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Abstract
The CPA method to compute Lyapunov functions depends on a triangulation of the relevant part of the state space. In more 
detail, a CPA (Continuous and Piecewise Affine) function is affine on each simplex of a given triangulation and is determined 
by the values at the vertices of the triangulation. Two important aspects in the proof that the CPA method is always able to 
generate a CPA Lyapunov function if the triangulation is sufficiently fine, are (a) the geometry of the simplices of the trian-
gulation and (b) error estimates of CPA interpolations of functions. In this paper the aspect (a) is tackled by extending the 
notion of (h, d)-boundedness, which so far has depended on the order of the vertices in each simplex, and it is shown that it 
is essentially independent of the order and can be expressed in terms of the condition number of the shape matrix. Concern-
ing (b), existing error estimates are generalised to other norms to increase the flexibility of the CPA method. In particular, 
when the CPA method is used to verify Lyapunov function candidates generated by other methods. Parts of the results were 
presented in Giesl and Hafstein (Uniformly regular triangulations for parameterizing Lyapunov functions. In: Proceedings 
of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 549–557, 2021).
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Introduction

This paper is concerned with dynamical systems, whose 
dynamics are defined by an ordinary differential equation 
(ODE)

and in particular with the stability of equilibria of sys-
tems. Lyapunov stability theory is of essential importance 
in dynamical systems and control theory and is studied in 
practically all textbooks and monographs on linear and non-
linear systems, cf. e.g. [2–4] or [5–7] for a more modern 
treatment. The canonical candidate for a Lyapunov function 
for a physical system is its (free) energy. In particular, a dis-
sipative physical system must approach the state of a local 
minimum of the energy.

For general dynamical systems, however, there is no 
analytical method to obtain a Lyapunov function. For this 
reason, various methods for the numerical generation of 
Lyapunov functions have emerged. To name a few, in [8, 
9] the numerical generation of rational Lyapunov functions 
was studied, in [10–12] sum-of-squared (SOS) polynomial 
Lyapunov functions were parameterized using semi-definite 
optimization, see also [13, 14] for other approaches using 
polynomials, and in [15] a Zubov type PDE was approxi-
mately solved using collocation. For more numerical 
approaches cf. the review [16].

(1)ẋ = f(x), f ∶ ℝ
n
→ ℝ

n,
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In [17, 18] linear programming was used to parameterize 
continuous and piecewise affine (CPA) Lyapunov functions. 
In this approach, a subset of the state space is first triangu-
lated, i.e. subdivided into simplices, and then a number of 
constraints are derived for a given nonlinear system, such 
that a feasible solution to the resulting linear programming 
problem allows for the parametrization of a CPA Lyapunov 
function for the system. In [19–21] it was proved that this 
approach, referred to as the CPA method, always succeeds 
in computing a Lyapunov function for a general nonlinear 
system with an exponentially stable equilibrium, if the sim-
plices are sufficiently small and non-degenerate.

The main advantages of the CPA method, apart from 
the fact that it generates true Lyapunov functions and not 
approximations, are that that it can be combined with faster 
methods to verify Lyapunov function candidates, see, e.g.  
[22–26], and that is easily adaptable to different kinds of sys-
tems, e.g. to differential inclusions [27, 28] or time-discrete 
systems [29]. The CPA framework can even be extended to 
compute or verify so-called contraction metrics [30–32], see 
also the recent review [33].

The proof that the CPA method always succeeds in 
generating a true Lyapunov function for a system with an 
exponentially stable equilibrium used the concept of (h, d)-
bounded triangulations, see Definition 10, where h > 0 is 
an upper bound on the diameters of the simplices and d > 0 
quantifies the degeneracy of the simplices. For the definition 
of (h, d)-bounded triangulations one must consider triangu-
lations, of which the order of the vertices of each simplex 
has been fixed.

The first contribution of this paper is to show that if T  is 
an (h, d)-bounded triangulation in ℝn , then any triangulation 
consisting of the same simplices as T  , but with a different 
ordering of the vertices, is an (h, d∗)-bounded triangulation 
with

Thus, the property that a triangulation is (h, d)-bounded 
depends essentially on the simplices of the triangulation T  , 
and not the ordering of the vertices of the simplices.

The second contribution is a characterization of (h, d)-
bounded triangulations using the condition number of the 
shape-matrices of the simplices, cf. Definition 15. The 
advantage of this characterization is that the condition num-
ber of a matrix is a more familiar concept than the degen-
eracy as defined in Definition 10.

The third contribution is a systematic study of the error 
estimates used in the CPA algorithm with respect to the 
norms used.

The paper is organized as follows. In Section“ Preliminar-
ies”, after introducing some notations, triangulations, CPA 
functions, shape-matrices of simplices, and (h, d)-bounded 

d∗ = d
�
1 + d

√
n − 1

�
.

triangulations are presented. In Section  “Construction 
of CPA Lyapunov functions” the algorithm to compute 
CPA Lyapunov functions is outlined and the relevance of 
(h, d)-bounded triangulations for the algorithm is shown. 
Further, the main results of the paper are proved. In Sec-
tion “Error estimates in the CPA algorithm” error estimates 
for general norms in the CPA algorithm are derived and in 
Section “Conclusions and Future Work” some concluding 
remarks and ideas for future research are discussed.

Preliminaries

In this section the notation for the rest of the paper is intro-
duced and some useful facts from linear algebra that will be 
used to derive the results of the paper recall are presented. 
Further, triangulations and CPA functions are defined.

Notation

Vectors in ℝn are written in bold face and are assumed to 
be column vectors, e.g. x ∈ ℝ

n×1 = ℝ
n . The i-th compo-

nent of a vector x is written xi or [x]i . AT and xT denote 
the transposes of the matrix A and the vector x , respec-
tively. If A is invertible A−T ∶= (A−1)T = (AT)−1 . For a vec-
tor x ∈ ℝ

n and p ≥ 1 the p-norm of x is defined through 
‖x‖p ∶=

�∑n

i=1
�xi�p

�1∕p . For p = ∞ the p-norm is defined 
through ‖x‖∞ ∶= limp→∞ ‖x‖p = maxi∈{1,…,n} �xi� . Recall the 
norm equivalence relation ( 1∕∞ ∶= 0 and n0 ∶= 1)

A (vector) norm ‖ ⋅ ‖ on ℝn induces a (matrix) norm on ℝn×n 
through ‖A‖ ∶= max‖x‖=1 ‖Ax‖ . An induced matrix norm 
is always sub-multiplicative, i.e. ‖AB‖ ≤ ‖A‖ ‖B‖ for all 
A,B ∈ ℝ

n×n , and obviously ‖Ax‖ ≤ ‖A‖‖x‖ for A ∈ ℝ
n×n 

and x ∈ ℝ
n . A useful norm that is not sub-multiplicative is 

‖A‖max ∶= maxi,j=1,…,n �aij�.
With p = 1 , p = 2 , and p = ∞ there are simple formulas 

for the induced matrix norms: ‖A‖1 = ‖AT‖∞ = maxi ‖ai‖1 , 
where ai  are the column vectors  of  A ,  and 
‖A‖2 = max‖x‖2=1

√
xTATAx is the square root of the larg-

est eigenvalue of the symmetric and positive-semidefinite 
matrix ATA . For A ∈ ℝ

n×n the norm equivalences

for p ∈ {1,∞} and

will be useful in the following.

‖x‖p ≤ ‖x‖q ≤ nq
−1−p−1‖x‖p for ∞ ≥ p > q ≥ 1.

1√
n
‖A‖p ≤ ‖A‖2 ≤ √

n ‖A‖p

‖A‖max ≤ ‖A‖2 ≤ n‖A‖max
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The condition number �‖⋅‖ of a nonsingular matrix 
A ∈ ℝ

n×n with respect to the norm ‖ ⋅ ‖ is defined as 
�‖⋅‖(A) ∶= ‖A‖‖A−1‖ ; �‖⋅‖p is abbreviated to �p . If A is sin-
gular �‖⋅‖(A) ∶= ∞.

