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1. INTRODUCTION

Consider an ordinary differential equation (ODE) of the
form

ẋ = f(x), x ∈ Rn (1.1)

with a Cs-vector field f : Rn → Rn, s ≥ 3. The solution
x(t) with initial value x(0) = ξ is denoted by Stξ := x(t)
and is assumed to exist for all t ≥ 0. An equilibrium of the
ODE is a point x0 ∈ Rn such that f(x0) = 0, from which
x(t) = Stx0 = x0 for all t ∈ R follows. The equilibrium
is said to be exponentially stable if there exist α, β, δ > 0
such that ‖x(0)− x0‖2 < δ implies

‖x(t)− x0‖2 ≤ α‖x(0)− x0‖2e−βt for all t ≥ 0,

where ‖ · ‖2 denotes the Euclidean norm; note that the
definition is independent of the norm. We denote by
A(x0) = {x ∈ Rn : lim

t→∞
Stx = x0} its basin of attraction.

For a given domain in Rn, we are interested in proving
the existence, uniqueness and exponential stability of an
equilibrium, as well as to determine or estimate its basin
of attraction.

One method to achieve this, is to construct a Lyapunov
function and determine sub-level sets. However, since the
equilibrium must be an isolated local minimum of the
Lyapunov function, the same Lyapunov function cannot be
used for a perturbed system with a displaced equilibrium.
Another method, which is robust with respect to pertur-
bations of the system, including the equilibrium, uses a
contraction metric, i.e. a Riemannian metric with respect
to which the distance between adjacent solutions decreases
as time increases.

1 Hafstein’s research is partially supported by the Icelandic Research
Fund (Ranńıs), grant number 163074-052, Complete Lyapunov func-
tions: Efficient numerical computation.

Definition 1.1. (Riemannian/contraction metric).
Let K be a compact subset of an open set G ⊂ Rn

and M ∈ C0(G; Sn×n) be a Riemannian metric, i.e.
a locally Lipschitz continuous matrix-valued function such
that M(x) is positive definite for all x ∈ G. Here Sn×n

denotes the space of symmetric n × n matrices with real
entries. For x ∈ K, v ∈ Rn define

LM (x; v) :=
1

2
vT

[
M(x)Df(x)+Df(x)TM(x)+M ′

+(x)
]
v,

where Df denotes the Jacobian matrix of f and the
forward orbital derivative M ′

+(x) with respect to (1.1) at
x ∈ G is defined by

M ′
+(x) := lim sup

h→0+

M
(
Shx

)
−M(x)

h
. (1.2)

The Riemannian metric is called contracting in K ⊂ G
with exponent −ν < 0, or a contraction metric on K, if

LM (x) ≤ −ν for all x ∈ K, where (1.3)

LM (x) := max
vTM(x)v=1

LM (x; v).

Note that the forward orbital derivative (1.2) is formulated
using a Dini derivative similar to (Giesl and Hafstein, 2013,
Definition 3.1) and always exists for each component Mij

in R ∪ {∞}. If M ∈ C1(G; Sn×n), then we can compute
the orbital derivative M ′(x) by

(M ′
+(x))ij = (M ′(x))ij = (∇Mij(x) · f(x))ij

for all i, j ∈ {1, 2, ..., n}.
Remark 1.2. Fix x ∈ K. Note that (1.3) is equivalent to

M(x)Df(x) +Df(x)TM(x) +M ′
+(x) � −2νM(x)

where A � B for A,B ∈ Sn×n means A − B is negative
semi-definite, i.e. wT (A − B)w ≤ 0 for all w ∈ Rn, see
(Giesl, 2015, Remark 2.5).
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where Df denotes the Jacobian matrix of f and the
forward orbital derivative M ′

+(x) with respect to (1.1) at
x ∈ G is defined by

M ′
+(x) := lim sup

h→0+

M
(
Shx

)
−M(x)

h
. (1.2)

The Riemannian metric is called contracting in K ⊂ G
with exponent −ν < 0, or a contraction metric on K, if

LM (x) ≤ −ν for all x ∈ K, where (1.3)

LM (x) := max
vTM(x)v=1

LM (x; v).

