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Automatic Determination of Connected Sublevel Sets of CPA Lyapunov
Functions\ast 
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Abstract. Lyapunov functions are an important tool to determine the basin of attraction of equilibria. In
particular, the connected component of a sublevel set, which contains the equilibrium, is a forward
invariant subset of the basin of attraction. One method to compute a Lyapunov function for a general
nonlinear autonomous differential equation constructs a Lyapunov function, which is continuous and
piecewise affine (CPA) on each simplex of a fixed triangulation. In this paper we propose an algorithm
to determine the largest connected sublevel set of such a CPA Lyapunov function and prove that
it determines the largest subset of the basin of attraction that can be obtained by this Lyapunov
function.
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1. Introduction. Within the theory of dynamical systems, Lyapunov functions are a well-
known method for proving stability and finding the basin of attraction of an equilibrium. In
the classical Lyapunov stability theory [19] the stability of one attractor of a differential
equation is considered and is studied in most textbooks on nonlinear differential equations;
see, e.g., [13, 17, 34].

Given an autonomous system \.x = f(x), f \in C1(\BbbR n,\BbbR n), with equilibrium x0, a strict
Lyapunov function is a function V \in C0(D,\BbbR ), where D is an open neighborhood of x0,
which has a minimum at the equilibrium and is strictly decreasing along solutions of the ODE
within D apart from the equilibrium. The existence of a strict Lyapunov function implies
that the equilibrium is asymptotically stable, and it provides a lower bound on its basin of
attraction by sublevel sets, which are compact and contained in D.

Converse theorems, proving the existence of Lyapunov functions with various properties,
have been obtained in the last 70 years; for a review, see [16]. If f(x) = Ax is linear and the
equilibrium at the origin is exponentially stable, then one can construct a Lyapunov function
V (x) = xTQx, where the positive definite matrix Q \in \BbbR n\times n is the solution of the Lyapunov
equation ATQ + QA =  - P and P \in \BbbR n\times n is an arbitrary positive definite matrix. Note
that this method also works locally for nonlinear systems: Letting A = Df(x0), the function
V (x) = (x - x0)

TQ(x - x0) is a strict Lyapunov function for the nonlinear system; however,
in general only in a small neighborhood D of x0.
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Over the last 20 years many different methods of finding Lyapunov functions and, there-
fore, estimating the basin of attraction have been considered; for a review, see [30] and for a
recent review of numerical methods, see [10]. One class of methods involves solving the Zubov
equation [7, 33].

A large class of methods is based on SOS (sum of squares), which uses semidefinite pro-
gramming to parameterize polynomial Lyapunov functions [2, 5, 21, 22, 23, 24, 25, 26]. The
positive definiteness of polynomials is relaxed to checking that a polynomial is the sum of
squared polynomials. This method has originally been used to check either (local) stability
or global stability in the entire phase space.

Often the basin of attraction is not the entire phase space, but one is still interested in
obtaining a good lower estimate. Sublevel sets of Lyapunov functions can be used to determine
a subset of the basin of attraction. However, there are additional assumptions to check. One
possibility is to assume that the function is defined on \BbbR n and is radially unbounded, but
that \.v(x) < 0 does not hold everywhere, where \.v denotes the orbital derivative, i.e., the
derivative along solutions of the ODE. Alternatively, one can consider a Lyapunov function
which is defined in a set B \subseteq \BbbR n such that \.v(x) < 0 holds for all x \in B \setminus \{ 0\} , where 0 is
the equilibrium, but then one needs to find the connected component of the sublevel set that
contains the equilibrium and show that it does not intersect \partial B.

If the Lyapunov function is assumed to be radially unbounded, then the largest sublevel
set (largest estimate of the domain of attraction, LEDA) is given by the level \gamma = infx\in \BbbR n v(x)
such that \.v(x) = 0 [4]; note that this is false if the Lyapunov function is not radially unbounded
as the example in Figure 1 shows. If, more specifically, the Lyapunov function is assumed to
be of the form v(x) = xTQx with positive definite matrix Q, then the \gamma above can be found
using a generalized bisection [28, 31].

Another approach is to fix a positive definite polynomial p(x) and find the largest sublevel
set \{ x \in \BbbR n | p(x) \leq \gamma \} such that there exists a Lyapunov function V within a certain set
of functions, often polynomials up to a certain degree, such that the sublevel set is contained
in a bounded sublevel set of fixed level [32]. This approach can be generalized by considering
the maximum of finitely many Lyapunov functions [30].

In [27], Lyapunov functions are considered within a (bounded) set B, and additionally also
for a general target set instead of an equilibrium. In this case one needs additional assumptions
such as that the sublevel does not intersect the boundary of B. To find a sublevel set, it is
proposed to guess a level and check whether there is a connected component of the sublevel set
that does not intersect \partial B [27]. The other proposed method is to find the minimum of v(x)
on the boundary \partial B and use the corresponding sublevel set; see [29, Remark 5]. However, as
the example in Figure 1 shows, it can contain points outside of the basin of attraction.