The identity matrix in ℝn×n is denoted by I and its column 
vectors by e1, e2,… , en , i.e. the standard orthonormal basis 
of ℝn.

The set of the permutations of a set C is denoted by 
Sym(C) , i.e. Sym(C) is the set of bijective mappings C → C . 
For an � ∈ Sym({1, 2,… , n}) the permutation matrix 
P� ∈ ℝ

n×n is defined through

One easily verifies that P−1
�

= PT
�
 and ‖P�‖p = ‖P−1

�
‖p = 1 

for p ∈ {1, 2,∞} . Note that left-multiplication by P� per-
mutes the rows of a vector or a matrix and right-multiplica-
tion by P� permutes the columns of a vector or a matrix. For 
example, P�x = x� and xTP� = xT

�
 where x =

(
x1, x2,… , xn

)T 
and x� ∶=

(
x�(1), x�(2),… , x�(n)

)T.
g ∈ Ck(G,ℝm) means that g ∶ G → ℝ

m , G ⊂ ℝ
n , has con-

tinuous derivatives of all orders up to and including k. In 
particular, if G is compact, then they are all bounded. If the 
set G and m are clear from the context or not important, one 
also writes g ∈ Ck or says g is a Ck function. Note that if 
n > 1 and m = 1 the vector ∇g(x) is assumed to be a column 
vector.

Preliminaries

Let us start with a simple result, which will be used later.

Lemma 1 Let X ∈ ℝ
n×n and let ‖ ⋅ ‖ be any sub-multiplica-

tive matrix norm on ℝn×n . Assume P,Q ∈ ℝ
n×n are (nonsin-

gular) matrices such that

Then

In particular, if ‖ ⋅ ‖ = ‖ ⋅ ‖p with p ∈ {1, 2,∞} and P = P� 
and Q = Q� are permutation matrices, then

Proof The first statement follows immediately from

and the second statement is a direct consequence of the com-
ments in Section “Notation”.   ◻

P�ek = e�(k) for k = 1, 2,… , n.

‖Q‖ = ‖Q−1‖ = ‖P‖ = ‖P−1‖ = 1.

‖QXP‖ = ‖X‖.

���P�XQ�
���p = ‖X‖p.

‖X‖ =
���Q

−1QXPP−1��� ≤ ���Q
−1���‖QXP‖

���P
−1���

= ‖QXP‖ ≤ ‖Q‖‖X‖‖P‖ = ‖X‖,

A well known useful result on rank 1 corrections of matri-
ces is given by the next lemma from [34].

Lemma 2 (Sherman–Morrison) Let A ∈ ℝ
n×n be nonsingu-

lar and u, v ∈ ℝ
n be such that 1 + vTA−1u ≠ 0 . Then

and

Proof (sketch) The formula for the inverse can be easily 
verified noting that vTA−1u ∈ ℝ.

For the determinant formula, first note that

Moreover, for a vector x such that vTx ≠ 0 , one 
has  that  w1 ∶= x  and any basis  w2,… ,wn  of 
ker(vT) = {y ∈ ℝ

n ∶ vTy = 0} are linearly independent 
eigenvectors of I + xvT with eigenvalues 1 + vTx (once) and 
1 ( n − 1 times). Since the determinant is the multiple of all 
the eigenvalues it follows that det(I + xvT) = 1 + vTx and 
with x = A−1u one gets

  ◻

The convex combination of the vectors x0, x1,… , xm ∈ ℝ
n 

is defined as the set

The vectors x0, x1,… , xm ∈ ℝ
n are said to be affinely inde-

pendent, if and only if

This condition is equivalent to the linear independence of the 
augmented vectors xa

0
, xa

1
,… , xa

m
∈ ℝ

n+1 , where xa
i
= (1, xT

i
)T

.
For affinely independent vectors x0, x1,… , xm ∈ ℝ

n 
the set S ∶= co{x0, x1,… , xm} is called an m-sim-
plex and the vectors xi are said to be its vertices and 

(
A + uvT

)−1
= A−1 −

A−1uvTA−1

1 + vTA−1u

det
(
A + uvT

)
=
(
1 + vTA−1u

)
det(A).

(
I + xvT

)
x =

(
1 + vTx

)
x.

det
(
A + uv

T
)
= det

(
A
(
I + A

−1
uv

T
))

= det(A) ⋅ det
(
I + A

−1
uv

T
)

=
(
1 + v

T
A
−1
u

)
det(A).

co
{

x0, x1,… , xm
}

: =

{ m
∑

i=0
�ixi, : 0 ≤ �i ≤ 1,

m
∑

i=0
�i = 1

}

.

m∑
i=0

cixi = 0 and

m∑
i=0

ci = 0 implies c0 = c1 = ⋯ = cm = 0.
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veS ∶= {x0, x1,… , xm} is the vertex set of S. For an m-sim-
plex S, its diameter is defined as

An n-simplex in ℝn is often referred to simply as simplex.
The so-called shape-matrix of the vertices of a sim-

plex, i.e. an n-tuple of affinely independent vectors, 
is very important for the CPA algorithm, because it is 
used to measure the (geometrical) regularity of a sim-
plex. It is defined in terms of an n-tuple containing its 
vertices and is, therefore, dependent of their order in the 
tuple. The goal of this paper is to show that it is essen-
tially only dependent on the set of vectors and not on the 
order. Hence, for an n-tuple C =

(
x0, x1,… , xn

)
 , xi ∈ ℝ

n , 
set(C) is defined as the set containing the elements in C, 
i.e. set(C) ∶= {x0, x1,… , xm}.

Definition 3 Let x0, x1,… , xn ∈ ℝ
n be affinely independent 

vectors and C =
(
x0, x1,… , xn

)
 an n-tuple. The shape-matrix 

of C is defined by

That is, (xi − x0)
T is the i-th row vector of XC . For 

S = coset(C) the matrix XC is said to be the shape-matrix 
of the simplex S.

Note that an n-simplex S has (n + 1)! potentially differ-
ent shape-matrices, corresponding to the permutations of 
its vertices. In the next lemma certain quantities of different 
permutations are related to each other.

Lemma 4 Let C =
(
x0, x1,… , xn

)
 be an n-tuple of affinely 

independent vectors in ℝn , � ∈ Sym({0, 1, 2,… , n}) , and 
define C� =

(
x�(0), x�(1),… , x�(n)

)
 , see Definition 3. Then

1. | det(XC)| = | det(XC�
)|.

2. If �(0) = 0 , then

Proof Proof of the second statement: If �(0) = 0 , then the 
restriction of � to {1, 2,… , n} is in Sym({1, 2,… , n}) . Define 
the permutation matrix P� ∈ ℝ

n×n using this restriction. 
Then XC�

= P�XC and the statement follows immediately 
by Lemma 1.

diam(S) ∶= max
x,y∈S

‖x − y‖2.

XC ∶=

⎛
⎜⎜⎜⎜⎝

�
x1 − x0

�T
�
x2 − x0

�T
⋮�

xn − x0
�T

⎞
⎟⎟⎟⎟⎠
∈ ℝ

n×n.

‖XC‖p = ���XC�

���p for p = 1, 2,∞.