Note that the forward orbital derivative (1.2) is formulated
using a Dini derivative similar to (Giesl and Hafstein, 2013,
Definition 3.1) and always exists for each component Mij

in R ∪ {∞}. If M ∈ C1(G; Sn×n), then we can compute
the orbital derivative M ′(x) by

(M ′
+(x))ij = (M ′(x))ij = (∇Mij(x) · f(x))ij

for all i, j ∈ {1, 2, ..., n}.
Remark 1.2. Fix x ∈ K. Note that (1.3) is equivalent to

M(x)Df(x) +Df(x)TM(x) +M ′
+(x) � −2νM(x)

where A � B for A,B ∈ Sn×n means A − B is negative
semi-definite, i.e. wT (A − B)w ≤ 0 for all w ∈ Rn, see
(Giesl, 2015, Remark 2.5).
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The next theorem from (Giesl et al., 2019, Theorem 2.6)
shows how contraction metrics can be used in our study
of finding equilibria and their basin of attraction.

Theorem 1.3. Let ∅ �= K ⊂ Rn be a compact, connected
and positively invariant set andM be a Riemannian metric
defined on a neighborhood G of K and contracting in K
with exponent −ν < 0 as in Definition 1.1. Then there
exists one and only one equilibrium x0 of system (1.1) in
K; x0 is exponentially stable and K is a subset of its basin
of attraction A(x0).

Hence, in addition to a contraction metric M , we need
to determine a positively invariant set K. This can be
achieved by a Lyapunov-like function w; note that also
this function is robust with respect to perturbations of the
system as w′

+(x) < 0 is only required in a neighbourhood
of the boundary of a compact sub-level set

K = {x ∈ G | w(x) ≤ R}.
The following theorem is a slight generalization of a
standard result in the Lyapunov stability theory, namely
that sub-level sets of Lyapunov functions are positively
invariant.

Theorem 1.4. Let G ⊂ Rn be a domain, w : G → R be
locally Lipschitz, and R ∈ R. Assume that the sub-level
set

K := {x ∈ G | w(x) ≤ R}
is connected and compact in Rn, and that

w′
+(x) < 0

holds for all x in a neighbourhood of ∂K. Then K is
positively invariant.

Proof: For a Lyapunov function V a corresponding theo-
rem is proved by showing that for an initial value x0 ∈ K,
it leads to a contradiction assuming that y = Stx0 ∈ G\K
for some t > 0, because V (y) > R but V is strictly
decreasing and thus V (y) = V (Stx0) < V (x0) ≤ R. Now,
note that if w = V only violates V ′

+(x) < 0 outside of a
neighbourhood N ⊃ ∂K of the boundary, then the same
proof goes through by considering x∗

0 = St1x0 ∈ K instead
of x0 and y∗ = St2x0 ∈ G\K, where t1, t2 are chosen such
that Sty ∈ N for all t1 ≤ t ≤ t2. �

1.1 Numerical method

To compute a suitable contraction metric we use the
method developed in Giesl et al. (2019). As this paper
is focusing on new examples, we only review the essential
steps briefly.

For a given pointwise positive definite C ∈ C1(G; Sn×n)
and using the f from (1.1) we solve numerically the matrix
valued linear partial differential equation (PDE)

M(x)Df(x) +Df(x)TM(x) +M ′
+(x) = −C(x) (1.4)

for M . Our numerical solution method uses collocation
with compactly supported radial basis functions (RBF),
in particular Wendland functions. For a given set X
of collocation points and a fixed Wendland function we
obtain a solution denoted by S(x). This method is referred
to as the RBF method.

We proceed by triangulating some set D of interest and at
the vertices xk of the triangulation we set P (xk) := S(xk).

Then we interpolate the values P (xk) over the set D to
obtain a Lipschitz continuous function P : D → Sn×n.
We refer to P as CPA interpolation of the function S,
because the function P is continuous and piecewise affine.
In the final step, we verify the validity of a finite number of
constraints, from which we obtain the information where
the function P fulfills the conditions of a contraction
metric. In particular we check:
Verification:

(1) whether P is positive definite on the simplex
(2) whether P fulfills the contracting property (1.3), i.e.

P (x)Df(x) +Df(x)TP (x) + P ′
+(x) ≺ 0

This method is referred to as the CPA method.

In Giesl et al. (2019) it is shown that if the system (1.1)
possesses a contraction metric in a set G ⊂ Rn, this
method, using dense enough collocation points and a fine
enough triangulation, can always deliver a contraction
metric P : D → Sn×n for any compact D ⊂ G.

