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Abstract: We show that contraction metrics for continuous time dynamical systems can be computed numerically using
numerical integration of certain initial value problems with a subsequent numerical quadrature. Further, we
show that for any compact subset of an equilibrium’s basin of attraction and any ε > 0, the parameters for
the numerical methods, i.e. the integration interval and the step-size, can be chosen such that the error in the
contraction metric is less than ε at any point in the compact subset. These results will be used as a part of a
numerical method to rigorously compute contraction metrics.

1 Introduction

We consider the system

ẋ = f(x), f ∈Cs(Rn;Rn), s ≥ 1. (1)

The solution x(t) to the initial value problem (1) with
x(0) = ξξξ is denoted by φφφ(t,ξξξ). A contraction metric
for system (1) is a Riemannian metric defined on a
positively invariant set of the dynamics, such that the
distance between adjacent trajectories is decreasing
with respect to the metric. The existence of a contrac-
tion metric asserts the existence of exactly one equi-
librium point inside a positively invariant and con-
nected set and that it is exponentially stable.

Contraction metrics have received considerable
attention in the literature (Lewis, 1949; Lewis, 1951;
Demidovič, 1961; Krasovskiĭ, 1963; Borg, 1960;
Hartman, 1961; Hartman, 1964; Lohmiller and Slo-
tine, 1998; Aminzare and Sontag, 2014; Simpson-
Porco and Bullo, 2014; Forni and Sepulchre, 2014;
Giesl, 2015), as they can characterize the long term
behavior of system (1). Since many phenomena in
engineering and science are modelled by system (1),
contraction metrics are of much value in understand-
ing real-word systems.

Since the analytical computation of a contraction
metric for a nonlinear system is notoriously diffi-

a https://orcid.org/0000-0003-1421-6980
b https://orcid.org/0000-0003-0073-2765
c https://orcid.org/0000-0002-6346-9901

cult, numerical methods have been considered (Ayl-
ward et al., 2008; Giesl and Hafstein, 2013; Giesl,
2019; Giesl et al., 2023a), see also the recent re-
view (Giesl et al., 2023b). To advance such methods
we present a novel theorem that shows that contrac-
tion metrics can be approximated arbitrarily close to
the analytic solution, uniformly on any compact sub-
set K of an exponentially stable equilibrium’s basin
of attraction, using numerical integration and quadra-
ture. These results are essential in developing com-
bined approximation-verification methods to rigor-
ously compute contraction metrics, as in (Giesl et al.,
2021a; Giesl et al., 2021b), but using numerical in-
tegration and quadrature for the approximation in-
stead of generalized interpolation in reproducing ker-
nel Hilbert spaces (Giesl et al., 2023c).

Let us give an overview of the paper: In Sec-
tion 2, we recall some facts about contraction metrics,
including an existence result of a contraction met-
ric given by an integral formula. In Section 3, we
numerically approximate a contraction metric using
numerical integration, with the fourth-order Adams-
Bashforth (AB4) multi-step scheme initialized with
fourth-order Runge-Kutta (RK4), and subsequently
we use numerical quadrature to approximately inte-
grate the results; we also derive error bounds for these
methods. These estimates are then used to prove the
main result of the paper, Theorem 4.1 presented in
Section 4, before we conclude our work in Section 5.

Notation: We write N0 := {0,1,2, . . . ,} for the natu-



ral numbers, including zero, and N+ := N0 \ {0} for
the positive natural numbers. We denote the usual
p-norms on Rn and the corresponding induced ma-
trix norms by ∥ · ∥p, 1 ≤ p < ∞. For both vectors
in Rn and matrices in Rn×n we write ∥ · ∥max for
the maximum absolute value norm, i.e. ∥x∥max :=
maxi=1,2,...,n |xi| for a vector x ∈ Rn×n and ∥A∥max :=
maxi, j=1,2,...,n |ai j| for a matrix A =

(
ai j
)
∈ Rn×n.

Apart from the usual equivalence estimates for the p-
norms on Rn, recall the norm equivalence ∥A∥max ≤
∥A∥2 ≤ n∥A∥max for a matrix A ∈ Rn×n and that
∥ · ∥max is not sub-multiplicative, but ∥Ab∥max ≤
n∥A∥max∥b∥max for b := B ∈Rn×n or b := b ∈Rn. We
denote the symmetric n×n matrices with real entries
by Sn×n and we write I for the n× n identity matrix
(n can always be determined from the context). A ⪯ B
for A,B∈ Sn×n means that the matrix A−B is negative
semi-definite, i.e. xT (A−B)x ≤ 0 for all x ∈ Rn.

2 Contraction Metrics

We first review basic concepts about Riemannian
contraction metrics that are used in this paper.
Definition 2.1. (Riemannian metric, contraction met-
ric) Let K be a compact subset of an open set G ⊂Rn.
A function M ∈ C1(G;Sn×n) is called a Riemannian
metric if M(x) is positive definite at every x ∈ G. The
Riemannian metric M is said to be a contraction met-
ric for system (1), contracting on K, if

M(x)Df(x)+Df(x)T M(x)+M′(x)⪯−2νM(x),

for some ν > 0 and all x ∈ K.
In Definition 2.1

M′(x) :=
d
dt

M(φφφ(t,x))
∣∣∣∣
t=0

=
(

∇Mi j(x) · f(x)
)

i, j∈{1,2,...,n}

is the orbital derivative of M along the solutions of
(1).