In this paper we consider the continuous and piecewise affine (CPA) method, which has
been used to compute Lyapunov functions for nonlinear dynamical systems given by an auton-
omous ODE [8, 11, 14, 15, 18, 20]. Here, the Lyapunov function is constructed as a continuous
function, which is affine on each simplex of a fixed triangulation of a given set S and thus
determined by the values at the vertices of the triangulation. The CPA method determines
suitable values of the Lyapunov function at the vertices by solving a linear optimization prob-
lem, where the conditions of the Lyapunov function are transformed into linear constraints.
The method includes a verification that the CPA function is indeed a Lyapunov function. In
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Figure 1. Left: CPA Lyapunov function for the system \.x =  - y+x(1 - x2 - y2), \.y = x+y(1 - x2 - y2). Right:
The contour lines for the values 1.05 (red) and 1.28 (blue). The largest lower bound on the basin of attraction
of the equilibrium at the origin is not obtained by considering the minimum of the function at the boundary
(red), but by considering a local minimum such that the connected component containing the equilibrium extends
to the boundary (blue).

particular, the constraints include an error estimate which proves that if the problem is feasi-
ble, i.e., the constraints are satisfied, then the CPA Lyapunov function is strictly decreasing
along solutions. It has been shown that a CPA Lyapunov function exists if the set S is a
subset of the basin of attraction and the triangulation is sufficiently fine; see [8]. Hence, the
method always succeeds in finding a Lyapunov function. This is an advantage over, e.g., the
SOS method, which is not guaranteed to find a Lyapunov function due to the fact that a
positive definite function is not necessarily SOS. While the SOS method is suited to prove
global stability, the CPA method is not able to show global stability, but rather determine a
bounded subset of the basin of attraction. The determination of a sublevel set of the CPA
Lyapunov, which determines a subset of the basin of attraction being as large as possible,
however, has so far not been solved satisfactorily.

Previously, the largest sublevel set was found in an ad hoc way. The problems are that we
want to determine the connected component of the sublevel set that includes the equilibrium
and it is thus a challenge to find both the connected component as well as the largest possible
value for the level. Taking the minimal value at the boundary leads in general to a suboptimal
value for the sublevel set, and the point, where it is attained, is in general not in the connected
component including the equilibrium. Consider, for example, the system \.x =  - y+x(1 - x2 - 
y2), \.y = x + y(1  - x2  - y2). This system has an asymptotically stable equilibrium at the
origin and a periodic orbit at the unit circle. The equilibrium's basin of attraction is easily
seen to be the open unit circular disc. In Figure 1 a CPA Lyapunov function with domain
[ - 0.85, 0.85]2 is depicted. We see that the minima at the boundary of this Lyapunov function
are attained close to the points (\pm 0.85,\pm 0.85), but this Lyapunov function delivers a larger
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Figure 2. CPA Lyapunov function for the system \.x =  - x, \.y =  - y. The largest sublevel set (red) affirmed
by the Lyapunov function to be within the basin of attraction does not intersect the boundary of the domain of
the Lyapunov function in a local minimum.

lower bound on the basin of attraction if one uses a local minimum attained close to (0,\pm 0.85)
or (\pm 0.85, 0).

Note that the level of the optimal sublevel set touching the boundary is not even necessarily
a local minimum at the boundary as the following example shows: We consider the system
\.x =  - x, \.y =  - y, which has a globally asymptotically stable equilibrium at the origin. We
define S = [ - 3, 3]2 \setminus (2, 3] \times (1, 2) and use the standard triangulation T of this set with
vertices ve(T ) = \{ (k, l) | k, l \in \{  - 3, - 2, . . . , 2, 3\} \} . A CPA Lyapunov function is determined
by its values at the vertices, and we fix V (x, y) = \| (x, y)\| \infty = max(| x| , | y| ) for all (x, y) \in 
ve(T )\setminus \{ (2, 1), (3, 2)\} and V (2, 1) = 2.5, V (3, 2) = 1.5. Then the largest sublevel set is obtained
with the value 2 (see Figure 2), and it is found with the algorithm described in this paper.
The vertex (2, 2) \in \partial S is the vertex which terminates the algorithm, but note that it is not a
local minimum at the boundary as the two adjacent vertices (2, 1) and (3, 2) have higher and
lower V -value, respectively.

In this paper we propose an algorithm to find the optimal sublevel set and automatically
determine the connected component which contains the equilibrium. Given a triangulation of
the set S and the values of a Lyapunov function at the vertices, the algorithm considers a level
m and gives every vertex a color: Green vertices are within the connected component of the
sublevel set \{ x \in S | V (x) < m\} , which contains the equilibrium, red vertices are outside, and
yellow vertices provide a layer between the green and red ones. The algorithm increases the
level m and recolors vertices at certain discrete levels---one can think of filling the graph of the
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Figure 3. When raising the level from the global minimum at 0, water would flow over the local maximum
at 1 when reaching a certain level. This situation cannot arise if the function V (x) is a Lyapunov function.

function with water poured in at the equilibrium and the green vertices are the ones covered
by water. The algorithm ends with the optimal level when the water reaches the boundary of
S. The general idea of the algorithm is also applicable to finding sublevel sets of Lyapunov
functions which are generated by other methods---note that if a specific class of functions
is chosen, then there might be easier ways of checking the assumptions. The algorithm is
also applicable to finding sublevel sets of a general function, starting at the global minimum.
However, note that for a general function, the water could flow over a barrier; see Figure 3.
This case cannot occur in the case of a Lyapunov function, as we will show in this paper. In
the future, this algorithm could be combined with the search for a CPA Lyapunov function by
maximizing the volume of the sublevel set to obtain a large subset of the basin of attraction
as an optimization criterion.

Let us give an overview of the contents: In section 2 we introduce triangulations and the
CPA method in more detail and recall the definition of \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V , the largest subset of the basin
of attraction which can be obtained with the Lyapunov function V . Section 3 introduces
the algorithm and proves that the coloring of the vertices at each level m characterizes the
connected component of the sublevel set at level m, which contains the equilibrium. Moreover,
the coloring at the final level mN , when the algorithm terminates, gives \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V . Section 4 applies
the algorithm to several examples. The appendix contains several proofs.