The procedure to compute a Lyapunov-like function is
essentially the same. Indeed, the method in Giesl et al.
(2019) to compute contraction metrics was inspired by
an analogous method for Lyapunov function in Giesl and
Hafstein (2015). For a fixed function γ : G → R+ we use
a set of collocation points and a fixed Wendland function
to obtain a numerical solution VS to the PDE

V ′(x) = −γ(x). (1.5)

We then construct a triangulation of the subset of interest
and compute the CPA interpolation w of VS . Again, we
can verify the validity of a finite number of constraints to
gain information where w+(x) < 0.

2. EXAMPLES

While the method developed in Giesl et al. (2019) has
so far only been applied to two-dimensional examples, we
will present two three-dimensional examples in this section
and study them in some detail. In particular, we will
show that the contraction metric is robust with respect to
perturbations, which both displace the equilibrium point
and alter the dynamics.

In all examples, we choose the identity matrix as the right-
hand side of (1.4), i.e. C(x) = I for all x, and we choose

γ(x) =
√

δ2 + ‖f(x)‖2

in (1.5) with δ2 = 10−8. These choices are rather natural;
C(x) = I has the advantage of being very simple and the
choice of γ is inspired by considering a Lyapunov function
V ′(x) = −1 for the system

ẋ = g(x) =
f(x)√

δ2 + ‖f(x)‖2
, (2.1)

which has the same trajectories as the system (1.1),
cf. e.g. Perko (2001). A Lyapunov function for (2.1) is
thus also a Lyapunov function for (1.1), but (2.1) has
the advantage that solution trajectories are traversed at
(almost) uniform speed because ‖g(x)‖ ≈ 1. This has
been shown to have certain advantages when computing
complete Lyapunov functions, see Argáez et al. (2018),
which also apply here.
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The next theorem from (Giesl et al., 2019, Theorem 2.6)
shows how contraction metrics can be used in our study
of finding equilibria and their basin of attraction.

Theorem 1.3. Let ∅ �= K ⊂ Rn be a compact, connected
and positively invariant set andM be a Riemannian metric
defined on a neighborhood G of K and contracting in K
with exponent −ν < 0 as in Definition 1.1. Then there
exists one and only one equilibrium x0 of system (1.1) in
K; x0 is exponentially stable and K is a subset of its basin
of attraction A(x0).

Hence, in addition to a contraction metric M , we need
to determine a positively invariant set K. This can be
achieved by a Lyapunov-like function w; note that also
this function is robust with respect to perturbations of the
system as w′

+(x) < 0 is only required in a neighbourhood
of the boundary of a compact sub-level set

K = {x ∈ G | w(x) ≤ R}.
The following theorem is a slight generalization of a
standard result in the Lyapunov stability theory, namely
that sub-level sets of Lyapunov functions are positively
invariant.

Theorem 1.4. Let G ⊂ Rn be a domain, w : G → R be
locally Lipschitz, and R ∈ R. Assume that the sub-level
set

K := {x ∈ G | w(x) ≤ R}
is connected and compact in Rn, and that

w′
+(x) < 0

holds for all x in a neighbourhood of ∂K. Then K is
positively invariant.

Proof: For a Lyapunov function V a corresponding theo-
rem is proved by showing that for an initial value x0 ∈ K,
it leads to a contradiction assuming that y = Stx0 ∈ G\K
for some t > 0, because V (y) > R but V is strictly
decreasing and thus V (y) = V (Stx0) < V (x0) ≤ R. Now,
note that if w = V only violates V ′

+(x) < 0 outside of a
neighbourhood N ⊃ ∂K of the boundary, then the same
proof goes through by considering x∗

0 = St1x0 ∈ K instead
of x0 and y∗ = St2x0 ∈ G\K, where t1, t2 are chosen such
that Sty ∈ N for all t1 ≤ t ≤ t2. �

1.1 Numerical method

To compute a suitable contraction metric we use the
method developed in Giesl et al. (2019). As this paper
is focusing on new examples, we only review the essential
steps briefly.

For a given pointwise positive definite C ∈ C1(G; Sn×n)
and using the f from (1.1) we solve numerically the matrix
valued linear partial differential equation (PDE)

M(x)Df(x) +Df(x)TM(x) +M ′
+(x) = −C(x) (1.4)

for M . Our numerical solution method uses collocation
with compactly supported radial basis functions (RBF),
in particular Wendland functions. For a given set X
of collocation points and a fixed Wendland function we
obtain a solution denoted by S(x). This method is referred
to as the RBF method.