Proof of the first statement: Let xa
i
= (1, xT

i
)T ∈ ℝ

n+1 be 
the vectors xi ∈ ℝ

n augmented with 1 in the first position. 
Set Xa

C
=
(
xa
0
, xa

1
,⋯ , xa

n

)T
∈ ℝ

(n+1)×(n+1) and

Then 

and Laplace expansion of the first column of AXa
C

 gives 
det(AXa

C
) = 1 ⋅ det(XC) = det(XC) . Since clearly det(A) = 1 

one obtains

In a similar way one concludes det(Xa
C�
) = det(XC�

).
D e f i n e  � ∈ Sym({1, 2,… , n + 1})  t h r o u g h 

�(i) = �(i − 1) + 1 for i = 1, 2,… , n + 1 . Then

holds t rue for  the augmented matr ix.  Since 
| det(P�)| = 1 = det(A) it follows that

  ◻

Triangulations and CPA Functions

In this section triangulations and the associated CPA func-
tions, that are the motivation for this paper, are introduced. 
For our purposes it is sometimes advantageous to have the 
order of the vertices of every simplex in a triangulation 
fixed, similar as in [25].

Definition 5 (Triangulation) Let L be a set of indices. A 
triangulation T = {S�}�∈L in ℝn is a set of n-simplices S� 
such that

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 0

−1 1 0 ⋯ 0

−1 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ 0

−1 0 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎠

∈ ℝ
(n+1)×(n+1).

AXa
C
=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 0

−1 1 0 ⋯ 0

−1 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ 0

−1 0 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 xT
0

1 xT
1

1 xT
2

⋮ ⋮

1 xT
n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 xT
0

0
�
x1 − x0

�T
0
�
x2 − x0

�T
⋮ ⋮

0
�
xn − x0

�T

⎞
⎟⎟⎟⎟⎟⎠

(2)det
(
Xa
C

)
= det(A) det

(
Xa
C

)
= det

(
AXa

C

)
= det

(
XC

)
.

Xa
C�

= AP�X
a
C
,

|||det
(
X
C�

)||| =
||||det

(
X
a

C�

)|||| =
|||det

(
AP�X

a

C

)|||
=

|||det
(
X
a

C

)||| =
|||det

(
X
C

)|||.

(3)S� ∩ S� = coveS� ∩ coveS� = co
(
veS� ∩ veS�

)
.
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for all �, � ∈ L . The domain of T  is defined as

and its complete set of vertices is denoted by

Further, the diameter of T  is defined as

If every simplex S� ∈ T  is uniquely associated to a corre-
sponding n-tuple C� =

(
x0, x1,… , xn

)
 of its vertices, T  is 

said to be a triangulation with ordered vertices.

Example 1 An example of a triangulation of ℝn is the stand-
ard triangulation Tstd , see Fig. 1 and e.g. [35], which consists 
of the simplices

fo r  a l l  z ∈ ℕ
n
0
 ,  a l l  J ⊂ {1, 2,… , n} ,  and  a l l 

� ∈ Sym({1, 2,… , n}) . The functions RJ ∶ ℝ
n
→ ℝ

n , 
defined for every J ⊂ {1, 2,… , n} are given by

where �J(i) denotes the characteristic function equal to one 
if i ∈ J  and equal to zero if i ∉ J  . It is easy to see that 
DTstd = ℝ

n and VTstd = ℤ
n.

DT ∶=
⋃
�∈L

S�

VT ∶=
⋃
�∈L

veS� .

diam(T) ∶= supS∈T diam(S).

�z,J,� ∶= co

{
RJ

(
z +

j∑
i=1

e�(i)

)
∶ j = 0, 1, 2,… , n

}

RJ(x) ∶=

n∑
i=1

(−1)�J(i)xiei,

Given a triangulation T  , a continuous and piecewise aff-
ine function, i.e. CPA function, can be defined by fixing its 
values at the vertices of the simplices, i.e. VT .

Definition 6 (CPA function) Let T  be a triangulation in ℝn . 
Denote by CPA[T] the set of all continuous functions

that are affine on each simplex S� ∈ T  , i.e. for each S� ∈ T  
there exists a vector w� ∈ ℝ

n and a number a� ∈ ℝ such that

Define ∇V� ∶= w�.

Let V ∈ CPA[T] and x ∈ DT  . Then there is a simplex 
S� = co{x0, x1,… , xn} ∈ T  such that x ∈ S� . Further, x 
has a unique representation as the convex combination of 
the vertices of S� , i.e. there are unique numbers �x

i
∈ [0, 1] , 

i = 0, 1,… , n , such that

It is not difficult to see that

and from the condition (3) it immediately follows, that 
even though x ∈ S� ∩ S� for S� ∈ T  , the representation (4) 
is unique. Hence, each V ∈ CPA[T] is completely deter-
mined by its values in the vertex set VT  . Further, from 
V(x0) = ∇V� ⋅ x0 + a� and

one obtains

With the n-tuple C� =
(
x0, x1,… , xn

)
 and the a correspond-

ing shape-matrix XC it follows that

This section is concluded by showing an example of how the 
value of a CPA function at a point is determined.

V ∶ DT → ℝ

V(x) = w� ⋅ x + a� for all x ∈ S� .

x =

n∑
i=0

�x
i
xi and

n∑
i=0

�x
i
= 1.

(4)V(x) =

n∑
i=0

�x
i
V(xi)

V(x) =

n∑
i=0

�x
i
V
(
xi
)
= ∇V� ⋅

n∑
i=0

�x
i

(
xi − x0

)
+ V(x0),

n∑
i=0

�x
i

[
V(xi) − V(x0)

]
=

n∑
i=0

�x
i

[
(xi − x0) ⋅ ∇V�

]
.

(5)
XC∇V� = v� with v� ∶=

⎛⎜⎜⎜⎝

V(x1) − V(x0)

V(x2) − V(x0)

⋮

V(xn) − V(x0)

⎞⎟⎟⎟⎠
,

i.e. ∇V� = X−1
C
v� .

Fig. 1  The standard triangulation T
std

 in ℝ2 , restricted to [−5, 5]2
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Example 8 Consider the standard triangulation Tstd restricted 
to [−1, 1]n . By fixing the values V(0) = 0 and V(x) = 1 for 
x ∈ VTstd ⧵ {0} the values V(x) have been determined for all 
x ∈ [−1, 1]n.

Indeed, let x ∈ [−1, 1]n . To determine a simplex 
co{x0,… , xn} ∈ T

std such that x ∈ co{x0,… , xn} define a 
p e r m u t a t i o n  � ∈ Sym({1, 2,… , n})  s u c h  t h a t 
|x�(1)| ≥ |x�(2)| ≥ ⋯ ≥ |x�(n)| |x�(1)| ≥ |x�(2)| ≥ ⋯ ≥ |x�(n)| 
and J = {i ∈ {1,… , n}∶ x

i
< 0} . Let �x

n
= |x�(n)| ∈ [0, 1] , 

�x
n−1

= |x�(n−1)| − |x�(n)| ∈ [0, 1]  , 
�x
n−2

= |x�(n−2)| − |x�(n−1)| ∈ [0, 1] , ⋯ , �x
1
= |x�(1)| − |x�(2)|

∈ [0, 1] and �x
0
= 1 −

∑n

i=1
�x
i
= 1 − �x�(1)� ∈ [0, 1] . With 

xj = RJ
�∑j

i=1
e�(i)

�
 , in particular z = 0 , one has

Indeed,

Furthermore,

Construction of CPA Lyapunov Functions

Let us elaborate why ‖X−1
C
‖p for shape-matrices XC is of 

so much interest for computing CPA Lyapunov functions. 
Our reference is [21]. To prove that the CPA method always 
succeeds in computing a CPA Lyapunov functions for the 
system (1) with f ∈ C2(ℝn,ℝn) , one uses the fact that by 
converse theorems there exists a C2 Lyapunov function W 
for the system, cf. e.g. [36–39] or [4–7] for a more accessible 
discussion. Such a Lyapunov function W is interpolated over 
a triangulation T  by a CPA function V ∈ CPA[T] by fixing

The function V is said to be the CPA interpolation of W on T  . 
Thus, on a simplex S ∶= coset(C) ∈ T  , C =

(
x0, x1,… , xn

)
 , 

the unique convex combination of the vertices for an x ∈ S 
is used to set

x =

n∑
j=0

�x
j
xj with

n∑
j=0

�x
j
= 1.

n∑
j=0

�x
j
xj = R

J

(
n∑
j=0

�x
j

j∑
i=1

e�(i)

)

= R
J

(
n∑
i=1

n∑
j=i

�x
j
e�(i)

)

= R
J

(
n∑
i=1

|x�(i)|e�(i)
)

= x.