2. Triangulation and CPA method. In this section we summarize the CPA method; for
more details see [8]. To define a CPA function we must first fix a suitable simplicial complex
and the corresponding triangulation.

Definition 2.1 (simplicial complex and adjacent vertices). For p+ 1 vectors v0, v1, . . . , vp \in 
\BbbR n their convex hull is defined as

co\{ v0, v1, . . . , vp\} :=

\Biggl\{ 
p\sum 

i=0

\lambda ixi | 
p\sum 

i=0

\lambda i = 1, \lambda i \geq 0 for all i

\Biggr\} 
.

A p-simplex is a set
T = co\{ v0, v1, . . . , vp\} ,

p \geq 0, where v0, . . . , vp are affinely independent, i.e., v1  - v0, v2  - v0, . . . , vp  - v0 are linearly
independent. We denote by ve(T ) = \{ v0, . . . , vp\} the set of vertices of T . A subsimplex of a
simplex T is a simplex T \prime such that \emptyset \not = ve(T \prime ) \subseteq ve(T ).

A set of simplices \scrK is called a simplicial complex of S \subseteq \BbbR n if the following hold:
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\bullet 
\bigcup 

T\in \scrK T = S;
\bullet if T \in \scrK , then also all its subsimplices are in \scrK ;
\bullet if T1, T2 \in \scrK , then T1 \cap T2 is either empty or a subsimplex of both T1 and T2.

We denote ve(\scrK ) =
\bigcup 

T\in \scrK ve(T ) and call two vertices v1, v2 \in ve(\scrK ) adjacent if there
exists a simplex T \in \scrK , such that v1, v2 \in ve(T ).

For a vertex v \in ve(\scrK ) we denote by ad(v) = \{ w \in ve(\scrK ) \setminus \{ v\} | w is adjacent to v\} the
set of adjacent vertices and for X \subseteq ve(\scrK )

ad(X) =
\bigcup 
x\in X

ad(x).

Note that ad(v) does not include the vertex v itself, while ad(X) could include a vertex v
of the set X if X contains an adjacent vertex to v.

Instead of a simplicial complex, containing p-simplices with 0 \leq p \leq n, we can just con-
sider the n-simplices. This is called a triangulation and there is a one-to-one correspondence
between a simplicial complex and a triangulation.

Note that we will often refer to p-simplices to stress the fact that we consider any p \in 
\{ 0, . . . , n\} in contrast to n-simplices.

Definition 2.2 (triangulation). A triangulation \scrT of S = \cup T\in \scrT T is a set of n-simplices
such that the intersection of two different simplices is either empty or a p-simplex, 0 \leq p < n,
and its vertices are the common vertices of the two different n-simplices.

Given a simplicial complex \scrK of S, the corresponding triangulation \scrT of S is given by the
collection of all n-simplices in \scrK . Conversely, given a triangulation \scrT of S, the corresponding
simplicial complex \scrK of S is given by the collection of all subsimplices of simplices in \scrT ; see [1].

One example of a triangulation \scrT of \BbbR n is the standard triangulation defined below,
where Sn denotes the set of all permutations of the numbers 1, 2, . . . , n, \scrX \scrJ (i) denotes the
characteristic function equal to one if i \in \scrJ and equal to zero if i /\in \scrJ , and e1, e2, . . . , en
denotes the standard orthonormal basis of \BbbR n. Further, we use functions R\scrJ : \BbbR n \rightarrow \BbbR n,
defined for every \scrJ \subseteq \{ 1, 2, . . . , n\} by

R\scrJ (x) :=
n\sum 

i=1

( - 1)\scrX \scrJ (i)xiei.

Thus R\scrJ puts a minus in front of the coordinate of xi of x if i \in \scrJ .

Definition 2.3 (standard triangulation). The standard triangulation \scrT consists of the sim-
plices

Tz,n,\sigma = co

\biggl\{ 
R\scrJ 
\biggl( 
z +

j\sum 
i=1

e\sigma (i)

\biggr) 
| j = 0, 1, 2, . . . , n

\biggr\} 
for all z \in \BbbN n

0 , all \scrJ \subseteq \{ 1, 2, . . . , n\} , and all \sigma \in Sn. The corresponding simplicial complex
consists of all elements of \scrT and all their subsimplices.

Before we define a CPA function on a triangulation, we show that the boundary of S
consists of simplices with all vertices contained in the boundary. For the proof of Lemma 2.4,
see Appendix A.
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Lemma 2.4. Let \scrT be a triangulation of S =
\bigcup 

T\in \scrT T \subseteq \BbbR n, let \scrK be the corresponding
simplicial complex, and assume that \scrT is locally finite, i.e., for every compact set C \subseteq \BbbR n the
cardinality of the set \{ T \in \scrT | T \cap C \not = \emptyset \} is finite.

Then the boundary \partial S consists of p-simplices T \in \scrK such that for all vertices v \in ve(T )
we have v \in \partial S.

Now we can define a CPA function on a general triangulation \scrT ; see [8] for more details.

Definition 2.5 (CPA function). Let \scrT be a finite triangulation of S \subseteq \BbbR n. Then a function
V : S \rightarrow \BbbR is said to be a CPA function on the triangulation \scrT , written V \in CPA[\scrT ], if V
is a continuous function, which is affine on each simplex T \in \scrT . Since V is affine on each
T \in \scrT , there are a vector nT \in \BbbR n and a number aT \in \BbbR such that

V (x) = nT \cdot x+ aT for all x \in T.