The following theorem follows directly from
(Giesl and Wendland, 2019, Thms. 2.2 and 2.3). In
the formula (2), τ 7→ φφφ(τ,x) is the solution to (1) with
initial value φφφ(0,x) = x and τ 7→ ψ(τ,x) is the matrix-
valued solution to

Ẏ = Df(φφφ(t,x))Y, Y (0) = I,

i.e. τ 7→ ψ(τ,x) is the principal fundamental matrix
solution.
Theorem 2.2. (Existence of a contraction metric)
Let f ∈ Cs(Rn;Rn), s ≥ 2. Let x0 be an exponen-
tially stable equilibrium of (1) with basin of attrac-
tion A(x0) := {x ∈ Rn : limt→∞ φφφ(t,x) = x0}. Let

C ∈ Cs−1(A(x0);Sn×n) be such that C(x) is a pos-
itive definite matrix for all x ∈ A(x0). Then M ∈
Cs−1(A(x0);Sn×n), given by the formula

M(ξξξ) =
∫

∞

0
ψ(τ,ξξξ)TC(φφφ(τ,ξξξ))ψ(τ,ξξξ)dτ, (2)

is a contraction metric for (1), that is contracting on
any compact K ⊂ A(x0).

In the following section we will show that the con-
traction metric M(ξξξ) in formula (2) can be estimated
arbitrarily close by using numerical integration and
numerical quadrature.

3 Estimation Method

In this section we describe in detail how we esti-
mate M(ξξξ) in formula (2) by M̃(ξξξ) at a point ξξξ ∈ Rn

in three steps and we conclude with an error estimate
in Theorem 4.1. We first fix a matrix-valued function
C ∈ Cs−1(Rn;Sn×n), which in practice can be taken
simply as the constant identity matrix I ∈ Rn×n, a
time-horizon H > 0, and a set of points X , at which
we compute values for our metric M̃ inspired by (2).
For ξξξ ∈ X we first compute a numerical approxima-
tion φ̃φφ : [0,H]→ Rn to the initial-value problem

ẋ = f(x), x(0) = ξξξ, (3)

on the time-horizon [0,H]. We do this by fixing the
number of time-steps N and the corresponding length
of a uniform time-step h := H/N and then generate
a sequence of vectors φ̃φφi, i = 0,1, . . . ,N, such that φ̃φφi
approximates the true solution φφφ(·,ξξξ) to the initial-
value problem (3) at time ti := ih, i.e.

φ̃φφi ≈ φφφ(ti,ξξξ).

In the sequel, when we refer to φ̃φφ = φ̃φφ(t,ξξξ) as a func-
tion, we mean the linear interpolation of the values φ̃φφi,
i.e.

φ̃φφ(t) =
t − ti

ti+1 − ti
(φ̃φφi+1 − φ̃φφi)+ φ̃φφi when ti ≤ t ≤ ti+1.

Then we use our approximate solution φ̃φφ to (3) to ob-
tain an approximation Ỹ of the principal fundamental
matrix solution to Ẏ = Df(φφφ(t,ξξξ))Y . That is, we solve
numerically the matrix-valued initial-value problem

Ẏ = g(t)Y, Y (0) = I, (4)

where Df(φφφ(t,ξξξ)) has been substituted by the approx-
imation g(t) := Df(φ̃φφ(t,ξξξ)). Finally, we use our nu-
merical solutions φ̃φφ to (3) and Ỹ to (4) to compute an
approximation

M̃(ξξξ)≈
∫ H

0
Y (τ)T C (φφφ(τ,ξξξ))Y (τ)dτ (5)



to M(ξξξ) using a Romberg-like numerical quadrature.
Note that there are several approximations to the ac-
tual integral: firstly, we use a Romberg-like numeri-
cal quadrature to compute the integral, for which we
now only need values of the integrand at discrete time
steps; secondly, we replace the values of the integrand
with our numerical solutions φ̃φφi and Ỹi to (3) and (4),
respectively.

For the initial value problems (3) and (4) we use
the Adams-Bashforth method of order 4 (AB4) ini-
tialized with the usual Runge-Kutta method of order
4 (RK4). The formula for a general initial-value prob-
lem of the form

ż = v(t,z), z(t0) = ξξξ, (6)

to generate the approximations z̃i ≈ z(ti,ξξξ), where
ti = ih+ t0 and z(ti,ξξξ) is the value of the true solu-
tion t 7→ z(t,ξξξ) to (6) at time ti, is

z̃i+1 = z̃i+
h

24
(55vi−59vi−1+37vi−2−9vi−3), (7)

for AB4, where vi := v(ti, z̃i). Since AB4 is a multi-
step method we use RK4 to compute the first 3 steps
z̃1, z̃2, z̃3 after z̃0 := ξξξ, needed to initialize it. In more
detail, for the initialization we set

k1 = hv(ti, z̃i) (8)
k2 = hv(ti +h/2, z̃i +k1/2)
k3 = hv(ti +h/2, z̃i +k2/2)
k4 = hv(ti +h, z̃i +k3)

z̃i+1 = z̃i +
1
6
(k1 +2k2 +2k3 +k4)

for i = 0,1,2.
In the following, we fix a compact set S ⊂ Rn

which is positively invariant, both for the solution
φφφ and its numerical approximation sequences φ̃φφi.
Hence, the values φ̃φφ(t), t ∈ [0,H], are in the convex
hull of S, independent of the initial value ξξξ ∈ S. Note
that we have a Lipschitz constant for any continuously
differentiable functions on S or its (compact) convex
hull. Level sets of numerically computed Lyapunov-
like functions can be used for identifying such sets,
see (Giesl et al., 2023d, Thm. 3.4). In (Giesl et al.,
2023d, Thms. 2.1 and 3.5) it is established that for
a given compact set K ⊂ A(x0) there exists a com-
pact set S ⊃ K, which is positively invariant for both
the solution and its numerical approximation by our
numerical method, i.e. AB4 initialized with RK4, if
the time-steps h are sufficiently small, namely h ≤ h′,
where h′ > 0 is a constant depending on K and f. Sub-
sequently we additionally assume that h is smaller
than other constants for additional estimates to hold
true.