We proceed by triangulating some set D of interest and at
the vertices xk of the triangulation we set P (xk) := S(xk).

Then we interpolate the values P (xk) over the set D to
obtain a Lipschitz continuous function P : D → Sn×n.
We refer to P as CPA interpolation of the function S,
because the function P is continuous and piecewise affine.
In the final step, we verify the validity of a finite number of
constraints, from which we obtain the information where
the function P fulfills the conditions of a contraction
metric. In particular we check:
Verification:

(1) whether P is positive definite on the simplex
(2) whether P fulfills the contracting property (1.3), i.e.

P (x)Df(x) +Df(x)TP (x) + P ′
+(x) ≺ 0

This method is referred to as the CPA method.

In Giesl et al. (2019) it is shown that if the system (1.1)
possesses a contraction metric in a set G ⊂ Rn, this
method, using dense enough collocation points and a fine
enough triangulation, can always deliver a contraction
metric P : D → Sn×n for any compact D ⊂ G.

The procedure to compute a Lyapunov-like function is
essentially the same. Indeed, the method in Giesl et al.
(2019) to compute contraction metrics was inspired by
an analogous method for Lyapunov function in Giesl and
Hafstein (2015). For a fixed function γ : G → R+ we use
a set of collocation points and a fixed Wendland function
to obtain a numerical solution VS to the PDE

V ′(x) = −γ(x). (1.5)

We then construct a triangulation of the subset of interest
and compute the CPA interpolation w of VS . Again, we
can verify the validity of a finite number of constraints to
gain information where w+(x) < 0.

2. EXAMPLES

While the method developed in Giesl et al. (2019) has
so far only been applied to two-dimensional examples, we
will present two three-dimensional examples in this section
and study them in some detail. In particular, we will
show that the contraction metric is robust with respect to
perturbations, which both displace the equilibrium point
and alter the dynamics.

In all examples, we choose the identity matrix as the right-
hand side of (1.4), i.e. C(x) = I for all x, and we choose

γ(x) =
√
δ2 + ‖f(x)‖2

in (1.5) with δ2 = 10−8. These choices are rather natural;
C(x) = I has the advantage of being very simple and the
choice of γ is inspired by considering a Lyapunov function
V ′(x) = −1 for the system

ẋ = g(x) =
f(x)√

δ2 + ‖f(x)‖2
, (2.1)

which has the same trajectories as the system (1.1),
cf. e.g. Perko (2001). A Lyapunov function for (2.1) is
thus also a Lyapunov function for (1.1), but (2.1) has
the advantage that solution trajectories are traversed at
(almost) uniform speed because ‖g(x)‖ ≈ 1. This has
been shown to have certain advantages when computing
complete Lyapunov functions, see Argáez et al. (2018),
which also apply here.

All examples were computed using a computer with an
AMD Ryzen 2700X (8 cores, 3.7 GHz) processor. The
method was implemented in C++ and the figures are
drawn in MATLAB. Example 2.1 with N = 1, 331 col-
location points and 8013 ≈ 5.1 ·108 vertices was computed
in 3 hours and 15 minutes and Example 2.2 with N = 546
collocation points and 3013 ≈ 2.7 · 106 vertices in 17
minutes.

Example 2.1. We consider the following system discussed
in (Giesl, 2007, Example 6.4), and (Giesl and Wendland,
2019, Example 4.2)




ẋ = x(x2 + y2 − 1)− y(z2 + 1)
ẏ = y(x2 + y2 − 1) + x(z2 + 1)
ż = 10z(z2 − 1)

(2.2)

For this example we can analytically determine the basin of
attraction of the asymptotically stable equilibrium (0, 0, 0)
to be

A(0, 0, 0) =
{
(x, y, z) ∈ R3|x2 + y2 < 1, |z| < 1

}
and thus can compare the subset obtained by our method
to the actual basin of attraction.

We used the Wendland function ψ6,4(cr) as our RBF
function, given by

ψ6,4(r) = (1− r)10+
(
2145(r)4 + 2250(r)3

+1050(r)2 + 250r + 25
)

with parameter c = 0.9. The corresponding reproducing
kernel space (RKHS) is Hσ with σ = 4 + 3+1

2 = 6. We
used N = 1, 331 collocation points given by

X = 0.13 · Z3 ∩ [−0.65, 0.65]3,

and a uniform triangulation, cf. Hafstein and Valfells
(2019), of the cube [−0.75, 0.75]3 with 8013 vertices.