Furthermore, the function V is uniquely defined by the values V (v) for all vertices v \in ve(\scrT ).
Consider a simplex T \in \scrT with T = co\{ v0, . . . , vn\} . Then \nabla V

\bigm| \bigm| 
T
:= nT = X - 1

T vT , where

the matrix XT \in \BbbR n\times n is defined by writing the components of the vector (vi  - v0)
T in its ith

row and the ith element of the column vector vT is defined by V (vi) - V (v0).

Consider the autonomous ODE \.x = f(x) with f \in C1(\BbbR n,\BbbR n) and denote the solution
x(t) with initial value x(0) = \xi by St\xi := x(t) for all t \geq 0 for which it exists. Furthermore,
assume without loss of generality that the equilibrium under consideration is at 0.

Note that the property that a function V is strictly decreasing along solutions can be
expressed by the orbital derivative if V is sufficiently smooth. This does not hold for a CPA
function, which is not differentiable, but, using the Dini derivative, one can define a weaker
notion of the orbital derivative. To show that the Dini orbital derivative is negative, it is
sufficient to show that the usual orbital derivative, defined on each simplex T by \.V (x) =
\nabla V

\bigm| \bigm| 
T
\cdot f(x), is negative. Note that \nabla V

\bigm| \bigm| 
T
, as defined above, is constant on each simplex. By

Taylor-type estimates, using a bound on the second derivatives of f , the requirement that
\.V (x) is negative for all x \in T and all simplices T \in \scrT can be written as linear constraints on
the values V (v) at the vertices v \in ve(\scrT ).

If values V (v) can be found such that all the constraints are fulfilled, then V is a strict CPA
Lyapunov function. On the other hand, these linear constraints are feasible if the equilibrium
at the origin is exponentially stable and the triangulation is fine enough [8].

A CPA Lyapunov function can either be determined by solving a suitable linear program-
ming problem, or by computing the values at the vertices by other methods and then checking
that the constraints hold.

We will in the following assume that we are given a strict CPA Lyapunov function V \in 
CPA[\scrT ] in the following sense.

Definition 2.6 (strict CPA Lyapunov function). Consider the autonomous ODE \.x = f(x),
where f \in C1(\BbbR n,\BbbR n), with equilibrium at 0.

The CPA function V \in CPA[\scrT ] (see Definition 2.5) is called a strict CPA Lyapunov
function if V (0) = 0, V (x) > 0 holds for all x \in S \setminus \{ 0\} and, moreover, for each simplex
T \in \scrT we have

\.V (x) = \nabla V
\bigm| \bigm| 
T
\cdot f(x) < 0 for all x \in T \setminus \{ 0\} .
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In particular, a strict CPA Lyapunov function satisfies that if x \in S \setminus \{ 0\} and if t > 0
is such that S\tau x \in S for all \tau \in [0, t], then V (Stx) < V (x). In other words, V is strictly
decreasing along positive orbits in S \setminus \{ 0\} .

We will now define sublevel sets of V which will be subsets of the basin of attraction of 0;
see Theorem 2.8. Further, such a sublevel set is forward invariant. Note that S\circ denotes the
interior of the set S.

Definition 2.7 (level sets). Consider the autonomous ODE \.x = f(x) with f \in C1(\BbbR n,\BbbR n)
and denote the solution x(t) with initial value x(0) = \xi by St\xi := x(t). Furthermore, assume
without loss of generality that the equilibrium under consideration is at 0.

Assume that \scrT is a finite triangulation of the compact set S \subseteq \BbbR n, S\circ is a neighborhood
of the origin, S\circ = S, and we have for all simplices T \in \scrT that 0 \in T implies 0 \in ve(T ).

Let V \in CPA[\scrT ] be a strict CPA Lyapunov function (see Definition 2.6), and let m \in \BbbR 
be a constant. Define the set

\scrO V,m := \{ 0\} \cup \{ x \in S | V (x) < m\} \subseteq S.

Denote by \scrO V,m,0 the connected component of \scrO V,m satisfying 0 \in \scrO V,m,0 \subseteq \scrO V,m. If \{ 0\} \subseteq 
\scrO \circ 

V,m,0 \subseteq \scrO V,m,0 \subseteq S\circ , then we define the sublevel set \scrL V,m := \scrO V,m,0. If no such \scrO V,m,0

exists, then we define \scrL V,m := \emptyset . We can further define

\scrL \mathrm{s}\mathrm{u}\mathrm{p}
V :=

\bigcup 
m\in \BbbR 

\scrL V,m.

Theorem 2.8. Let S and V be as in Definition 2.7. Then \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V is a subset of the basin of

attraction of 0. Note that with b := sup\{ m \in \BbbR | \scrL V,m \not = \emptyset \} we have that \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V is the connected

component of \{ x \in S : V (x) < b\} that contains the origin.

For a proof of this theorem (cf. [3, Thm. 2.5] and [9, Thm. 2.6]), note that the proof works
also in the case that S\circ is not simply connected.

The goal of this paper is, given a strict CPA Lyapunov function V , to algorithmically
determine the set \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V and thus a subset of the basin of attraction of 0.