In the following subsections we explain and es-
timate the errors of the numerical approximations to
the solution φφφ(t,ξξξ), the solution of Ẏ = Df(φφφ(t,ξξξ))Y
and finally the numerical quadrature of the integral in
preparation for the main result, Theorem 4.1.

3.1 Step I: numerical approximation of
ẋ = f(x)

For the initial value problem (3) we use AB4 initial-
ized with RK4; i.e. we set v(t,z) = f(z) in (6). The
true solution z(t,ξξξ) is denoted by φφφ(t,ξξξ) and its ap-
proximations at ti = hi by φ̃φφi. Thus, the formulas (8)
become

k1 = hf(φ̃φφi) (9)

k2 = hf(φ̃φφi +k1/2)

k3 = hf(φ̃φφi +k2/2)

k4 = hf(φ̃φφi +k3)

φ̃φφi+1 = φ̃φφi +
1
6
(k1 +2k2 +2k3 +k4),

where i = 0,1,2. And for i ≥ 3 we use AB4 and (7)
becomes

φ̃φφi+1 = φ̃φφi (10)

+
h

24

(
55f(φ̃φφi)−59f(φ̃φφi−1)+37f(φ̃φφi−2)−9f(φ̃φφi−3)

)
.

In the following we assume that a fixed time-horizon
H > 0 is given such that ti ≤ H for all i. The error
of approximation in the initializing step using RK4 is
bounded by C1h5, and the rest of the φ̃φφi sequence us-
ing AB4 is bounded by the local error C2h5 , where C1
and C2 are constants that depend on the fourth order
derivative of f in S, which is positively invariant both
for the true solution and the approximation, see (Giesl
et al., 2023d, Thm. 3.5). We recall below the well
known results, that then the global error is bounded
by C4h4 on the interval [0,H].

Since we initialized the AB4 method using RK4
and not the exact values of the corresponding right-
hand side function f, there will be a small error ac-
cumulating through the algorithm. In more detail, let
L > 0 be a Lipschitz constant for f on S ⊂Rn. If y and
z are solutions in S with initial conditions y(a) and
z(a) at time t = a respectively, then it is well known
that Gronwall’s inequality delivers

∥y(t)− z(t)∥max ≤ eL|t−a| ∥y(a)− z(a)∥max (11)

as long as the solutions stay in S.
Let us recall how the local errors accumulate to

form global errors in the multi-step scenario, see
e.g. (Sauer, 2012; Deuflhard and Hohmann, 2008),



because we will use similar reasoning in the follow-
ing. At the initial condition x̃0 = ξξξ, the global error is
g0 = ∥x̃0 −x0∥max = ∥ξξξ−ξξξ∥max = 0. After one step,
there is no accumulated error from previous steps, and
the bound on the global error is the local truncation er-
ror, g1 = e1 = ∥x̃1 −x1∥max ≤C1h5. After two steps,
we break g2 down into the local truncation error plus
the accumulated error from the earlier step. Define
z(t) to be the solution of the initial value problem ẋ = f(x)

x(t1) = x̃1,
t ∈ [t1, t2]

(12)

Thus, z(t2) is the exact value of the solution at t = t2
starting at initial condition (t1, x̃1). Note that if we
used the initial condition (t1,x1), we would get x2,
which is on the actual solution curve, unlike z(t2).
Then e2 = ∥x̃2 − z(t2)∥max ≤ C1h5 is the local trun-
cation error of step i = 2. The other difference
∥z(t2)−x2∥max is covered by equation (11), since it
is the difference between two solutions of the same
equation with different initial conditions x̃1 and x1.
Therefore,

g2 = ∥x̃2 −x2∥max

≤ ∥x̃2 − z(t2)∥max +∥z(t2)−x2∥max

≤ e2 + eLhg1

= e2 + eLhe1

≤ C1h5
(

1+ eLh
)
.

The argument is the same for step i = 3, which yields

g3 = ∥x̃3 −x3∥max ≤ e3 + eLhg2

≤ e3 + eLhe2 + e2Lhe1 ≤C1h5
(

1+ eLh + e2Lh
)
.

For step i = 4, the initializing phase with RK4 is fin-
ished and we have a different local truncation error
term, namely e4 = ∥x̃4 − z(t4)∥max ≤C2h5. Thus,

g4 = ∥x̃4 −x4∥max

≤ ∥x̃4 − z(t4)∥max +∥z(t4)−x4∥max

≤ e4 + eLhg3

≤ C2h5 + eLhC1h5
(

1+ eLh + e2Lh
)

≤ C3h5
(

1+ eLh + e2Lh + e3Lh
)
,

where we have introduced the new constant C3 :=
max(C1,C2) > 0. Now the rest can be done similarly

to get the global truncation error at any step i.

gi = ∥x̃i −xi∥max

≤ ei + eLhei−1 + e2Lhei−2 + . . .+ e(i−1)Lhe1

≤ C3h5
(

1+ eLh + . . .+ e(i−1)Lh
)

= C3h5 eiLh −1
eLh −1

≤ C3h4

L

(
eLti −1

)
≤ C3

L

(
eLH −1

)
h4 =: C4h4, (13)

where C4 depends on H. Applying this result to xi =

φφφ(ti,ξξξ) and x̃i = φ̃φφi gives us the desired estimate.

3.2 Step II: numerical approximation of
Ẏ = g(t)Y

Once more, we use AB4 and RK4 to solve the initial
value problem (4) numerically. We are still assuming
that the time-horizon H > 0 from Step I is fixed. Note
that with y1(t),y2(t), . . . ,yn(t) as the column vectors
of the matrix Y = Y (t) in (4), i.e.