The verification shows that P is positive definite in
[−0.65, 0.65]3. However, condition (2) is not fulfilled ev-
erywhere as shown in Figure 1. In this figure, the black
dots are the collocation points, and the green surface
is the boundary between the area where the verification
condition (2) is satisfied and where it is not satisfied.
Hence, P is a contraction metric within the set bounded
by the green area.

In Figure 2, we have determined a compact, connected and
positively invariant set within the domain of our computed
contraction metric. We did this by computing a Lyapunov-
like function w using the same set of collocation points
and the same triangulation as for the computation of
the contraction metric, but using the Wendland function
ψ5,3(r) = (1−r)8+(32(r)

3+25(r)2+8r+1) with parameter
c = 0.9.

In this figure, blue points mark the simplices where the
condition w′

+(x) < 0 is violated, and the red shape is a
level-set of the Lyapunov-like function. The Lyapunov-like
function w fulfills w′

+(x) < 0 in a neighbourhood of the
level-set; hence, it is the boundary of a positively invariant
set which is a subset of the basin of attraction by Theorems
1.3 and 1.4.

The advantage of contraction metrics compared to, e.g.
Lyapunov functions, is that they, as well as the Lyapunov-
like functions, are robust with respect to perturbations. To

Fig. 1. Example (2.2): the black points are the collocation points

and the green surface is the boundary between the area where

the verification condition (2) is satisfied and where it is not

satisfied. Hence, P is a contraction metric within the area

bounded by the green surface.

demonstrate this we consider perturbations of the system
(2.2), namely




ẋ = (x− ε)(x2 + y2 − 1)− (y + ε)(z2 + 1)
ẏ = (y + ε)(x2 + y2 − 1) + (x− ε)(z2 + 1)
ż = 10(z − ε)(z2 − 1).

(2.3)

Fig. 2. Example (2.2): the black points are the collocation points

and the green surface is the boundary between the area where

the verification condition (2) is satisfied and where it is not

satisfied. The blue points indicate where the Lyapunov-like

function w fails to satisfy w′
+(x) < 0, and the red set is a

level set of w. The level set is the boundary of the sub-level set

which is thus a subset of the basin of attraction.
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Fig. 3. Example (2.2) with small perturbation ε = 0.01, cf. (2.3):

the black points are the collocation points, used to compute

the metric for the unperturbed system. The green surface is the

boundary between the area where the verification condition (2)

is satisfied and where it is not satisfied (notice the difference

to Figure 1). The same Lyapunov-like function is also valid

for the perturbed system. The blue points indicate where the

Lyapunov-like function fails to satisfy w′
+(x) < 0 and the red

set is a level set of w. The level set is the boundary of the sub-

level set which is thus a subset of the basin of attraction of the

perturbed system’s equilibrium.

In particular, we consider a small perturbation with ε =
0.01, and a large one with ε = 0.2; note that in both
cases the position of the equilibrium changes. We use the
contraction metric and Lyapunov-like function that were
computed for the unperturbed system (2.2) and check,
whether and where they are still valid for the perturbed
system. In particular, we check the verification condition
(2), where f is replaced by the right-hand side of the
perturbed system (2.3) (and so on for its derivatives); note
that condition (1), the positive definiteness of P , trivially
holds as it is the same metric for the unperturbed system.

For the small perturbation ε = 0.01, both the contraction
metric and the Lyapunov-like function with the same level
set satisfy the conditions, and thus the same sub-level set
is also a subset of the basin of attraction for the perturbed
system (see Figure 3). For the larger perturbation ε = 0.2,
the contraction metric still remains valid in a large area,
while the Lyapunov-like function fails to satisfy w′

+(x) < 0
in many more points and we are not able to find a sub-level
set, to which Theorem 1.4 is applicable. Hence, we have
kept the unperturbed contraction metric, but calculated a
new Lyapunov-like function for the perturbed system; the
results are shown in Figure 4 and 5.