V(x) =

n�
j=0

�x
j
V(xj) =

n�
j=1

�x
j
= �x�(1)� = max

i=1,…,n
�xi� = ‖x‖∞.

(6)V(x) = W(x) for allx ∈ VT.

Then

For every triangulation T  with DT ⊂ K , where K ⊂ ℝ
n is 

compact, one has

It follows that V approximates W arbitrarily well if T  , 
DT ⊂ K , is a triangulation consisting of simplices with small 
enough diameters.

However, this is not sufficient if one additionally 
wants ∇V  to closely approximate ∇W  , i.e. convergence 
in C1(DT;ℝ) and not only in C(DT;ℝ) , cf. e.g. the proof of 
[21, Theorem 5]. This is demonstrated in the next exam-
ple, where some shape-matrices for a simplex in the plane 
(triangle) are computed and the gradients of two potential 
Lyapunov functions are compared to the gradient of their 
CPA interpolations.

E xa m p l e  9  D e f i n e  t h e  ve c t o r s  x0 ∶= (x, y)T  , 
x1 ∶= (x + h, y + k)T , x2 ∶= (x + h, y − k)T . For a triangle S 
with these vertices

The triangle is equilateral if 
√
h2 + k2 = 2k , i.e. h =

√
3 k . 

Now consider two different orderings of the vertices.
For C0 ∶= (x0, x1, x2) one has the shape-matrix

with inverse

Then

which has the eigenvalues

Now swap the first two vertices and set C1 ∶= (x1, x0, x2) , 
describing the same simplex, but with a different order of 
the vertices. The shape-matrix becomes

V(x) =

n∑
i=0

�x
i
W(xi), where x =

n∑
i=0

�x
i
.

�W(x) − V(x)� ≤
n�
i=0

�x
i
��W(x) − V(xi)

�� ≤ diam(S) ⋅max
z∈S

‖∇W(z)‖2.

max
z∈S

‖∇W(z)‖2 ≤ max
z∈K

‖∇W(z)‖2 < ∞

diam(S) = max
�
2k,

√
h2 + k2

�
.

X0 ∶= XC0
=

(
(x + h) − x (y + k) − y

(x + h) − x (y − k) − y

)
=

(
h k

h − k

)

X−1
0

=
1

2

(
h−1 h−1

k−1 − k−1

)
.

X−T
0

X−1
0

=
1

4

(
h−2 + k−2 h−2 − k−2

h−2 − k−2 h−2 + k−2

)
,

�1 =
1

2
h−2 and �2 =

1

2
k−2, thus ‖X−1

0
‖2 = 2−

1

2 max{h−1, k−1}.
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with inverse

and

has the eigenvalues

Thus

One clearly sees that ‖X−1
0
‖2 ≠ ‖X−1

1
‖2.

Later it will be shown that a convenient sufficient con-
dition for the convergence ‖∇V − ∇W‖2 → 0 for any 
W ∈ C2(S;ℝ) and its CPA interpolation V is that for a con-
stant d > 0 one has

Lemma 13 will show that if (7) holds for one ordering of 
the vertices with constant d > 0 , then it holds for all pos-
sible orderings of the vertices of the simplex with constant 
d∗ = d(1 + d

√
n − 1).

Let us verify this in our example for different rela-
tions of h and k. Denote di = diam(S)‖X−1

i
‖2 for i = 0, 1 

and let us show that d0 ≤ d∗
1
= d1(1 + d1) as well as 

d1 ≤ d∗
0
= d0(1 + d0).

In our example

X1 ∶= XC1
=

(
x − (x + h) y − (y + k)

(x + h) − (x + h) (y − k) − (y + k)

)
=

(
−h − k

0 − 2k

)

X−1
1

=

(
−h−1 (2h)−1

0 − (2k)−1

)

X−T
1

X−1
1

=
1

4

(
4h−2 − 2h−2

−2h−2 h−2 + k−2

)

�± =
h2 + 5k2 ±

√(
h2 − 3k2

)2
+ 16k4

8h2k2
.

���X
−1
1

���2 =
√
�+ =

1

2hk

����h2 + 5k2 +

��
h2 − 3k2

�2
+ 16k4

2
.

(7)diam(S)
‖‖‖X

−1‖‖‖2 ≤ d when diam(S) → 0.

d0 = diam(S)‖X−1
0
‖2 = max{2k,

√
h2 + k2}2−

1

2 max{h−1, k−1}

=

⎧⎪⎨⎪⎩

2
1

2 kh−1, if h ≤ k,

2
1

2 , if k ≤ h ≤ √
3 k;

2−
1

2

√
h2k−2 + 1, if

√
3 k ≤ h,

and

d1 = diam(S)‖X−1
1
‖2 = max{2k,

√
h2 + k2}

1

2hk

�
h2 + 5k2 +

√
(h2 − 3k2)2 + 16k4

2

That is, depending on h and k: 

1. h = k : In this case d0 =
√
2 and d1 =

�
3 +

√
5 = 2.288 . 

That is d0 ≤ d1 and 

2. h = ck with c → ∞ : In this case d0∕c → 1∕
√
2 and 

d1∕c →
1

2
 . That is d1∕c ≤ d0∕c and 

3. h = ck  wi th  c → 0  :  In  th is  case  d0c →
√
2 

and d1c →
√
5 = 2.236 .  That is d0c ≤ d1c and 

d1c = 2.236c ≤ d0(1 + d0)c = (2 +
√
2)c = 3.414c.

From the formula for d0 , one sees that condition (7) trans-
lates with X ∶= X0 to

for some constants L, H. Alternatively, one can use norm 
equivalence to see that

which delivers again the same condition (8) for (7) with 
X ∶= X1.

Let us link these considerations to estimates on the gradi-
ent of a Lyapunov function and its CPA interpolation. Con-
sider two potential Lyapunov functions.

As the first potential Lyapunov consider W1(x, y) = x2 + y2 
with gradient ∇W1(x, y) = (2x, 2y)T . By formula (5) for the 
gradient ∇V1 of its CPA interpolation V1 on S is

d1 = 2.288 ≤ d0
�
1 + d0

�
= 2 +

√
2 = 3.414.

d0∕c = 0.707 ≤ d1
(
1 + d1

)
∕c = 0.75

(8)0 < L ≤ hk−1 ≤ H < ∞

max
{
h
−1
, (2k)−1

}
=‖‖X−1

1

‖‖max
≤ ‖‖X−1

1

‖‖2
≤ 2‖‖X−1

1

‖‖max
= 2max

{
h
−1
, (2k)−1

}
,
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from which

follows.
S i m i l a r l y ,  f o r  t h e  p o t e n t i a l  L y a p u -

nov  func t ion  W2(x, y) = (x + y)2  w i t h  g rad ien t 
∇W2(x, y) = (2x + 2y, 2x + 2y)T one obtained for the gradi-
ent ∇V2 of its CPA interpolation V2 on S that

i.e. 

In both cases one sees that a sufficient condition for 
‖∇Vi − ∇Wi(x, y)‖2 → 0 , i = 1, 2 , when h → 0 and k → 0 , 
is that kh−1 is bounded, which corresponds to the condition 
L > 0 in (8).