Y (t) =

 | | |
y1(t) y2(t) · · · yn(t)
| | |

 ,

the matrix-valued initial-value problem (4) boils
down to the vector-valued initial-value problems

ẏ j = g(t)y j, y j(0) = e j, j = 1,2, . . . ,n, (14)

where e j is the usual jth unit vector in Rn.
Note that for y(t) = y j(t) with any j =

1, . . . ,n and g(t) = Df(φφφ(t,ξξξ)) we have with M =
maxx∈S ∥Df(x)∥2 in the positively invariant set S

∥y(t)∥max ≤ ∥y(t)∥2

≤ ∥y(0)∥2 +
∫ t

0
∥Df(φφφ(s,ξξξ))∥2 ∥y(s)∥2 ds

≤ ∥y(0)∥2 +
∫ t

0
M ∥y(s)∥2 ds

≤ ∥y(0)∥2 exp(tM)

≤ n∥y(0)∥max exp(tM),

where we have used Gronwall’s lemma (Walter,
1998). Hence, there exists a constant such that
∥Y (t)∥ ≤ C holds for all t ∈ [0,H]; note that C de-
pends on H. This also implies that the derivatives with
respect to (t,y) up to order 4 of the right-hand side,
namely Df(φφφ(t,ξξξ))y are bounded, if f∈C5, uniformly
for ξξξ ∈ S, and the approximation using RK4 and AB4
is bounded by a constant times h4. We will assume
that, in addition to the previous assumptions h ≤ h′

that h is also bounded by the constant min(h∗,h∗∗,1),
which depends on H and S, see (22) and (25).



However, in our computations we need to replace
φφφ(·,ξξξ) by φ̃φφ ≈ φφφ(·,ξξξ). To study the error, we will al-
together consider and compare three approximate so-
lutions of Ẏ = Df(φφφ(t,ξξξ))Y , Y (0) = I:

1. We denote by Y (t) the solution of Ẏ =
Df(φφφ(t,ξξξ))Y , Y (0) = I at a given time t. The val-
ues at times ti are denoted by Yi = Y (ti).

2. By Ỹφφφi we denote the numerical approximation
of Y (t) at time ti using RK4 and AB4 with the
true solution φφφ in the formulas; these formulas use
k1, . . . ,k4, see (15) and (16).

3. Finally, we denote by Ỹi the approximation of
Y (t), using φ̃φφ in the RK4 and AB4 formula; these
formulas use k′1, . . . ,k

′
4, see (17) and (18).

The RK4 formulas (8) for the values Ỹφφφi with the
correct solution φφφ are given by

k1 = hDf(φφφi)Ỹφφφi (15)

k2 = hDf(φφφi+ 1
2
)(Ỹφφφi + k1/2)

k3 = hDf(φφφi+ 1
2
)(Ỹφφφi + k2/2)

k4 = hDf(φφφi+1)(Ỹφφφi + k3)

Ỹφφφi+1 = Ỹφφφi +
1
6
(k1 +2k2 +2k3 + k4) .

Note that we need φφφ(ti + h/2,ξξξ), which we denoted
φφφi+ 1

2
in the formulas. The AB4 method for (4) is

given by

Ỹφφφi+1 = Ỹφφφi +
h

24
[
55Df(φφφi)Ỹφφφi −59Df(φφφi−1)Ỹφφφi−1

+37Df(φφφi−2)Ỹφφφi−2 −9Df(φφφi−3)Ỹφφφi−3

]
, (16)

and we do not need φφφi+ 1
2

for i ≥ 3.

For our actual computation of the values Ỹi, we
use estimated values φ̃φφi of φφφ(ti,ξξξ). Hence, the RK4
formulas are given by

k′1 = hDf(φ̃φφi)Ỹi (17)

k′2 = hDf(φ̃φφi+ 1
2
)(Ỹi + k′1/2)

k′3 = hDf(φ̃φφi+ 1
2
)(Ỹi + k′2/2)

k′4 = hDf(φ̃φφi+1)(Ỹi + k′3)

Ỹi+1 = Ỹi +
1
6
(
k′1 +2k′2 +2k′3 + k′4

)
.

Note that we need estimates φ̃φφi+ 1
2
≈ φφφ(ti + h/2,ξξξ) in

the formulas. Thus, we need to use RK4 with time-
steps h0 := h/2 for the initial-value problem (3), when
we want to use its results in the RK4 formula (17)

for the initial-value problem (4) to compute the values
Ỹ1,Ỹ2,Ỹ3. The AB4 method is given by

Ỹi+1 = Ỹi +
h

24
[
55Df(φ̃φφi)Ỹi −59Df(φ̃φφi−1)Ỹi−1

+37Df(φ̃φφi−2)Ỹi−2 −9Df(φ̃φφi−3)Ỹi−3
]
, (18)

and we do not need φ̃φφi+ 1
2

for i ≥ 3.

Similar to the arguments of the previous subsec-
tion, we will show that the global error of approxima-
tion ∥Yi − Ỹi∥max is bounded by C5h4 for a constant
C5 > 0. In this case, however, there are two sources
for the error; one is using the RK4 and AB4 methods
to solve the differential equation (4) numerically and
the other comes from the fact that we use the approx-
imations φ̃φφi instead of the correct values φφφ(ti,ξξξ).

For the difference between Yi and Ỹφφφi we will use
the global error estimates of RK4 and AB4, while for
the difference between Ỹφφφi and Ỹi, we estimate using
the formulas directly.