Example 2.2. (balsam fir tree, moose, and wolf). In this sec-
tion we consider the following system discussed in (Agar-
wal et al., 2019, Example 7.10)

{
ẋ = x(1− x)− xy
ẏ = y(1− y) + xy − yz
ż = z(1− z) + yz

(2.4)

in which we denote by x(t), y(t), z(t), respectively, the
populations of trees, moose, and wolves at time t. The
fir trees are eaten by the moose, moose are eaten by
wolves, and the change in the wolf population affects
the trees. The model assumes that these populations in

Fig. 4. Example (2.2) with large perturbation ε = 0.2, cf. (2.3): the

black points are the collocation points, used to compute the

metric for the unperturbed system. The green surface is the

boundary between the area where the verification condition (2)

is satisfied and where it is not satisfied (notice the difference

to Figure 1 and 3). The blue points are indicate where the

Lyapunov-like function fails to satisfy w′
+(x) < 0, and the red

set is a level set of w, failing to deliver a subset of the basin

of attraction of the perturbed system’s equilibrium because

Theorem 1.4 is not applicable.

Fig. 5. Example (2.2) with large perturbation ε = 0.2: the black

points are the collocation points, used to compute the metric

for the unperturbed system. The green surface is the boundary

between the area where the verification condition (2) is satisfied

and where it is not satisfied (notice the difference to Figure 1

and 3). A new Lyapunov-like function wε was calculated for the

perturbed system. The blue points are indicate where the new

Lyapunov-like function fails to satisfy (wε)′+(x) < 0, and the

red set is a level set of wε. The level set is the boundary of the

sub-level set which is thus a subset of the basin of attraction of

the perturbed system’s equilibrium.
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Fig. 3. Example (2.2) with small perturbation ε = 0.01, cf. (2.3):

the black points are the collocation points, used to compute

the metric for the unperturbed system. The green surface is the

boundary between the area where the verification condition (2)

is satisfied and where it is not satisfied (notice the difference

to Figure 1). The same Lyapunov-like function is also valid

for the perturbed system. The blue points indicate where the

Lyapunov-like function fails to satisfy w′
+(x) < 0 and the red

set is a level set of w. The level set is the boundary of the sub-

level set which is thus a subset of the basin of attraction of the

perturbed system’s equilibrium.

In particular, we consider a small perturbation with ε =
0.01, and a large one with ε = 0.2; note that in both
cases the position of the equilibrium changes. We use the
contraction metric and Lyapunov-like function that were
computed for the unperturbed system (2.2) and check,
whether and where they are still valid for the perturbed
system. In particular, we check the verification condition
(2), where f is replaced by the right-hand side of the
perturbed system (2.3) (and so on for its derivatives); note
that condition (1), the positive definiteness of P , trivially
holds as it is the same metric for the unperturbed system.

For the small perturbation ε = 0.01, both the contraction
metric and the Lyapunov-like function with the same level
set satisfy the conditions, and thus the same sub-level set
is also a subset of the basin of attraction for the perturbed
system (see Figure 3). For the larger perturbation ε = 0.2,
the contraction metric still remains valid in a large area,
while the Lyapunov-like function fails to satisfy w′

+(x) < 0
in many more points and we are not able to find a sub-level
set, to which Theorem 1.4 is applicable. Hence, we have
kept the unperturbed contraction metric, but calculated a
new Lyapunov-like function for the perturbed system; the
results are shown in Figure 4 and 5.

Example 2.2. (balsam fir tree, moose, and wolf). In this sec-
tion we consider the following system discussed in (Agar-
wal et al., 2019, Example 7.10)

{
ẋ = x(1− x)− xy
ẏ = y(1− y) + xy − yz
ż = z(1− z) + yz

(2.4)

in which we denote by x(t), y(t), z(t), respectively, the
populations of trees, moose, and wolves at time t. The
fir trees are eaten by the moose, moose are eaten by
wolves, and the change in the wolf population affects
the trees. The model assumes that these populations in

Fig. 4. Example (2.2) with large perturbation ε = 0.2, cf. (2.3): the

black points are the collocation points, used to compute the

metric for the unperturbed system. The green surface is the

boundary between the area where the verification condition (2)

is satisfied and where it is not satisfied (notice the difference

to Figure 1 and 3). The blue points are indicate where the

Lyapunov-like function fails to satisfy w′
+(x) < 0, and the red

set is a level set of w, failing to deliver a subset of the basin

of attraction of the perturbed system’s equilibrium because

Theorem 1.4 is not applicable.

