation with d∗ = d(1+ d

√
n−1). The

motivation for the definition comes from the fact that the CPA method always succeeds
in computing a Lyapunov function if one exists. The proof of this fact in [13] uses a
sequence of finite triangulations Tk with the following properties:

– the simplices become smaller, i.e. diam(Tk)→ 0 as k → ∞, and
– supSν∈Tk

diam(Sν)
2 · ∥X−1

ν ∥2 → 0 as k → ∞, or, as a sufficient condition, that

sup
Sν∈Tk

diam(Sν) · ∥X−1
ν ∥2 ≤ d

is bounded.

Definition 6. We define the degeneracy of the triangulation T to be the quantity

supSν∈T diam(Sν)∥X−1
ν ∥2,

where Xν is the shape-matrix of Sν. We say that the triangulation T is (h,d)-bounded
for constants h,d > 0, if diam(T ) < h and the degeneracy of T is bounded by d,
i.e. supSν∈T diam(Sν)∥X−1

ν ∥2 ≤ d.

Practically, to obtain a (h,d)-bounded triangulation, one can scale down the stan-
dard triangulation in the following way: to scale down the simplex S we multiply the
vertices of S with a number 0 < ρ < 1, then diam(ρS) = ρdiam(S) and ∥X−1

ρS ∥2 =

ρ−1∥X−1
S ∥2. Here and in the following X

ρkS, k ∈ N0, denotes the shape-matrix of the
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simplex ρkS with the order of the vertices determined by the standard triangulation for
the simplex S.

We have diam(Tstd)=
√

n and from [26, Remark 2] we know that supSν∈Tstd
∥X−1

ν ∥2 ≤
2. Fix a constant ρ fulfilling 0 < ρ < 1 and a compact set C , and define

Tk := {ρ
kSν : (ρkSν)∩C ◦ ̸= /0}

for k ∈ N0. Then for each k ∈ N0, Tk consists of a finite number of simplices, and we
have

diam(Tk) = ρ
k√n

and sup
ρkS∈Tk

diam(ρkS)∥X−1
ρkS∥2 ≤ ρ

k√n ·ρ−k2 = 2
√

n.

Thus

diam(Tk)→ 0 as k → ∞

and sup
ρkS∈Tk

diam(ρkS)∥X−1
ρkS∥2 ≤ 2

√
n =: d

is bounded.

5 The CPA feasibility problem

The linear constraints of the CPA algorithm to compute a Lyapunov function W for
system (1) consist of two sets of constraints: the first set forces W to have a minimum
at the equilibrium at the origin and the second set forces W to be decreasing along all
solution trajectories. By assigning W (ξ) := Vξ with, the formula (20) the first set is
automatically taken care of if the second set is fulfilled. This remains essentially true,
even if one removes a small neighbourhood of the equilibrium from the domain of the
Lyapunov function, see [14] for the details. Therefore we are only interested in the
second set of constraints. Further, we assume that f in system (1) is C2, i.e. s ≥ 2. It is
possible to derive constraints for the CPA method with s = 1, see [3], but in this case
one needs much smaller simplices for the key estimates to hold true.

Definition 7. Let T be a triangulation and let W ∈ CPA[T ]. We denote by Tdec ⊂ T
the set of simplices Sν ∈ T with ordered vertices Cν = (x0,x1, . . . ,xn) such that

∇Wν
• f(xi)+∥∇Wν∥1Eν

i < 0 for i = 0,1, . . . ,n, (15)

holds, where

∇Wν = X−1
ν wν with wν :=


W (x1)−W (x0)
W (x2)−W (x0)

...
W (xn)−W (x0)

 , (16)

Eν
i := max

j=0,1,...,n

n

∑
r,s=1

Br,s

2
|er • (xi −x0)|(|es • (x j −x0)|+ |es • (xi −x0)|) (17)

and Bν
r,s ≥ max

k=1,2,...,n
max
x∈S

∣∣∣∣ ∂2 fk

∂xr∂xs
(x)
∣∣∣∣ , r,s = 1,2, . . . ,n, (18)
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are given constants for Sν.

Note that the constants Eν
i are chosen such that if the constraints (15) hold true for Sν,

i.e. Sν ∈ Tdec, then ∇Wν
• f(x)< 0 for all x ∈ Sν. For this fact see [34, 35].