We start with the first task and note that a similar
result to (13) holds also in the case of time-dependent
right-hand sides to conclude that

∥Yi − Ỹφφφi∥max ≤C5h4 (19)

for i = 1, . . . ,N, where Nh = H and the constant C5
depends on H and the derivatives of up to order 5
of f in S. Note that the derivatives up to order 4 of
v(t,z) =Df(φφφ(t,ξξξ))z for ξξξ∈ S exist and are uniformly
bounded by a constant; see the argumentation at the
beginning of the section. This implies that there is a
constant C6 > 0 such that

∥Ỹφφφi∥max ≤ ∥Yi∥max +∥Yi − Ỹφφφi∥max

≤ C6 +C5h4 =: C7 (20)

is bounded for all for i = 1, . . . ,N, where Nh = H, and
we have used that h ≤ 1.

Now we proceed with the second task and first
show that

∥Ỹφφφi+1 − Ỹi+1∥max ≤ 2∥Ỹφφφi − Ỹi∥max +C8h5. (21)

Comparing the formulas (15) and (17), we have, using
∥AB∥max ≤ n∥A∥max∥B∥max,∥∥k1 − k′1

∥∥
max = h

∥∥∥Df(φφφi)Ỹφφφi −Df(φ̃φφi)Ỹi

∥∥∥
max

≤ hn
∥∥∥Df(φφφi)−Df(φ̃φφi)

∥∥∥
max

∥∥∥Ỹφφφi

∥∥∥
max

+hn
∥∥∥Df(φ̃φφi)

∥∥∥
max

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

.

Using that Df is locally Lipschitz continuous and thus
has a Lipschitz constant LD f on the compact convex



hull of S and that the solution φφφ and its numerical ap-
proximation φ̃φφ starting at ξξξ ∈ S lie in the convex hull,
we obtain

∥∥∥Df(φφφi)−Df(φ̃φφi)
∥∥∥

max
≤ LD fC4h4 by (13).

We define Lv = max
x∈S

∥Df(x)∥max. Altogether, we have

∥∥k1 − k′1
∥∥

max ≤ LD f nC4h5
∥∥∥Ỹφφφi

∥∥∥
max

+hnLv

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

.

Now we proceed in a similar way with k2. From
the formula (15) we have ∥k1∥max ≤ nhLv∥Ỹφφφi∥max
and thus∥∥k2 − k′2

∥∥
max =

h
∥∥∥∥Df(φφφi+ 1

2
)

(
Ỹφφφi +

k1

2

)
−Df(φ̃φφi+ 1

2
)

(
Ỹi +

k′1
2

)∥∥∥∥
max

≤ h
∥∥∥Df(φφφi+ 1

2
)Ỹφφφi −Df(φ̃φφi+ 1

2
)Ỹi

∥∥∥
max

+
1
2

h
∥∥∥Df(φφφi+ 1

2
)k1 −Df(φ̃φφi+ 1

2
)k′1
∥∥∥

max

≤ hn
∥∥∥Df(φφφi+ 1

2
)−Df(φ̃φφi+ 1

2
)
∥∥∥

max

∥∥∥Ỹφφφi

∥∥∥
max

+hn
∥∥∥Df(φ̃φφi+ 1

2
)
∥∥∥

max

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
1
2

hn
∥∥∥Df(φφφi+ 1

2
)−Df(φ̃φφi+ 1

2
)
∥∥∥

max
∥k1∥max

+
1
2

hn
∥∥∥Df(φ̃φφi+ 1

2
)
∥∥∥

max

∥∥k1 − k′1
∥∥

max

≤ LD f nC4h5
∥∥∥Ỹφφφi

∥∥∥
max

+hnLv

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
1
2

LD f n2C4h6Lv

∥∥∥Ỹφφφi

∥∥∥
max

+
1
2

hnLv

[
LD f nC4h5

∥∥∥Ỹφφφi

∥∥∥
max

+hnLv

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

]
≤C9h5

∥∥∥Ỹφφφi

∥∥∥
max

+C10h
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

,

where we have used h ≤ 1 and new constants.
Now we proceed in a similar way with k3; note

that by the formula (15) we have

∥k2∥max ≤ nhLv

(
1+

Lvhn
2

)
∥Ỹφφφi∥max

and thus∥∥k3 − k′3
∥∥

max =

h
∥∥∥∥Df(φφφi+ 1

2
)

(
Ỹφφφi +

k2

2

)
−Df(φ̃φφi+ 1

2
)

(
Ỹi +

k′2
2

)∥∥∥∥
max

≤ h
∥∥∥Df(φφφi+ 1

2
)Ỹφφφi −Df(φ̃φφi+ 1

2
)Ỹi

∥∥∥
max

+
1
2

h
∥∥∥Df(φφφi+ 1

2
)k2 −Df(φ̃φφi+ 1

2
)k′2
∥∥∥

max

≤ hn
∥∥∥Df(φφφi+ 1

2
)−Df(φ̃φφi+ 1

2
)
∥∥∥

max

∥∥∥Ỹφφφi

∥∥∥
max

+hn
∥∥∥Df(φ̃φφi+ 1

2
)
∥∥∥

max

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
1
2

hn
∥∥∥Df(φφφi+ 1

2
)−Df(φ̃φφi+ 1

2
)
∥∥∥

max
∥k2∥max

+
1
2

hn
∥∥∥Df(φ̃φφi+ 1

2
)
∥∥∥

max

∥∥k2 − k′2
∥∥

max

≤ LD f nC4h5
∥∥∥Ỹφφφi

∥∥∥
max

+hnLv

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
1
2

LD f n2C4h6Lv

(
1+

Lvhn
2

)∥∥∥Ỹφφφi

∥∥∥
max

+
1
2

hnLv

[
C9h5

∥∥∥Ỹφφφi

∥∥∥
max

+C10h
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

]
≤C11h5

∥∥∥Ỹφφφi

∥∥∥
max

+C12h
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

,

where we have used h ≤ 1 and new constants.
Finally, for k4, where by (15) we have