Fig. 5. Example (2.2) with large perturbation ε = 0.2: the black

points are the collocation points, used to compute the metric

for the unperturbed system. The green surface is the boundary

between the area where the verification condition (2) is satisfied

and where it is not satisfied (notice the difference to Figure 1

and 3). A new Lyapunov-like function wε was calculated for the

perturbed system. The blue points are indicate where the new

Lyapunov-like function fails to satisfy (wε)′+(x) < 0, and the

red set is a level set of wε. The level set is the boundary of the

sub-level set which is thus a subset of the basin of attraction of

the perturbed system’s equilibrium.

isolation are subject to logistic growth and the effect of
interaction between species is proportional to the product
of the populations. Further, for simplicity, we assume
that all the parameters, namely, the growth rate, the
carrying capacity, and the effect of iteration, on which the
behaviour of solutions depends, are 1.

Fig. 6. Example (2.4): the black points are the collocation points

and the green surface is the boundary between the area where

the verification condition (2) is satisfied and where it is not

satisfied. Hence, P is a contraction metric within the area

bounded by the green set. Additionally, the blue points indicate

where the Lyapunov-like function fails to satisfy w′
+(x) < 0,

and the red set is a level set of w. The level set is the

boundary of the sub-level set which is thus a subset of the

basin of attraction of the equilibrium at (2/3, 1/3, 4/3). The

figure displays only a part of the phase space to show more

details.

The equilibria of the system are (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 0, 1), and (2/3, 1/3, 4/3). The last one has all
populations present, and turns out to be stable. We are
interested in its basin of attraction.

For the calculation of the contraction metric we have used
the Wendland function ψ6,4(cr) with c = 0.9, as in the
previous example, and N = 576 collocation points,

X = 0.12 · Z3 ∩
{
(0.15, 0.85)2 × (0.15, 2.15)

}
,

and for the verification we have used a uniform triangula-
tion of the area

[−0.05, 1.1]× [−0.05, 1.1]× [0.15, 2.5]

with 3013 vertices. The Lyapunov-like function was com-
puted as in the last example and with the same parame-
ters.

Figure 6 shows the collocation points in black and the
boundary of the area where the verification condition (2)
is satisfied in green; condition (1) holds in the whole area
displayed. The blue points indicate where the Lyapunov-
like function w fails to satisfy the condition w′

+(x) < 0
and the red set is a level-set of w. The red set is thus the
boundary of a sub-level set which is a subset of the basin
of attraction of the equilibrium, cf. Theorem 1.4

Fig. 7. Example (2.5) with small perturbation ε = −0.03, cf. (2.5):

the black points are the collocation points and the green

surface is the boundary between the area where the verification

condition (2) is satisfied and where it is not satisfied. The

magenta point is the equilibrium point of the unperturbed

system. The same Lyapunov-like function is also valid for

the perturbed system. The blue points indicate where the

Lyapunov-like function fails to satisfy w′
+(x) < 0, and the red

set is a level set of w. The level set is the boundary of the sub-

level set which is thus a subset of the basin of attraction of the

perturbed system’s equilibrium. The figure displays only a part

of the phase space to show more details.

Then, we consider the perturbed system

{
ẋ = x(1− x)− x(y + ε)
ẏ = y(1− y) + (x+ ε)y − y(z + ε)
ż = z(1− z) + (y + ε)z

(2.5)

with ε = −0.03, and −0.1. The equilibrium point moves
to (0.68, 0.35, 1.32) and (0.7, 0.4, 1.3), respectively.

Similar to the previous example, we keep the computed
contraction metric and Lyapunov-like function of the un-
perturbed system and verify where they are valid for the
perturbed system.

In the case of ε = −0.03, both methods show robustness
with respect to the perturbation (see Figure 7), however,
when ε = −0.1, the failing points of the Lyapunov-like
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Fig. 8. Example (2.5) with large perturbation ε = −0.1, cf. (2.5): the

black points are the collocation points and the green surface is

the boundary between the area where the verification condition

(2) is satisfied and where it is not satisfied. Hence, P is a

contraction metric within the area bounded by the green set.

The magenta point is the equilibrium point of the unperturbed

system. The blue points are indicate where the Lyapunov-like

function fails to satisfy w′
+(x) < 0, and the red set is a level

set of w, failing to deliver a subset of the basin of attraction of

the perturbed system’s equilibrium. The figure displays only a

part of the phase space to show more details.

function near the equilibrium point continue toward the
green boundary of the contraction metric. Therefore, it is
impossible to find a level set containing the equilibrium
point and the failing points around it inside the suitable
area suggested by the contraction metric. As a result, we
calculated a new Lyapunov-like function (see Figures 8 and
9).