It it shown in, e.g., [12], that

limsup
h→0+

W (x+hf(x))−W (x)
h

≤ max
ν : x∈Sν

∇Wν
• f(x)< 0 (19)

for all x ∈ D◦
Tdec

, i.e. the mapping t 7→W (φ(t,ξ)) is strictly decreasing for all φ(t,ξ) in
the interior of the domain of the triangulation Tdec.

Remark 3. The only input to the verification problem are the constants Bν
r,s, that are

upper bounds on the second order derivatives of the components of the vector field f
defining the dynamics of system (1). The constants Eν

i are computed algorithmically
from the Bν

r,s and the geometry of the simplex Sν = coCν. Note that any upper bounds
Bν

r,s will suffice, but obviously it is easier to fulfill the constraints for smaller values of
the Bν

r,s.

Let us recap the situation. Assume the system ẋ = f(x), f ∈Cs(Rn,Rn), s ≥ 2, has an
exponentially stable equilibrium at the origin and let β : Rn →R+ be a locally Lipschitz
and positive definite function that is Cs on Rn \{0}. For sufficiently large T the function

V (ξ) =
∫ T

0
β(φ(t,ξ))dt

is a Lyapunov function for the system, which we approximate using numerical integra-
tion and numerical quadrature.

In the next theorem we prove that we can verify the condition (15) in Definition
7 for all vertices in C \Bδ for sufficiently fine triangulations and sufficiently accurate
numerical approximations.

Theorem 3. Consider system (1) with s ≥ 2. Let δ > 0, d > 0 and C ⊂⊂ A be given
such that C \Bδ ̸= /0. Further, let β : Rn → R+ be a locally Lipschitz continuous and
positive definite function, that is Cs on Rn \ {0}. Consider a numerical integration
method for system (1), with order of consistency 1 ≤ p ≤ s as in Lemma 3 on K ,
A ⊃⊃ K ⊃ φ([0,∞),C ) , that is forward invariant both for (1) and the numerical
method with step size 0 < τ ≤ τ′ on K , and a quadrature method of order k, p ≤ k ≤ s
as in Assumption 1. Fix a constant

B ≥ max
z∈C

max
k,r,s=1,2,...,n

∣∣∣∣ ∂2 fk

∂xr∂xs
(z)
∣∣∣∣ .

Then there exists T ∗ > 0, such that for any fixed T ≥ T ∗ and any small enough
h > 0 we have: for any fixed (h,d)-bounded and locally finite triangulation T , there
exists N∗

T ∈ N such that for all NT ∈ N with NT ≥ N∗
T and

W (ξ) =Vξ := T
NT

∑
i=0

ciβ(φ̃i) for all ξ ∈ VT , (20)
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where the ci are from the quadrature rule (see Assumption 1) and the φ̃i are the ap-
proximations of φi := φ(i · τ,ξ) with τ := T/NT (see Lemma 3), the following inclusion
holds

{S ∈ T | S ⊂ C \Bδ} ⊂ Tdec.

Here Tdec denotes the simplices satisfying the condition (15) with Bν
r,s ≤ B, see Defini-

tion 7.

Proof. Define T ∗ > 0 according to Lemma 2 and fix T ≥ T ∗. Define m by

max
x∈C\Bδ

∇V (x) • f(x) =: −3m < 0,

see (3). Denote by HV the Hessian matrix of V , which is Cs on Rn \Bδ, and set

H := max
z∈C\Bδ

∥HV (z)∥2 (21)

G := max
z∈C\Bδ

∥∇V (z)∥2 (22)

F := max
z∈C

∥f(z)∥2. (23)

Fix h > 0 so small that

d
√

n+2
2

Hh
(

F +n
5
2 Bh2

)
+n

5
2 BGh2 ≤ m. (24)

Choose an (h,d)-bounded, locally finite triangulation T and consider the (finite) set
of simplices

T ∗ = {S ∈ T | S ⊂ C \Bδ}.

Define
h∗ = min

S∈T ∗
diam(S)> 0,

set

ε :=
m

d
√

n

(
F
h∗

+n
5
2 Bh
)−1

, (25)

and choose N∗
T as in Theorem 2 for ε/2, and let NT ≥ N∗

T . Thus |V (ξ)−Vξ| < ε/2 for
all ξ ∈ C \Bδ.