3. Algorithm. In this section we will present an algorithm to determine the set \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V in

Definition 2.7 for a strict CPA Lyapunov function V .
After introducing the algorithm, which is based on coloring the vertices of the triangula-

tion, we will prove the relation of the different colored simplices with \scrO V,m,0, the connected
component of the sublevel set of level m, which contains the origin, in Theorem 3.10. Then
we will prove the relation between the colored simplices and \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V in Theorem 3.13.
In the following we will assume that 0 is an equilibrium, and S \subseteq \BbbR n is a compact set

such that S\circ is a neighborhood of 0 and S\circ = S. Furthermore, \scrT is a finite triangulation of S
such that if 0 is in a simplex, then 0 is a vertex, and V \in CPA[\scrT ] is a strict CPA Lyapunov
function; see Definition 2.7.

3.1. The algorithm. Let us first give some definitions.

Definition 3.1. Denote by colk(v) \in \{ g, y, r\} , the color of vertex v \in ve(\scrT ) in step k \in \BbbN 0.
Denote by Gk = \{ v \in ve(\scrT ) | colk(v) = g\} , Yk = \{ v \in ve(\scrT ) | colk(v) = y\} , and Rk = \{ v \in 
ve(\scrT ) | colk(v) = r\} the set of green, yellow, and red vertices in step k, respectively.
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The algorithm will define colorings of all vertices colk(v), a set of vertices Xk \subseteq ve(\scrT ),
marked to be turned green in step k + 1, as well their V -value mk in each step k = 0, 1, . . . .

To start the algorithm in step 0, set X0 = \{ 0\} , col0(0) = y and col0(v) = r for all
v \in ve(\scrT ) \setminus \{ 0\} as well as m0 = V (0) = 0.

In step k, where k = 1, 2, . . . ,
(i) set colk(v) = colk - 1(v) for all v \in ve(\scrT );

set colk(x) = g for all x \in Xk - 1;
set colk(v) = y for all v \in ad(Xk - 1) \cap Rk - 1;

(ii) set mk := minv\in Yk
V (v) as well as Xk := \{ v \in Yk | V (v) = mk\} .

Then we have two options.
(a) If B := Xk \cap \partial S \not = \emptyset , then set M := k and terminate the algorithm.
(b) Otherwise, set k to k + 1 and repeat.

Note that in (i) we keep the coloring from the previous step and turn all vertices in Xk - 1

(from yellow to) green. Furthermore, we turn all red vertices adjacent to any vertex in Xk - 1

yellow. (If adjacent vertices are already green or yellow, then they remain unchanged.)
In (ii) we determine the minimal V -value mk among all yellow vertices, and collect the

yellow vertices, where the minimal V -value is attained, in the set Xk, i.e., these yellow vertices
are marked to be turned green in the next step. Finally, we terminate the algorithm if at least
one of the vertices in Xk is at the boundary of S; otherwise, we go to the next step.

For (ii) we need to show that Yk \not = \emptyset . Note that 0 \in Gk for all k \geq 1, as 0 is turned
green in step 1 (i) and then stays green throughout the algorithm. Hence, the alternatives to
having a yellow vertex are that (A) all vertices are green and (B) all vertices are green or red
(and there are both green and red vertices). Case (A) is not possible since by the termination
criterion (iia) boundary points cannot become green. Case (B) is not possible since by Lemma
3.8 (see later) if there are green and red vertices, then there also must be yellow vertices.

Note that the algorithm will always terminate in a finite number of steps, since the set
of vertices ve(\scrT ) is finite and in each step of the algorithm vertices change color from red to
yellow and at least one from yellow to green, never in the opposite direction.

In Lemma 3.5 we want to show that the sequence mk is strictly increasing. For the proof
we need to show that V (v) > mk for all v \in ad(Xk) \cap Rk. We will show this later in Lemma
C.4, but for the moment we will define N as the first step, where this is violated; see the
following definition.

Definition 3.2. If there exists a step k \in \{ 0, . . . ,M\} such that there exists v \in ad(Xk)\cap Rk

with V (v) \leq mk, then define N \in \{ 0, . . . ,M\} to be the minimal step N = k with this property.
If no such step exists, then define N := M .

Note that N \not = 0 since V (x) > 0 = m0 for all x \in S \setminus \{ 0\} , so in particular for all x \in R0.
From now on we will only consider steps k up to N , but we will later show that N = M

in Lemma C.4. We begin by introducing the following notation to label simplices according
to the colors of their vertices.

Definition 3.3. Consider step k \in \{ 1, . . . ,M\} . We denote by \scrS ngnynr the set of simplices
T \in \scrK such that T has exactly ng green, ny yellow, and nr red vertices, where ng, ny, nr \in \BbbN 0.
Furthermore, we denote \scrS gy0 =

\bigcup 
ng ,ny\geq 1 \scrS ngny0 etc. If we want to note the step k to which



1038 PETER GIESL, CONOR OSBORNE, AND SIGURDUR HAFSTEIN

the color corresponds, then we write \scrS (k)
ngnynr and \scrS (k)

gy0.

For example, \scrS 120 represents the set of 2-simplices with exactly one green and two yellow
vertices, and \scrS gy0 denotes all simplices with at least one green and one yellow vertex, but no
red vertex.

We start with the observation that every yellow vertex has an adjacent green vertex.

Lemma 3.4 (yellow vertices have adjacent green vertex). Consider step k \in \{ 1, . . . ,M\} . If
v \in Yk, then ad(v) \cap Gk \not = \emptyset .

Proof. Consider step k \in \{ 1, . . . ,M\} and let 1 \leq l \leq k be the step when the yellow vertex
was turned from red to yellow (note that 0 is green from step 1 onwards). In step l (i) there
is an adjacent green vertex to the yellow vertex, and the green vertex stays green until step
k.