To prove that the gradient ∇V  of the CPA interpolation V 
of the C2 Lyapunov function W approximates ∇W arbitrarily 
well for appropriate small simplices, let us first consider a 
fixed simplex S ∶= coset(C) ∈ T  , C =

(
x0, x1,… , xn

)
 . In the 

CPA algorithm certain linear constraints are to be fulfilled at 
the vertices xi of the simplex S. Note the estimate

for every i = 0, 1,… , n . Let us first consider the term 
‖∇W(xi) − ∇W(x0)‖p . Consider the continuously differen-
tiable function g(t) ∶= ∇W(t(xi − x0) + x0) − ∇W(x0) . Then, 
by the Mean Value Theorem one obtains for some s ∈ (0, 1) 
and where HW ∶ ℝ

n
→ ℝ

n×n the Hessian matrix of W, that

∇V1 = X−1
0

(
W(x + h, y + k) −W(x, y)

W(x + h, y − k) −W(x, y)

)

=
1

2

(
h−1 h−1

k−1 − k−1

)(
2hx + h2 + 2ky + k2

2hx + h2 − 2ky + k2

)

=

(
2x + h + k2h−1

2y

)
,

‖‖∇V1 − ∇W1(x, y)
‖‖2 = h + k2h−1 for all (x, y) ∈ S

∇V2 = X−1
0

(
W(x + h, y + k) −W(x, y)

W(x + h, y − k) −W(x, y)

)

=
1

2

(
h−1 h−1

k−1 − k−1

)(
(2x + 2y + h + k)(h + k)

(2x + 2y + h − k)(h − k)

)

=
1

2

(
(2x + 2y + h + k)(1 + kh−1) + (2x + 2y + h − k)(1 − kh−1)

(2x + 2y + h − k)(hk−1 + 1) + (2x + 2y + h − k)(−hk−1 + 1)

)

=

(
2x + 2y + h + k2h−1

2x + 2y + h − k

)
,

‖‖∇V2 − ∇W2(x, y)
‖‖2 =

√(
h + k2h−1

)2
+ (h − k)2 for all (x, y) ∈ S.

‖‖∇V − ∇W(xi)
‖‖p ≤ ‖‖∇V − ∇W(x0)

‖‖p + ‖‖∇W(xi) − ∇W(x0)
‖‖p

Thus, ‖∇W(xi) − ∇W(x0)‖p can be made arbitrarily small by 
using a simplex S with small enough diameter.

The term ‖∇V − ∇W(x0)‖p is more problematic and is not 
necessarily small for a small simplex S as was demonstrated 
in Example 9. Let us analyse this in more detail and derive 
sufficient conditions. By Taylor’s Theorem one has for every 
j = 1, 2,… , n that

for some zj on the line segment between x0 and xj . Thus

Now with

one gets

��∇W(xi) − ∇W(x0)
��p = ‖g(1) − g(0)‖p =

������
1

0

dg

dt
(s) ds

�����p
=
������

1

0

HW

�
s(xi − x0) + x0

�
ds
�
xi − x0

������p
≤ max

y∈S

��HW (y)
��p��xi − x0

��p
≤ max

y∈S

��HW (y)
��p max

�
1, np

−1−2−1
�
diam(S).

W
(
xj

)
= W

(
x0

)
+ ∇W

(
x0

)
⋅

(
xj − x0

)

+
1

2

(
xj − x0

)T
HW

(
zj

)(
xj − x0

)
,

(9)

|||W
(
xj
)
−W(x0) − ∇W(x0) ⋅

(
xj − x0

)|||
=

1

2

|||(xj − x0)
THW (zj)(xj − x0)

|||
≤ 1

2

‖‖‖xj − x0
‖‖‖2
‖‖‖HW (zj)

(
xj − x0

)‖‖‖2
≤ 1

2

‖‖‖HW (zj)
‖‖‖2
‖‖‖xj − x0

‖‖‖
2

2

≤ 1

2
max
y∈S

‖‖HW (y)
‖‖2 diam(S)2.

(10)

∇V = X−1
C
v where v ∶=

⎛⎜⎜⎜⎝

V(x1) − V(x0)

V(x2) − V(x0)

⋮

V(xn) − V(x0)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

W(x1) −W(x0)

W(x2) −W(x0)

⋮

W(xn) −W(x0)

⎞⎟⎟⎟⎠
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Note that the j-th component of the vector v − XC∇W(x0) , 
see (10), is given by

and can thus be bounded using (9),

Thus

and

Above it was shown that the Lyapunov function W is approx-
imated arbitrary well in the C1 norm on the simplex S given 
that diam(S) and ‖X−1

C
‖p diam(S)2 are small. Note in particu-

lar, that on a compact set K ⊂ ℝ
n one has

and the CPA interpolation V ∈ CPA[T] of the Lyapunov 
function W is arbitrarily close to W in the C1 norm for any 
triangulation with ordered vertices T  with sufficiently small 
diam(T) and maxS�∈T ‖XC�

‖p diam(T)2.
Because of this, the proof in [21] that the CPA method 

always succeeds in computing a Lyapunov function if one 
exists, uses a sequence of finite triangulations Tk where the 
simplices become smaller, i.e. diam(Tk) → 0 as k → ∞ , but 
also such that maxS�∈Tk ‖XC�

‖p diam(Tk)
2
→ 0 as k → ∞ , or, 

as a sufficient condition, that maxS�∈Tk ‖XC�
‖p diam(Tk) ≤ d 

is uniformly bounded in k.
Now note that when the simplex S ∶= coset(C) is scaled 

down, i.e. the vertices of C (or S) are multiplied with a number 
0 < s < 1 , then

This leads to the following strategy of obtaining a suitable 
sequence of triangulations Tk for proving that the algorithm 
in [21] succeeds in computing a Lyapunov function on any 
compact set C , that is contained in the basin of attraction 

‖‖∇V − ∇W(x0)
‖‖p = ‖‖‖X

−1
C
v − ∇W(x0)

‖‖‖p =
‖‖‖X

−1
C

(
v − XC∇W(x0)

)‖‖‖p
≤ ‖‖‖X

−1
C

‖‖‖p‖‖v − XC∇W(x0)
‖‖p.

[
v − XC∇W(x0)

]
j
= W(xj) −W(x0) − ∇W(x0) ⋅

(
xj − x0

)
,

��v − XC∇W(x0)
�
j
� ≤ 1

2
max
y∈S

‖HW (y)‖2 diam(S)2.

‖‖v − XC∇W(x0)
‖‖p ≤ np

−1

2
max
y∈S

‖‖HW (y)
‖‖2 diam(S)2

‖∇V − ∇W(x0)‖p ≤ ‖X−1
C
‖p‖v − XC∇W(x0)‖p

≤ np
−1

2
max
y∈S

‖HW (y)‖2‖X−1
C
‖p diam(S)2.

max
y∈S

‖HW (s)‖2 ≤ max
y∈K

‖HW (s)‖2 < ∞

(11)diam(sS) = s diam(S) and
‖‖‖X

−1
sC

‖‖‖p = s−1
‖‖‖X

−1
C

‖‖‖p.

of the equilibrium at the origin. For simplicity some adap-
tations that have to be made close to the equilibrium are 
ignored, cf. [21] for the details.

The starting point is a triangulation T0 with DT0
= ℝ

n that 
is uniformly regular as defined in Definition 10 below. Then 
an adequate sequence of triangulations Tk is generated from 
the uniformly regular triangulation T0 . For this fix a constant 
s fulfilling 0 < s < 1 and define

Then by (11) one has diam(Tk) ≤ sk diam(Tk) and with d∗ as 
in Definition 10 the degeneracy of Tk is upper bounded by d∗ . 
It follows that V and ∇V  approximate W and ∇W  arbitrarily 
close on C with increasing k.

Definition 10 Let T =
{
S�
}
�∈L

 be a triangulation with 
ordered vertices, S� = coset(C�) , where the C� are the asso-
ciated n-tuples of vertices. 