3. CONCLUSION

In this paper we have used a method to construct and
verify a contraction metric and a positively invariant set,
and thus were able to determine an area containing exactly
one exponentially stable equilibrium, which is a subset
of its basin of attraction. The advantage of this method
is that it is robust with respect to perturbations of the
dynamical system, including perturbing the position of the
equilibrium.

We have demonstrated the ability of this method to
determine a large subset of the basin of attraction for
the first time for three-dimensional examples. We have
also shown that the contraction metric and the Lyapunov-
like function can both be used for systems with a small
perturbation, and the contraction metric is even robust to
larger perturbations, for which the original Lyapunov-like
function fails.

Fig. 9. Example (2.2) with large perturbation ε = −0.1, cf. (2.5),

and new Lyapunov-like function: the black points are the col-

location points and the green surface is the boundary between

the area where the verification condition (2) is satisfied and

where it is not satisfied. Hence, P is a contraction metric within

the area bounded by the green set. The magenta point is the

equilibrium point of the unperturbed system. A new Lyapunov-

like function wε was calculated for the perturbed system. The

blue points indicate where the new Lyapunov-like function fails

to satisfy (wε)′+(x) < 0, the red set is a level set of wε and the

corresponding sub-level set is a subset of the basin of attraction

of the perturbed system’s equilibrium.

The method combines the RBF method, which is fast and
constructs a contraction metric by approximately solving
a matrix-valued PDE with mesh-free collocation, with
the CPA method, which interpolates the RBF metric by
a continuous function, which is affine on each simplex
of a fixed triangulation. The CPA method enables a
rigorous verification that the computed metric is in fact
a contraction metric.

When compared to other methods to determine the basin
of attraction of an equilibrium, e.g. Lyapunov functions,
the computation of a contraction metric is computation-
ally more demanding as we construct a matrix-valued
function, but it is robust with respect to perturbations of
the system. Even for three-dimensional examples, however,
the computations are not too demanding. Further work
will include optimization of the numerical code to tackle
higher-dimensional examples.
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function near the equilibrium point continue toward the
green boundary of the contraction metric. Therefore, it is
impossible to find a level set containing the equilibrium
point and the failing points around it inside the suitable
area suggested by the contraction metric. As a result, we
calculated a new Lyapunov-like function (see Figures 8 and
9).

3. CONCLUSION

In this paper we have used a method to construct and
verify a contraction metric and a positively invariant set,
and thus were able to determine an area containing exactly
one exponentially stable equilibrium, which is a subset
of its basin of attraction. The advantage of this method
is that it is robust with respect to perturbations of the
dynamical system, including perturbing the position of the
equilibrium.

We have demonstrated the ability of this method to
determine a large subset of the basin of attraction for
the first time for three-dimensional examples. We have
also shown that the contraction metric and the Lyapunov-
like function can both be used for systems with a small
perturbation, and the contraction metric is even robust to
larger perturbations, for which the original Lyapunov-like
function fails.

Fig. 9. Example (2.2) with large perturbation ε = −0.1, cf. (2.5),

and new Lyapunov-like function: the black points are the col-

location points and the green surface is the boundary between

the area where the verification condition (2) is satisfied and

where it is not satisfied. Hence, P is a contraction metric within

the area bounded by the green set. The magenta point is the

equilibrium point of the unperturbed system. A new Lyapunov-

like function wε was calculated for the perturbed system. The

blue points indicate where the new Lyapunov-like function fails

to satisfy (wε)′+(x) < 0, the red set is a level set of wε and the

corresponding sub-level set is a subset of the basin of attraction

of the perturbed system’s equilibrium.

The method combines the RBF method, which is fast and
constructs a contraction metric by approximately solving
a matrix-valued PDE with mesh-free collocation, with
the CPA method, which interpolates the RBF metric by
a continuous function, which is affine on each simplex
of a fixed triangulation. The CPA method enables a
rigorous verification that the computed metric is in fact
a contraction metric.

When compared to other methods to determine the basin
of attraction of an equilibrium, e.g. Lyapunov functions,
the computation of a contraction metric is computation-
ally more demanding as we construct a matrix-valued
function, but it is robust with respect to perturbations of
the system. Even for three-dimensional examples, however,
the computations are not too demanding. Further work
will include optimization of the numerical code to tackle
higher-dimensional examples.
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