Lemma 3.5 (mk is strictly increasing). We have mk > mk - 1 for all k \in \{ 1, . . . , N\} . In
particular, if we consider a level m \in (0,mN ], then there is a unique k \in \{ 1, . . . , N\} such that
mk - 1 < m \leq mk.

Proof. If k = 1, then m0 = V (0) = 0 and V (x) > 0 for all other vertices, so m1 =
minx\in Y1 V (x) > m0, as there are finitely many yellow vertices.

Now consider step k \geq 2. By (i) of the algorithm we have Yk = (Yk - 1 \setminus Xk - 1)\cup 
(ad(Xk - 1) \cap Rk - 1). If y \in Yk - 1 \setminus Xk - 1, then V (y) > mk - 1 = min\~y\in Yk - 1

V (\~y) by defini-
tion of Xk - 1. If y \in ad(Xk - 1) \cap Rk - 1, then V (y) > mk - 1 since k  - 1 < N (see Definition
3.2 of N). Hence, taking the minimum over the finitely many elements in Yk we obtain
mk = miny\in Yk

V (y) > mk - 1.

Lemma 3.6 (yellow simplices have higher V -value than mk). Let y \in T with T \in \scrS (k)
0y0 at

step k \in \{ 0, . . . ,M\} . Then V (y) \geq mk.

Proof. For k = 0 the statement is true as the only point in \scrS (0)
0y0 is 0 and V (0) = 0 = m0.

Now let k \geq 1 and first let y \in \scrS (k)
010 = Yk be a (yellow) vertex of T . Then we have mk =

min
\~y\in \scrS (k)

010

V (\~y) \leq V (y).

Now let y \in T = co\{ y0, . . . , yp\} with T \in \scrS (k)
0y0. Since V is affine on T and V (yi) \geq mk for

all yellow vertices as shown above, we have V (y) =
\sum p

i=0 \lambda iV (yi) \geq 
\sum p

i=0 \lambda imk = mk, where
y =

\sum p
i=0 \lambda iyi with \lambda i \geq 0 and

\sum p
i=0 \lambda i = 1.

In the next lemma we will show that we can never have a green and a red vertex adjacent
to each other.

Lemma 3.7 (green and red vertices are not adjacent). At every step k \in \{ 0, . . . ,M\} , if
T \in \scrK is a p-simplex, then there cannot be two vertices vi, vj \in ve(T ) such that vi is green
and vj is red.

Proof. First note that the algorithm only allows for a vertex to change color from yellow
to green or from red to yellow.

Note that in step 0, there is no green vertex. Assume in contrast to the statement that
at step k \in \{ 1, . . . ,M\} , colk(v) = g, colk(w) = r, and w \in ad(v). As neither a green nor a
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yellow vertex can change to red in the algorithm, we conclude that

cole(w) = r for all 0 \leq e \leq k.

Since the algorithm starts with no green vertex, and they can only be introduced by turning
yellow ones to green, there exists an i \in \{ 1, 2, . . . , k\} such that coli - 1(v) = y, coli(v) = g.
At step i we would have turned all adjacent vertices yellow if they were red (see (i)), i.e.,
coli(w) = y. This is a contradiction, so we cannot have a simplex with both a green and a red
vertex.

Now we show that in a given step k any continuous path between a point of an entirely
red or a red and yellow simplex and a point of an entirely green simplex must cross an entirely
yellow simplex. In particular, if there are green and red vertices, then there must also be a
yellow vertex.

Lemma 3.8 (any continuous path from a point in \scrS g00 to \scrS 00r or \scrS 0yr must cross \scrS 0y0).
Consider step k \in \{ 1, . . . ,M\} . Let l : [0, 1] \rightarrow S be a continuous function with l(0) \in T0 and
l(1) \in Te, where T0 \in \scrS g00 and Te \in \scrS 00r \cup \scrS 0yr.

Then there exists \theta \ast \in (0, 1) such that l(\theta \ast ) \in T \prime with T \prime \in \scrS 0y0.

Proof. Assume there exists a continuous path l : [0, 1] \rightarrow S as above and denote l(0) =: x
and l(1) =: y.

Using Lemma 3.7 it is immediate that the nonempty sets of colored simplices are

\scrS g00,\scrS gy0,\scrS 0y0,\scrS 0yr,\scrS 00r

since all other sets contain simplices with both green and red vertices.
Consider the finite sequence (Ti)

m
i=0 of pi-simplices traversed by l, where each pi is minimal.

This means that if for instance l(\theta ) = v, where v is a vertex, then we take the 0-simplex equal
to v as an element of the sequence rather than any of the j-simplices, 1 \leq j \leq n with vertex
v.

For the continuous path to go from one simplex to another, the simplices Ti and Ti+1 must
share at least one vertex. This means in particular they must have at least one vertex of the
same color. Because of this the options for traversing simplices are

\scrS g00 \scrS gy0 \scrS 0y0 \scrS 0yr \scrS 00r.

Let us assume that there is no simplex in \scrS 0y0 in the sequence; then, as x = l(0) \in T0 and
y = l(1) \in Te with T0 \in \scrS g00 and Te \in \scrS 0yr \cup \scrS 00r, at some point l traverses from \scrS gy0 to \scrS 0yr.
Denote these simplices by T and T \prime . In particular, there is a point s := l(\theta \ast ) \in T \cap T \prime . Note
that T \cap T \prime is again a simplex and ve(T \cap T \prime ) = ve(T ) \cap ve(T \prime ). Since any vertex of T \cap T \prime 

can by Lemma 3.7 be neither green, since T \prime \in \scrS 0yr, nor red, since T \in \scrS gy0, all vertices of
T \cap T \prime are yellow, i.e., T \cap T \prime \in \scrS 0y0 in contraction to the assumption.