1. The  degeneracy of T  is defined to be the value 

2. The triangulation with ordered vertices T  is said 
to be (h,  d)-bounded for constants 0 < h, d < ∞ , if 
diam(T) < h and the degeneracy of T  is bounded from 
above by d.

3. The triangulation with ordered vertices T  is said to be 
uniformly regular if it is (h, d)-bounded for some con-
stants 0 < h, d < ∞.

4. Let T∗ be a triangulation (not with ordered vertices) that 
consists of the same simplices as T  and assume that T  
is uniformly regular. Then T∗ is said to be uniformly 
regular.

Remark 11 Some comments on the last definition are in 
order: 

1. p = 2 was used in the definition of degeneracy to fix the 
numerical value, but in principle any 1 ≤ p ≤ ∞ can be 
used to the same effect because of norm equivalences in 
ℝ

n×n.
2. Obviously all triangulations consisting of a finite num-

ber of simplices are uniformly regular and this concept 
is only interesting for infinite triangulations. The tri-
angulation in (12) is a triangulation of a compact set 
and therefore finite, however, the algorithm to compute 
CPA Lyapunov functions uses a sequence of finer and 

(12)Tk ∶= {skS� ∶ (skS�) ∩ C
◦ ≠ �} for k ∈ ℕ0.

sup
S�∈T

diam
(
S�
)‖‖‖X

−1
C�

‖‖‖2.
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finer triangulations arising from scaling down an infinite 
triangulation and this infinite triangulation should be 
uniformly regular.

3. An equivalent condition for a uniformly regular trian-
gulation with ordered vertices T  is that there exist con-
stants 0 < h∗, d∗ < ∞ such that 

 where XC is the shape-matrix corresponding to the sim-
plex S ∈ T  . This is shown in Lemma 12 below.

4. A priori it is not obvious that uniformly regular is prop-
erly defined for triangulations that don’t have ordered 
vertices. This however, is proved in Lemma 13, and 
indeed if T  is a triangulation with ordered vertices that 
has degeneracy d, then all triangulations with ordered 
vertices consisting of the simplices of T  will have 
degeneracy no larger than d∗ ∶= d(1 + d

√
n − 1).

5. An example of uniformly regular triangulation is the 
standard triangulation from Example 6; see e.g. [35], 
where it is shown that it is uniformly regular. However, 
there are many more examples of uniformly regular tri-
angulations with useful approximate symmetries that 
can be adapted to the system (1) at hand [40, 41].

As explained above, the success of the CPA algorithm 
to compute Lyapunov functions is shown using a sequence 
of triangulations Tk such that each triangulation Tk is (hk, d)
-bounded, where hk → 0 as k → ∞ and d > 0 is a constant 
independent of k.

Our first main result is Lemma 12, which shows that the 
concept of (h, d)-bounded triangulations can equivalently 
be formulated in terms of the norm and the condition num-
ber of the shape-matrices of the triangulation.

Lemma 12 Let C = (x0, x1,… , xn) be an n-tuple of affinely 
independent vectors in ℝn , XC be its corresponding shape-
matrix, and S = coset(C�) the corresponding simplex. Then

and

Proof Fix i, j ∈ {0, 1,… , n} such that diam(S) = ‖xi − xj‖2 
and k ∈ {1, 2,… , n} such that ‖XC‖∞ = ‖xk − x0‖1 . Then

and

‖XC‖2 ≤ h∗ and �2
�
XC

� ≤ d∗ for all S ∈ T,

1

n
��XC

��2 ≤ diam(S) ≤ 2
√
n ��XC

��2

1

n
�2
�
XC

� ≤ diam(S)
���X

−1
C

���2 ≤ 2
√
n �2

�
XC

�
.

��XC
��∞ = ��xk − x0

��1 ≤
√
n ��xk − x0

��2
≤ √

n
���xi − xj

���2 =
√
n diam(S)

Hence,

and

  ◻

The next lemma shows that the concept of a uniformly 
regular triangulation is properly defined for a triangula-
tion (not with ordered vertices). This is shown by demon-
strating that if a triangulation with ordered vertices T  in 
ℝ

n is (h, d)-bounded for some particular ordering of the 
vertices of the simplices, then it is (h, d∗)-bounded for any 
ordering with d∗ = d(1 + d

√
n − 1).

Lemma 13 Let T =
{
S�
}
�∈L

 be a triangulation with ordered 
vertices, S� = coset(C�) , where the C� are the associated 
n-tuples of vertices. Assume T∗ =

{
S�
}
�∈L

 is a triangulation 
consisting of the same simplices as T  , but with a (possibly) 
different ordering of the vertices, i.e.  a different set of 
n-tuples C∗

�
 associated to the simplices. Then T∗ is (h, d∗)

-bounded with d∗ ∶= d
�
1 + d

√
n − 1

�
.

Proof The case n = 1 is trivial. Thus assume in the follow-
ing that n ≥ 2.

Let C ∶= (x0, x1,… , xn) be the n-tuple of ver-
tices associated to the simplex S ∈ T  . Its shape-
m a t r i x  i s  XC =

(
x1 − x0, x2 − x0,… , xn − x0

)T  . 
L e t  � ∈ Sym({0, 1,… , n})  b e  s u c h  t h a t 
C∗ ∶= (x�(0), x�(1),… , x�(n)) is the n-tuple of vertices asso-
ciated to the simplex S in T∗ . If �(0) = 0 , then the shape-
matrix XC∗ has the same rows as the shape-matrix XC , just 
in a (possibly) different order. Then it follows immediately 
by Lemma 1 that ‖X−1

C∗ ‖2 = ‖X−1
C
‖2 and thus

If �(0) ≠ 0 , then there is an i ∈ {1, 2,… , n} such that 
�(i) = 0 . Define � ∈ Sym({1, 2,… , n}) through �(i) = �(0) 
and �(k) = �(k) for k = 1, 2,… , i − 1, i + 1,… , n , i.e. k ≠ i , 
and denote by P� the permutation matrix defined through 
P�ek = e�(k) . Then

diam(S) =
‖‖‖xi − xj

‖‖‖2 ≤ ‖‖xi − x0
‖‖2 + ‖‖‖xj − x0

‖‖‖2
≤ ‖‖xi − x0

‖‖1 + ‖‖‖xj − x0
‖‖‖1 ≤ 2‖‖XC

‖‖∞.

��XC
��2 ≤

√
n ��XC

��∞ ≤ n diam(S) ≤ 2n��XC
��∞ ≤ 2n

√
n ��XC

��2

�2
�
XC

�
= ��XC

��2���X
−1
C

���2 ≤ n diam(S)
���X

−1
C

���2 ≤ 2n
√
n �2(XC).

diam(S)
���X

−1
C∗

���2 ≤ d ≤ d
�
1 + d

√
n − 1

�
=∶ d∗.

(13)
XC∗ = RiP�XC

⏟⏟⏟
=∶A

+u
(
x0 − x�(i)

)T
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=∶vT

= A + uvT,
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where

To show (13) first calculate its left-hand side to be

For its right-hand side of (13) one has

and

Thus

Ri ∶= I − 2eie
T
i

and u ∶=
∑
k=1
k≠i

n
ek.