∥k3∥max ≤ nhLv

(
1+

Lvhn
2

+
L2

vh2n2

4

)
∥Ỹφφφi∥max

and thus∥∥k4 − k′4
∥∥

max =

h
∥∥∥Df(φφφi+1)

(
Ỹφφφi + k3

)
−Df(φ̃φφi+1)

(
Ỹi + k′3

)∥∥∥
max

≤ h
∥∥∥Df(φφφi+1)Ỹφφφi −Df(φ̃φφi+1)Ỹi

∥∥∥
max

+h
∥∥∥Df(φφφi+1)k3 −Df(φ̃φφi+1)k

′
3

∥∥∥
max

≤ hn
∥∥∥Df(φφφi+1)−Df(φ̃φφi+1)

∥∥∥
max

∥∥∥Ỹφφφi

∥∥∥
max

+hn
∥∥∥Df(φ̃φφi+1)

∥∥∥
max

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+hn
∥∥∥Df(φφφi+1)−Df(φ̃φφi+1)

∥∥∥
max

∥k3∥max

+hn
∥∥∥Df(φ̃φφi+1)

∥∥∥
max

∥∥k3 − k′3
∥∥

max

≤ LD f nC4h5
∥∥∥Ỹφφφi

∥∥∥
max

+hnLv

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+LD f n2C4h6Lv

(
1+

Lvhn
2

+

(
Lvhn

2

)2
)∥∥∥Ỹφφφi

∥∥∥
max

+hnLv

(
C11h5

∥∥∥Ỹφφφi

∥∥∥
max

+C12h
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

)
≤C13h5

∥∥∥Ỹφφφi

∥∥∥
max

+C14h
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

,

where we have used h ≤ 1 and new constants.
Putting these parts together, one can see that∥∥∥Ỹφφφi+1 − Ỹi+1

∥∥∥
max

≤
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
1
6

∥∥k1 − k′1 +2(k2 − k′2)+2(k3 − k′3)+ k4 − k′4
∥∥

max



≤
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

[
1+(nLv +2C10 +2C12 +C14)

h
6

]
+
(

LD f nC4 +2C9 +2C11 +C13

) h5

6

∥∥∥Ỹφφφi

∥∥∥
max

≤ 2
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+C8h5,

where we define

C8 :=
C7

6

(
LD f nC4 +2C9 +2C11 +C13

)
,

and we have used (20) and the fact that

h ≤ 6
nLv +2C10 +2C12 +C14

=: h∗. (22)

This shows (21), which in turn shows with
∥Ỹφφφi − Ỹi∥max = 0 for i = 0

and by iteration that
∥Ỹφφφi − Ỹi∥max ≤ (2i −1)C8h5

≤ 7C8h5 =: C15h5. (23)
for i = 1,2,3.

Now the initializing steps with RK4 are finished.
For the AB4 method we follow a similar idea. For
i ≥ 3 we have∥∥∥Ỹφφφi+1 − Ỹi+1

∥∥∥
max

≤
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
55h
24

∥∥∥Df(φφφi)Ỹφφφi −Df(φ̃φφi)Ỹi

∥∥∥
max

+
59h
24

∥∥∥Df(φφφi−1)Ỹφφφi−1 −Df(φ̃φφi−1)Ỹi−1

∥∥∥
max

+
37h
24

∥∥∥Df(φφφi−2)Ỹφφφi−2 −Df(φ̃φφi−2)Ỹi−2

∥∥∥
max

+
9h
24

∥∥∥Df(φφφi−3)Ỹφφφi−3 −Df(φ̃φφi−3)Ỹi−3

∥∥∥
max

Using the estimate∥∥∥Df(φφφi)Ỹφφφi −Df(φ̃φφi)Ỹi

∥∥∥
max

≤ n
∥∥∥Df(φφφi)−Df(φ̃φφi)

∥∥∥
max

∥∥∥Ỹφφφi

∥∥∥
max

+n
∥∥∥Df(φ̃φφi)

∥∥∥
max

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

≤ nLD f C4C7h4 +nLv

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

,

similarly to the argumentation above for RK4, for
each of the terms i, i−1, i−2, i−3 we obtain∥∥∥Ỹφφφi+1 − Ỹi+1

∥∥∥
max

≤
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

(24)

+
20
3

nLD f C4C7h5 +hnLv

(
55
24

∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

+
59
24

∥∥∥Ỹφφφi−1 − Ỹi−1

∥∥∥
max

+
37
24

∥∥∥Ỹφφφi−2 − Ỹi−2

∥∥∥
max

+
9

24

∥∥∥Ỹφφφi−3 − Ỹi−3

∥∥∥
max

)
.

We have assumed that

h ≤ h∗∗ :=
3

20nLv
(25)

and want to show that∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

≤C162Nh5 =C162Hh4 h
2h

≤C162Hh4 (26)

for i = 1, . . . ,N; here C16 := max(C15,
20
3 nLD f C4C7)

and we have used that h
2h ≤ 1 for all h ≥ 0. Hence,

this shows that we have a global estimate of order 4
with a constant depending on H.

To show (26) we denote ai =
∥∥∥Ỹφφφi − Ỹi

∥∥∥
max

and
prove that

ai ≤ bi := Ĉ(2i −1),

where Ĉ = C16h5, for all i = 0, . . . ,N. Note that bi is
the solution of the iteration b0 = 0 and

bi+1 = 2bi +Ĉ.