The next lemma considers the situation described in Definition 3.2 and is used in Lemma
C.4.



1040 PETER GIESL, CONOR OSBORNE, AND SIGURDUR HAFSTEIN

Lemma 3.9. Let x \in S and T be the p-simplex with x \in T and minimal p. Let k \in 
\{ 1, . . . , N\} , let T \in \scrS (k)

0yr \cup \scrS (k)
00r, and assume V (x) \leq mk. Then either x \not \in A(0) or the positive

orbit through x leaves S.

Proof. Let x be as in the lemma. In contrast to the statement we assume that x is in the
basin of attraction of 0 and the positive orbit through x does not leave S. In particular, Stx
is defined for all t \geq 0.

Since x is in the basin of attraction of 0 there exists continuous path \alpha : [0, 1] \rightarrow \BbbR n defined
by \alpha (s) = S\mathrm{e}\mathrm{x}\mathrm{p}( s

1 - s) - 1x for s \in [0, 1) and \alpha (1) = lims\rightarrow 1 S\mathrm{e}\mathrm{x}\mathrm{p}( s
1 - s) - 1x = limt\rightarrow \infty Stx = 0,

which follows the positive orbit. We have \alpha (0) = x, \alpha (1) = 0, and \alpha ([0, 1]) \subseteq S by assumption.
Since x \not = 0 because 0 is green, the function s \mapsto \rightarrow V (\alpha (s)), s \in [0, 1), is strictly decreasing as s
increases, because V is a strict CPA Lyapunov function. Further, \{ 0\} is in \scrS g00. By Lemma
3.8 there exists a \theta \ast \in (0, 1) with x\ast := \alpha (\theta \ast ) \in T with T \in \scrS 0y0.

By Lemma 3.6 we have

V (\alpha (\theta \ast )) = V (x\ast ) \geq mk \geq V (x) = V (\alpha (0)).

This is a contradiction to the fact that V (\alpha (\cdot )) is strictly decreasing.

3.2. Colored simplices and sublevel sets. We now introduce the main theorem of this
section, which characterizes the set \scrO V,m,0 (see Definition 2.7) by the colored simplices. More
precisely, all simplices in \scrS g00 lie inside \scrO V,m,0 as well as parts of simplices in \scrS gy0, while all
other simplices are disjoint from \scrO V,m,0.

Theorem 3.10 (colored simplices and sublevel sets). In step k \in \{ 1, . . . , N\} in the algorithm
we have with mk - 1 < m \leq mk and \scrO V,m,0, as in Definition 2.7,

1. \scrS (k)
00r \cap \scrO V,m,0 = \emptyset ,

2. \scrS (k)
0y0 \cap \scrO V,m,0 = \emptyset ,

3. \scrS (k)
0yr \cap \scrO V,m,0 = \emptyset ,

4. \scrS (k)
g00 \subseteq \scrO V,m,0,

5. If T \in \scrS (k)
gy0 is an n-simplex, then there exist yT \in T and nT \in \BbbR n such that

T \cap \scrO V,m,0 = T \cap \{ x \in \BbbR n | (x - yT )
TnT < 0\} = T \cap \{ x \in \BbbR n | V (x) < m\} .

Furthermore, T \cap \scrO V,m,0 \not = \emptyset and T \setminus \scrO V,m,0 \not = \emptyset .
The proof of the theorem is given in Appendix B. Let us now state a consequence of

Theorem 3.10 in the following corollary, linking Pm (referring to the coloring, defined below)
to \scrO V,m,0.

Definition 3.11. For 0 < m \leq mN there is a unique k \in \{ 1, . . . , N\} such that mk - 1 < m \leq 
mk (see Lemma 3.5). We define

Pm :=
\bigcup 

T\in \scrS (k)
g00, T is n-simplex

T \cup 
\bigcup 

T\in \scrS (k)
gy0, T is n-simplex

\{ x \in T | V (x) < m\} .

Corollary 3.12. Let m \in (0,mN ]. Then Pm = \scrO V,m,0. Let k \in \{ 1, . . . , N\} . Then Xk \subseteq 
\scrO V,mk,0.
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Proof. Let x \in S; then there is an n-simplex T \in \scrT such that x \in T . We will show x \in Pm

if and only if x \in \scrO V,m,0 and distinguish between the different colorings of T .

If T \in \scrS (k)
0y0 \cup \scrS (k)

0yr \cup \scrS (k)
00r, then x /\in Pm by definition and x /\in \scrO V,m,0 by Theorem 3.10.

If T \in \scrS (k)
g00, then x \in Pm by definition and x \in \scrO V,m,0 by Theorem 3.10.

If T \in \scrS (k)
gy0, then we have by definition and Theorem 3.10 for x \in T :

x \in Pm \Leftarrow \Rightarrow V (x) < m \Leftarrow \Rightarrow x \in \scrO V,m,0.

For the last statement, fix k \in \{ 1, . . . , N\} and x \in Xk. Note that x \in Yk. By Lemma
3.4 there is an adjacent green vertex g \in Xl with l < k, and hence ml < mk. The sequence
yp =

1
pg +

\bigl( 
1 - 1

p

\bigr) 
x \in T for all p \in \BbbN satisfies yp \rightarrow x as p \rightarrow \infty and

V (yp) =
1

p
V (g) +

\biggl( 
1 - 1

p

\biggr) 
V (x) < mk,

and yp \in \scrO V,mk,0 by Theorem 3.10. Thus, x \in \scrO V,mk,0.