XC∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x�(1) − x�(0)

�T
⋮�

x�(i−1) − x�(0)

�T

�
x�(i) − x�(0)

�T

�
x�(i+1) − x�(0)

�T
⋮�

x�(n) − x�(0)

�T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x�(1) − x�(i)

�T
⋮�

x�(i−1) − x�(i)

�T

�
x0 − x�(i)

�T

�
x�(i+1) − x�(i)

�T
⋮�

x�(n) − x�(i)

�T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A = RiP�

⎛
⎜⎜⎜⎝

�
x1 − x0

�T
⋮�

xn − x0

�T

⎞⎟⎟⎟⎠

= Ri

⎛⎜⎜⎜⎝

�
x�(1) − x0

�T
⋮�

x�(n) − x0

�T

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x�(1) − x0

�T
⋮�

x�(i−1) − x0

�T

−
�
x�(i) − x0

�T

�
x�(i+1) − x0

�T
⋮�

x�(n) − x0

�T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

uv
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x0 − x�(i)

�T
⋮�

x0 − x�(i)

�T

0
T

�
x0 − x�(i)

�T
⋮�

x0 − x�(i)

�T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

which shows (13). Now

and by Lemma 4 | detXC| = | detXC∗ | ≠ 0.
Note that 1 + vTA−1u ≠ 0 . Indeed, otherwise

which is a contradiction because XC∗ and A−1 are invertible 
and u ≠ 0.

Thus one obtains by Lemma 2 that

Further, again by Lemma 2,

It is easy to see that

Note that R−1
i

= Ri = RT
i
 and recall that P−1

�
= PT

�
 , from 

which

and

A + uv
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x�(1) − x0

�T
⋮�

x�(i−1) − x0

�T

−
�
x�(i) − x0

�T

�
x�(i+1) − x0

�T
⋮�

x�(n) − x0

�T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x0 − x�(i)

�T
⋮�

x0 − x�(i)

�T

0
T

�
x0 − x�(i)

�T
⋮�

x0 − x�(i)

�T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
x�(1) − x�(i)

�T
⋮�

x�(i−1) − x�(i)

�T

�
x0 − x�(i)

�T

�
x�(i+1) − x�(i)

�T
⋮�

x�(n) − x�(i)

�T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

| det(A)| = ||det(RiP�XC)
|| = ||det(Ri)

|| ⋅ ||det(P�)
|| ⋅ ||det(XC)

||
= 1 ⋅ 1 ⋅ ||det(XC)

|| = ||det(XC)
||

0 = u

(
1 + v

TA−1
u

)
=
(
A + uv

T
)
A−1

u = XC∗A
−1
u,

|||1 + vTA−1u
||| =

|||||
det

(
A + uvT

)
det(A)

|||||
=

| det (XC∗

)|
| det (XC

)| = 1.

���X
−1
C∗

���2 =
����A

−1 −
A−1uvTA−1

1 + vTA−1u

����2 ≤
���A

−1���2
�
1 +

���A
−1���2‖uv

T‖2
�
.

��uvT��2 = max‖x‖2=1
��uvTx��2 ≤ max‖x‖2=1

��vTx�� ‖u‖2 = ‖v‖
2

√
n − 1

= ‖x
0
− x�(i)‖2

√
n − 1 ≤ diam(S)

√
n − 1.

(RiP�)
TRiP� = PT

�
RT
i
RiP� = P−1

�
R−1
i
RiP� = I
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follows. Thus ‖RiP�‖2 = ‖(RiP�)
−1‖2 = 1 and it follows by 

Lemma 1 that

Hence,

and then

follows.
Since the simplex S ∈ T

∗ was arbitrary, it has been shown 
that T∗ is (h, d∗)-bounded.   ◻

The following proposition is a direct consequence of 
Lemma 13.

Proposition 14 Assume Tk , k ∈ ℕ0 , is a sequence of trian-
gulations with ordered vertices in ℝn , such that Tk is (hk, dk)
-bounded, hk → 0 as k → ∞ , and dk ≤ d for all k ∈ ℕ0 . Let 
T
∗
k
 , k ∈ ℕ0 , be a sequence of triangulations with ordered 

vertices such that T∗
k
 consists of the simplices of Tk for every 

k ∈ ℕ0 , but with a (possibly) different ordering of the ver-
tices of the simplices. Then there are constants d∗

k
, d∗ > 0 

such that T∗
k
 is (hk, d∗k )-bounded, k ∈ ℕ0 , and d∗

k
≤ d∗ for all 

k ∈ ℕ0.

Proof Set d∗
k
= dk(1 + dk

√
n − 1) and d∗ = d(1 + d

√
n − 1) 

and apply Lemma 13.   ◻

(
(R

i
P�)

−1
)T
(R

i
P�)

−1 =
(
P
−1
�
R
−1
i

)T
P
−1
�
R
−1
i

=
(
P
T

�
R
T

i

)T
P
−1
�
R
−1
i

= R
i
P�P

−1
�
R
−1
i

= I

‖‖‖A
−1‖‖‖2 =

‖‖‖X
−1
C

(
RiP�

)−1‖‖‖2 =
‖‖‖X

−1
C

‖‖‖2.

���X
−1
C∗

���2 ≤ ‖X−1
C
‖2
�
1 + ‖X−1

C
‖2 diam(S)

√
n − 1

�

≤ ‖X−1
C
‖2
�
1 + d

√
n − 1

�

diam(S)
���X

−1
C∗

���2 ≤ diam(S)‖X−1
C
‖
2�

1 + d

√
n − 1

�
= d

�
1 + d

√
n − 1

�
=∶ d

∗

By Lemma 13 one can talk about an (h, d)-bounded 
triangulation T = {S�}�∈L even though the vertices of the 
simplices are not ordered. The understanding is then that 
no matter how the vertices of the simplices are ordered, the 
resulting triangulation with ordered vertices in ℝn is (h, d)-
bounded in the sense of Definition 10. Thus, one can define 
uniformly regular for triangulations, of which the vertices 
of the simplices are not necessarily ordered. Let us put this 
in a formal definition.

Definition 15 (Uniformly regular triangulations) A trian-
gulation T  in ℝn (not with ordered vertices) is said to be 
uniformly regular if any, and then all, triangulation with 
ordered vertices that consists of the same simplices as T  is 
uniformly regular.

Error Estimates in the CPA Algorithm

In this section, some important error estimates for CPA Lya-
punov functions V ∶ DT → ℝ when using linear constraints in 
the CPA algorithm are discussed. Here T  is a triangulation and 
DT  its domain. Let c ∶ DT → ℝ be a function that is convex 
on every simplex S ∈ T  ; a sufficient condition, but not neces-
sary, is that c is a convex function on DT  . The essential idea 
of the CPA algorithm is to state constraints at the vertices of a 
simplex S = coset(C) ∈ T  , C = (x0, x1,… , xn) , that are linear 
in the values of a function V ∈ CPA[T] , such that

R e c a l l  t h a t  V(x) = ∇V ⋅ x − ∇V ⋅ x0 + V(x0)  , 
where ∇V ∶= X−1

C
v ,  XC  is  a shape-matr ix,  and 

v =
(
V(x1) − V(x0),V(x2) − V(x0),… ,V(xn) − V(x0)

)T  . 
Further recall that x ∈ S can be written uniquely as a convex 
combination of the vertices of S, i.e. 

∑n

i=0
�ixi where �i ≥ 0 

and 
∑n

i=0
�i = 1.

Because c is convex on S one gets

and by writing

one sees that a sufficient condition for (14) is that

Assume that for a q ∈ [1,∞] upper bounds

(14)∇V ⋅ f(x) ≤ −c(x) for all x ∈ S.

c(x) = c

(
n∑
i=0

�ixi

)
≤

n∑
i=0

�ic
(
xi
)

∇V ⋅ f(x) =

n∑
i=0

�i
(
∇V ⋅ f(xi) + ∇V ⋅

[
f(x) − f(xi)

])

(15)∇V⋅f(x
i
) +max

x∈S

|||∇V⋅
[
f(x) − f(x

i
)
]||| ≤ −c(x

i
) for i = 0, 1,… , n.
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hold true. Further assume that for p ∈ [1,∞] such that 
p−1 + q−1 = 1 the upper bounds

hold true. Then one can conclude by Hölder’s inequality and 
(15) that (14) holds true.