We will now show ai ≤ bi by induction with respect
to i. For i = 0,1,2,3 this follows from (23). Now we
assume that for i ≥ 3 the inequality a j ≤ b j holds for
all j = 0, . . . , i and we show it for i+ 1: by (24) we
have

ai+1 ≤ ai +
20
3

nLD f C4C7h5

+hnLv

(
55
24

ai +
59
24

ai−1 +
37
24

ai−2 +
9

24
ai−3

)
≤ bi +

20
3

nLD f C4C7h5 +hnLv
20
3

bi

≤ 2bi +Ĉ = bi+1,

where we have used h ≤ 3/(20nLv), h ≤ 1 and the
induction assumption. This shows the induction and
thus (26).

Finally, we obtain for the error, using (19) and
(26), that

∥Yi − Ỹi∥max ≤ ∥Yi − Ỹφφφi∥max +∥Ỹφφφi − Ỹi∥
≤C5h4 +C162Hh4. (27)

for all i = 1, . . . ,N, hence a global error of order 4.
The algorithm to approximate the solutions to the

initial-value problems (3) and (4) can now be summa-
rized as:

1. Fix the time-horizon H and the number of time-
steps N.

2. For the initiation phase for the AB4 multi-step
method, fix x̃0 = ξξξ and set h0 =

1
2 H/N.

3. Use the RK4 formula (9) with h = h0 to compute
x̃i+1 for i = 0,1,2,3,4,5.



4. Relabel the solution terms using φ̃φφi/2 = x̃i for i =

0,1, . . . ,6, e.g. φ̃φφ 1
2
= x̃1, φ̃φφ1 = x̃2 etc.

5. Set Ỹ0 = I, h = H/N, and use the RK4 formula
(15) to compute Ỹi+1 for i = 0,1,2.

6. Now the initialization phase for the AB4 method
is over and we have φ̃φφi and Ỹi at our disposal for
i = 0,1,2,3. Set h = H/N and use formulas (10)
and (18) for i = 3,4, . . . ,N −1 to compute the re-
maining φ̃φφi and Ỹi.

Remark 3.1. The two following observations are use-
ful for our approach.

a. Note that since we perform the computations on a
compact set S, that is positively invariant for both
the system (1) and the numerical integrator, we
have finite upper bounds on the absolute values
of continuous s-th order derivatives of the compo-
nents of f if f is Cs on the convex hull of S. Thus,
for s = 5 we can choose C j for j = 1,2, . . . ,5 and
also Lv as uniform constants for the whole inter-
val [0,H] independent of the time step ti and ξξξ∈ S.

b. It is not necessary to keep track of more than just
the four most recent values of φ̃φφi and Ỹi in step 6
to use formulas (10) and (18).

3.3 Step III: numerical quadrature

The numerical quadrature of formula (2) can be done
on the fly as explained below. Effectively, this can be
implemented by interpreting i modulo 4. Since the
numerical solutions to (3) and (4) are O(h4), there
is little additional accuracy gained by using a higher-
order formula than O(h4) for the numerical quadra-
ture of (2). However, by using the Composite Trape-
zoidal Rule and a Romberg-like extrapolation, one
can use an O(h2(p+1)) method with negligible over-
head, where N = 2pq, p,q ∈ N+ , and h is the step
size for both the numerical integration and the numer-
ical quadrature. This method and its implementation
is explained in detail in (Hafstein, 2019, Sec. III). We
review the essential parts here.

Approximations to the solutions of system (3) and
system (4) with a particular initial value φφφ(0,ξξξ) = ξξξ

and Y (0) = I are computed at N + 1 equally dis-
tributed time points on the time interval [0,H]:

φ̃φφi ≈ φφφ(ti,ξξξ) and Ỹi ≈ Y (ti) at ti =
iH
N

(28)

for i = 0,1, . . . ,N, where N = 2pq, p,q ∈ N+; how
this is done and how accurate these values are was
explained in Step II.

We first consider the quadrature rule error assum-
ing that we use the true values for φφφ and Y ; later we

consider the error caused by using the approximate
values φ̃φφ and Ỹ . We split the integral in (2) into two
parts

M(ξξξ) = Iξξξ +
∫

∞

H
Y (τ)TC(φφφ(τ,x))Y (τ)dτ, where

Iξξξ :=
∫ H

0
Y (τ)TC(φφφ(τ,x))Y (τ)dτ,

and Iξξξ is approximated by M̃(ξξξ) using formula (5) and
a variant of the Romberg integration. Set

α(τ,ξξξ) = Y (τ)TC(φφφ(τ,ξξξ))Y (τ) (29)

and αi := α(ti,ξξξ) for i = 0,1, . . . ,N. First, we use
the composite Trapezoidal rule to approximate Iξξξ :=
M(ξξξ) using N,N/2, . . . ,q intervals. For this, de-
fine recursively N0 := N and Nk+1 := Nk/2 for k =
0, . . . , p−1; note that Np = q. Define h′k := H/Nk for
k = 0, . . . , p. We set

Trapk = h′k

(
α0 +αNR

2
+

Nk−1

∑
j=1

α j2k

)
(30)

for k = 0,1, . . . , p. It is well known, cf. e.g. (Bauer
et al., 1963), that if the integrand is C2(p+1), which
is the case if f ∈ C2(p+1)+1 and C ∈ C2(p+1), that by
extrapolation using the tableau

Rr,0 := Trapr for r = 0,1, . . . , p (31)

and then for s = 1, . . . , p,

Rr,s =
4sRr,s−1 −Rr+1,s−1

4s −1
for 0 ≤ r ≤ p− s, (32)

we get that

∥R0,p − Iξξξ∥max ≤

CRHh2(p+1) max
t∈[0,H]

∥∥∥∥∥ ∂2(p+1)

∂t2(p+1) α(t,ξξξ)

∥∥∥∥∥
max

for a constant CR, independent of H and α. Here
h = h′0 = H/N = H/(2pq) is the length of the inter-
val between two consecutive time-points the solution
is computed at.