Let us consider an arbitrary simplex Sν ⊂ T ∗ with vertices Cν = (x0,x1, . . . ,xn) and
shape-matrix Xν. Set hν := diam(Sν). For x,y ∈ Sν we have

∥∇V (x)−∇V (y)∥2 ≤ Hhν ≤ Hh (26)

and for some z∗ ∈ Sν on the line segment between x and y that

V (x) =V (y)+∇V (y) • (x−y)+
1
2
(x−y)THV (z∗)(x−y),
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i.e.

|V (x)−V (y)−∇V (y) • (x−y)|= 1
2

∣∣(x−y)THV (z∗)(x−y)
∣∣≤ 1

2
Hh2

ν. (27)

Further,
Eν

i ≤ n2Bh2
ν for i = 0,1, . . . ,n.

With W (xi) =Vxi for i = 0,1, . . . ,n we have

∇Wν = X−1
ν wν, where wν =


Vx1 −Vx0

Vx2 −Vx0
...

Vxn −Vx0

 ; define vν :=


V (x1)−V (x0)
V (x2)−V (x0)

...
V (xn)−V (x0)

 .

Note that
∥vν −wν∥∞ ≤ ε. (28)

Now

∥∇Wν −∇V (x0)∥2 = ∥X−1
ν wν −∇V (x0)∥2 = ∥X−1

ν (wν −Xν∇V (x0))∥2

≤ ∥X−1
ν ∥2∥wν −Xν∇V (x0)∥2. (29)

Note that the j-th component of the vector wν −Xν∇V (x0) is given by

[wν −Xν∇V (x0)] j =Vx j −Vx0 − [V (x j)−V (x0)]+V (x j)−V (x0)−∇V (x0) • (x j −x0)

and can thus be bounded using (28) and (27),

| [wν −Xν∇V (x0)] j | ≤ ε+
1
2

Hh2
ν.

Hence

∥wν −Xν∇V (x0)∥2 ≤
√

n
(

ε+
1
2

Hh2
ν

)
(30)

Thus, by (26), (29) and (30), for every i = 0,1, . . . ,n we have

∥∇Wν −∇V (xi)∥2 ≤ ∥∇Wν −∇V (x0)∥2 +∥∇V (xi)−∇V (x0)∥2

≤ ∥X−1
ν ∥2∥wν −Xν∇V (x0)∥2 +Hh

≤
√

n∥X−1
ν ∥2

(
ε+

1
2

Hh2
ν

)
+Hh

≤ hν∥X−1
ν ∥2

√
n
(

ε

hν

+
1
2

Hhν

)
+Hh

≤ d
√

n
(

ε

hν

+
1
2

Hh
)
+Hh =: Aν

≤ d
√

n
(

ε

h∗
+

1
2

Hh
)
+Hh

= d
√

n
ε

h∗
+

d
√

n+2
2

Hh.
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In particular,

∥∇Wν∥1 ≤ ∥∇Wν −∇V (x0)∥1 +∥∇V (x0)∥1 ≤
√

n(Aν +G). (31)

Combining all the results, we obtain

∇Wν
• f(xi)+∥∇Wν∥1Eν

i

≤ ∇V (xi) • f(xi)+ [∇Wν −∇V (xi)] • f(xi)+
√

n(Aν +G)Eν
i

≤ −3m+∥∇Wν −∇V (xi)∥2 max
z∈Sν

∥f(z)∥2 +
√

n(Aν +G)Eν
i

≤ −3m+AνF +
√

n(Aν +G)Eν
i

= −3m+Aν

(
F +

√
nEν

i
)
+
√

nGEν
i

≤ −3m+

(
d
√

n
(

ε

hν

+
1
2

Hh
)
+Hh

)(
F +n

5
2 Bh2

ν

)
+n

5
2 BGh2

ν

≤ −3m+ ε ·d
√

n
(

F
h∗

+n
5
2 Bh
)
+

d
√

n+2
2

Hh
(

F +n
5
2 Bh2

)
+n

5
2 BGh2

≤ −3m+m+m =−m < 0,

where we have used (25) and (24) in the last step.

6 Conclusions

The construction of a Lyapunov function is an important and non-trivial problem to de-
termine the basin of attraction of equilibria. The CPA algorithm to compute continuous
and piecewise affine (CPA) Lyapunov functions for nonlinear systems uses linear opti-
misation to determine the CPA Lyapunov function. However, determining the function
through numerical integration and quadrature, and then just using the error estimates of
the CPA method to verify the conditions of a Lyapunov function, is considerably faster.
In this paper we have proven that this method always succeeds in computing and verify-
ing a CPA Lyapunov function if the triangulation is sufficiently fine and the numerical
methods sufficiently accurate.
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