However, for a C2 vector field f one can do considerably 
better than this. First note that

by Hölder’s inequality as above. Since x =
∑n

i=0
�ixi one can 

use upper bounds Ef
i,q

≥ 0 such that

to obtain, just as before, that

implies that (14) holds true. In general the Ef
i,q

 can be chosen 
(much) smaller than the Mi,q.

For obtaining good values for the bounds Ef
i,q

 recall [42, 
Lemma 4.16], which in our notation states for a C2 func-
tion g ∶ S → ℝ and constants

that for x =
∑n

i=0
�ixi ∈ S the estimate

hold true. Define for i = 0, 1,… , n the functions

It is easy to see that for a ∈ [0, 1] one has

Mi,q ≥ max
x∈S

‖‖f(x) − f(xi)
‖‖q for i = 0, 1,… , n

∇V ⋅ f(xi) + ‖∇V‖pMi,q ≤ −c(xi) for i = 0, 1,… , n,

(16)

∇V ⋅ f(x) =

n�
i=0

�i∇V ⋅ f(xi) + ∇V ⋅

�
f(x) −

n�
i=0

�if(xi)

�

≤
n�
i=0

�i∇V ⋅ f(xi) + ‖∇V‖p
�����
f(x) −

n�
i=0

�if(xi)
�����q

(17)
‖‖‖‖‖‖
f

(
n∑
i=0

�ix

)
−

n∑
i=0

�if(xi)

‖‖‖‖‖‖q
≤

n∑
i=0

�iE
f
i,q

(18)∇V ⋅ f(xi) + ‖∇V‖pEf
i,q

≤ −c(xi) for i = 0, 1,… , n,

(19)Bg
r,s

≥ max
x∈S

|||||
�2g

�xr�xs
(x)

|||||
, r, s = 1, 2,… , n,

|||||
g(x) −

n∑
i=0

�
i
g(x

i
)
|||||
≤

n∑
i=0

�
i

n∑
r,s=1

B
g

r,s

2
|e

r
⋅ (x

i
− x0)|

(|e
s
⋅ (x − x0)| + |e

s
⋅ (x

i
− x0)|

)

hi(x) ∶=

n∑
r,s=1

B
g
r,s

2
|er ⋅

(
xi − x0

)|(|es ⋅
(
x − x0

)| + |es ⋅
(
xi − x0

)|).

hi(ax + (1 − a)y) ≤ ahi(x) + (1 − a)hi(y),

i.e. each hi is a convex function and thus attains its maximum 
on the simplex S at a vertex. It is therefore straight forward 
and computationally efficient to compute

and by construction

If [42, Lemma 4.16] is used on each component function fj 
of f , one obtains constants Efj

i
∶= E

g

i
 , g = fj , and

and in case q = ∞ one has

It is evident that the choices q = 1 or q = ∞ are the best to 
obtain an estimate as in (17). In these cases

It is fortunate, that in both cases the inequality (18) can be 
written as linear constraints in the values V(xi) . If q = 1 , 
then p = ∞ and ‖∇V‖∞ can be modelled using an auxiliary 
variable A, i.e. 

holds true, if and only if there exists A ∈ ℝ such that

Similarly, if q = ∞ then p = 1 and

holds true, if and only if there exist Aj ∈ ℝ such that

Considerations as above with q = ∞ and p = 1 , but usually 
with less tight bounds on the Ef

i,∞
 , have been used to design 

linear programming problems to compute CPA Lyapunov 

E
g

i
∶= max

x∈S
hi(x) = max

j=0,1,…,n
hi(xj)

|||||
g(x) −

n∑
i=0

�ig(xi)
|||||
≤

n∑
i=0

�iE
g

i
.

‖‖‖‖‖‖
f

(
n∑
i=0

𝜆ix

)
−

n∑
i=0

𝜆if(xi)

‖‖‖‖‖‖q
≤
(

n∑
j=1

|||||

n∑
i=0

𝜆iE
fj

i

|||||

q) 1

q

if 1 ≤ q < ∞

‖‖‖‖‖‖
f

(
n∑
i=0

�ix

)
−

n∑
i=0

�if(xi)

‖‖‖‖‖‖∞
≤

n∑
i=0

�i max
j=1,2,…,n

E
fj

i
.

Ef
i,1

=

n∑
j=1

E
fj

i
and Ef

i,∞
= max

j=1,2,…,n
E
fj

i
.

∇V ⋅ f(xi) + ‖∇V‖∞Ef
i,1

≤ −c(xi) for i = 0, 1,… , n,

− A ≤ ej ⋅ (X
−1
S
∇V) ≤ A for j = 1, 2,… , n and

∇V ⋅ f(xi) + AEf
i,1

≤ −c(xi) for i = 0, 1,… , n.

∇V ⋅ f(x
i
) + ‖∇V‖

1
E
f
i,∞

≤ −c(x
i
) for i = 0, 1,… , n,

− Aj ≤ ej ⋅ (X
−1
S
∇V) ≤ Aj for j = 1, 2,… , n and

∇V ⋅ f(xi) +

n∑
j=1

Aj ⋅ E
f
i,∞

≤ −c(xi) for i = 0, 1,… , n.
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functions for nonlinear systems, see e.g. [21, 42]. The values 
Ef
i,∞

 obviously depend on the simplex S ∈ T  and are chosen 
individually for each simplex S ∈ T  . Additionally, the Ef

i,∞
 

for a given simplex S = co(x0, x1,… , xn) ∈ T  depend on the 
vertex x0 , which one can choose freely among the vertices 
of the simplex; the inequality (18) will imply (14) for any 
choice. This is important because often one is interested in 
an equilibrium at the origin, i.e. f(0) = 0 , and c(x) ≥ 0 with 
c(x) = 0 , if and only ifx = 0 . In this case 0 ∈ S must imply 
that 0 is a vertex of S and one must choose x0 = 0 . Note that 
if x0 = 0 , then Ef

0,1
= Ef

0,∞
= 0 and (18) with i = 0 is trivi-

ally fulfilled.

Conclusions and Future Work

The computation of Lyapunov functions using CPA (con-
tinuous and piecewise affine functions) fixes a triangulation 
of the phase space and determines the values of the function 
at the vertices. If those values satisfy certain inequalities 
depending on the system (1) in question, then the (unique) 
CPA interpolation of these values is a Lyapunov function 
[19–21]. This method can be used in two ways: either the 
values are determined by solving a linear optimisation prob-
lem, or the method is used to verify values that have been 
found with a different method.

This paper addressed two aspects of the method: the 
method requires a sequence of simplices that are not degen-
erate. The degeneracy so far was dependent on the ordering 
of the vertices in the simplices. The first contribution of this 
paper is to eliminated the dependence of the degeneracy on 
the ordering of the vertices of the simplices in the triangula-
tion. Thus, the degeneracy can be defined for the simplices 
as geometrical objects. Further, a characterization of the 
degeneracy in terms of the condition number of the shape-
matrices was provided.

The second contribution is to generalise the error esti-
mates used in the CPA method to general p-norms. While 
the cases p = 1 and p = ∞ are particularly useful as they 
result in linear optimisation problems, any case p ∈ (1,∞) 
can be useful to verify Lyapunov function candidates that 
have been computed with a different method.

For future work, it would be very interesting to investi-
gate if one can use a Lyapunov function candidate computed 
by a non-exact method, i.e. a numerical approximation to a 
Lyapunov function that might fail to fulfill the conditions 
for a Lyapunov function in some areas, as a starting point 
in solving the linear program to generate a true CPA Lya-
punov function for the system in question. Additionally, the 
localization of the area where the decrease condition of a 

Lyapunov function holds true for a complete Lyapunov func-
tions candidate, generated as in [43–46], would constitute an 
important step in algorithmically localizing chain-recurrent 
sets [47–49] in dynamical systems.
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