Finally, we substitute the values αi by α̃i :=
Ỹ T

i C(φ̃φφi)Ỹi into the formulas (30) and denote the cor-
responding Rr,s by R̃r,s. By the estimates (27) and (13)
and because C is Lipschitz on S we have for a fixed
H > 0 that ∥αi − α̃i∥max ≤ CIh4, where CI > 0 is a
constant that can be chosen independently of ξξξ ∈ S.
Further, Rr,s =∑

N
i=0 λiαi where λi ≥ 0 and ∑

N
i=0 λi = 1,

see (Bauer et al., 1963), and thus ∥Rr,s − R̃r,s∥max ≤
(CR+CI)h4 independent of ξξξ∈ S if p≥ 1. Thus, there
is a constant CH independent of h > 0 and ξξξ ∈ S, but
dependent on H, such that

∥Iξξξ − R̃r,s∥max ≤CHh4 (33)



for h ≤ min(h′,1,h∗,h∗∗).
To summarize all these discussions, let us provide

the error estimate for the numerical computation of
the contraction metric M.

4 Main Result

After all the preparation in the last two sections,
we are ready to prove the main result of this work.

Theorem 4.1 (Error estimate). Assume f in (1) is
C2(p+1)+1 and C is C2(p+1) for an integer p ≥ 1 and
let M be defined by formula (2) on A(x0), i.e.

M(ξξξ) =
∫

∞

0
ψ(τ,ξξξ)TC(φφφ(τ,ξξξ))ψ(τ,ξξξ)dτ.

Then, for any compact K ⊂ A(x0) and ε > 0, there
exists H∗ > 0 such that for all fixed and finite H ≥ H∗

there exist N∗ = 2pq∗, p,q∗ ∈ N+, such that for all
N = 2pq, q ≥ q∗, we have

∥M(ξξξ)− M̃(ξξξ)∥max ≤ ε

for all ξξξ ∈ K. Here h := H/N and M̃(ξξξ) is the result
of the numerical method, i.e. the matrix R̃0,p, com-
puted as described in Section 3 with initial value ξξξ,
and using the interval H and the approximations φ̃

and Ỹ with step-size h in the numerical integration
and quadrature.

Proof. Let K ⊂ A(x0) and ε > 0 be given. By (Giesl
et al., 2023d, Thms. 2.1 and 3.5) there exists a com-
pact S ⊂ Rn, K ⊂ S ⊂ A(x0) and h′ > 0, such that
S is positively invariant for system (1) and the AB4
method initialized with RK4 to approximate its tra-
jectories for all step sizes 0 < h ≤ h′, i.e. φ̃φφi ∈ S for all
i ∈ N0 if φ̃φφ0 = ξξξ ∈ S and the step-size is h.

The proof of (Giesl and Wendland, 2019,
Thm. 2.2, (13), (14), and (15)) implies that there are
constants d,d1,d2,ρ > 0 such that

∥ψ(τ,ξξξ)∥max ≤ d1e−ρτ (34)
∥C(φφφ(τ,ξξξ))∥max ≤ d2 (35)∥∥ψ(τ,ξξξ)TC(φφφ(τ,ξξξ))ψ(τ,ξξξ)

∥∥
max ≤ de−2ρτ (36)

for all τ ≥ 0 and all ξξξ ∈ S. Note that the proof also
holds for the case of a compact subset of A(x0). The
reason is that a compact subset of the basin of attrac-
tion is uniformly attracted to x0, which implies that
uniform constants can be chosen in (Giesl and Wend-
land, 2019, (13), (14), and (15)) which only depend
on S. Let H∗ > 0 be so large that

∥∥∥∥∫ ∞

H∗
ψ(τ,ξξξ)TC(φφφ(τ,ξξξ))ψ(τ,ξξξ)dτ

∥∥∥∥
max

≤ d
2ρ

e−2ρH∗ ≤ ε

2
. (37)

Fix some H ≥H∗. Choose N∗ = 2pq∗ so large that
both h̃ := H/N∗ ≤ min(h′,1) and CH(h̃)4 ≤ ε

2 hold,
where CH is the constant from (33). Then we have∥∥∥∥∫ H

0
ψ(τ,ξξξ)TC(φφφ(τ,ξξξ))ψ(τ,ξξξ)dτ− R̃0,p

∥∥∥∥
max

≤CH(h̃)4 ≤ ε

2
(38)

at any point ξξξ ∈ K ⊂ A(x0) ⊂ Rn. Here R̃0,p is the
Romberg approximation of the integral∫ H

0
α(τ,ξξξ)dτ,

with α defined in (29), where the values αi :=α(ti,ξξξ),
ti := ih̃, have been substituted by the approximations
α̃i, computed using the numerical solutions φ̃φφ and Ĩ to
τ 7→ φφφ(τ,x) and I(τ) = ψψψ(τ,x) as described in Step I
and Step II and using step-size h̃. For any step-size
h := H/N, N = 2pq where q ≥ q∗ is an integer, an
analogous estimate holds with h̃ replaced by h ≤ h̃
and the proposition follows.

5 Conclusions

We have shown that contraction metrics for
systems ẋ = f(x) with an exponentially stable equi-
librium x0 can be computed with arbitrary precision.
In particular, we have proven that the error in the
computations can be uniformly bounded on compact
subsets of the basin of attraction A(x0). The bound
is uniform in the sense that given a compact subset
K ⊂ A(x0) and an ε > 0, we can choose the parame-
ters of the numerical method, i.e. the time interval H
and the step size h, such that the difference between
the computed metric M̃(ξξξ) and the metric M(ξξξ) from
formula (2) is bounded by ε for all ξξξ ∈ K. This result
advances the error analysis of the computation of
contraction metrics, and justifies the use of these
methods in practice.
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