3.3. Colored simplices and maximal sublevel set. We now proceed to the main theorem
of this paper, linking the colored simplices to the maximal sublevel set \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V .

Theorem 3.13 (PmM = \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V ). Suppose that we have a finite triangulation \scrT defined as

before, that is, S =
\bigcup 

T\in \scrT T \subseteq \BbbR n is compact and connected, 0 \in S\circ , and 0 \in T implies
0 \in ve(T ). Suppose further that V is a strict CPA Lyapunov function.

Then for all m1 \leq m < mN ,

Pm = \scrL V,m \not = \emptyset ;(3.1)

see Definitions 2.7 and 3.11, i.e., Pm is the connected component of \scrO V,m which includes 0
and 0 \in P \circ 

m \subseteq Pm \subseteq S\circ .
Moreover, we have N = M and

PmM = \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V .

Note that we require N \geq 2. If N = 1, then we need to define a new, finer triangulation
and start the process again. The proof of the theorem is in Appendix C.

4. Examples. In this section we give three examples of our algorithm in action. The first
two systems are two-dimensional and the third one is three-dimensional.

4.1. Example 1. The first example is the two-dimensional system\biggl\{ 
\.x =  - x(x+ 0.5),
\.y = x - y(x+ 0.5).

(4.1)

We chose this system because the CPA Lyapunov function, which was computed using the
linear optimization from [8], delivers a Lyapunov function with nonconvex stretched level
sets because of the separatrix at x =  - 0.5. We used the standard triangulation (cf., e.g.,
[9]) and then mapped the vertices in \{ (zx, zy) \in \BbbZ 2 |  - 22 \leq zx \leq 65,  - 300 \leq zy \leq 65\} 
using F(x, y) = (axx, ayy)

T with ax = ay = 0.025. The domain of the CPA Lyapunov
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Figure 4. CPA Lyapunov function computed for the system (4.1) using linear optimization.

Figure 5. Level sets for the CPA Lyapunov function computed for system (4.1). The green, yellow, and
red areas are as described in the algorithm, and the blue point is the point at the boundary that terminates the
algorithm in the last figure. In particular, the green area is the connected component containing the equilibrium
at the origin and is a lower bound on its basin of attraction.

function is thus [ - 0.55, 1.625]\times [ - 7.5, 1.625] = F([ - 22, 65]\times [ - 300, 65]). Further, in the linear
programming problem we set the constants B\nu = 2 for all simplices T\nu in the triangulation
\scrT (cf. [8]), and we minimized max\{ | (\nabla V\nu )i| | T\nu \in \scrT and i = 1, . . . , n\} . The CPA Lyapunov
function computed is depicted in Figure 4 and the level sets computed for the function with
our algorithm are shown in Figure 5 and movie M126252 01.mp4 [local/web 904KB].

M126252_01.mp4
http://epubs.siam.org/doi/suppl/10.1137/19M1262528/suppl_file/M126252_01.mp4
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4.2. Example 2. The second example is a two-dimensional system taken from [6, Ex. 6],
for which a CPA Lyapunov function that guarantees a much larger domain of attraction than
previous approaches was computed in [12, Ex. 1]. The dynamics of the system are given by
the ODE \biggl\{ 

\.x =  - x+ y,
\.y = 0.1x - 2y  - x2  - 0.1x3.

(4.2)

This example differs from Example 1 in two important aspects. First, its CPA Lyapunov
function is computed by numerically integrating

(4.3) V (\xi ) =

\int 20

0

\| S\tau \xi \| 22
0.6 + \| S\tau \xi \| 1.22

d\tau 

for the vertices \xi of the triangulation with a subsequent verification of the linear constraints of
a feasibility problem. The constraints will fail on a subset of the domain where we generate the
CPA Lyapunov function, and this set is not considered to be in its domain in our algorithm.
In particular, the domain of the CPA Lyapunov function is not a regular square as in Example
1. Second, the simplicial complex is much larger than in Example 1 and has 2001 \times 2001 =
4, 004, 001 vertices, compared to (22+65+1)\times (300+65+1) = 32, 208 in Example 1. For more
detailed information on how the CPA Lyapunov function is computed we refer to [12, Ex. 1],
where it is explained in detail. We used the standard triangulation as in Example 1 and
then mapped the vertices in \{ (zx, zy) \in \BbbZ 2 |  - 1333 \leq zx \leq 667,  - 1000 \leq zy \leq 1000\} using
F(x, y) = (axx, ayy)

T with ax = 0.015 and ay = 0.04. The domain of the CPA Lyapunov
function is thus F([ - 1333, 667] \times [ - 1000, 1000]) \approx [ - 20, 10] \times [ - 40, 40]. Further, we set the
constants B\nu 

i,j as in [12, Ex. 1]. The CPA Lyapunov function computed is depicted in Figure
6, and the level sets computed for the function with our algorithm are shown in Figure 7 and
in the movie M126252 02.mp4 [local/web 451KB].

Figure 6. CPA Lyapunov function computed for the system (4.2) using formula (4.3).

M126252_02.mp4
http://epubs.siam.org/doi/suppl/10.1137/19M1262528/suppl_file/M126252_02.mp4
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Figure 7. Level sets for the CPA Lyapunov function computed for system (4.2). The green, yellow, and
red areas are as described in the algorithm, and the blue point is the point at the boundary that terminates the
algorithm in the last figure. In particular, the green area is the connected component containing the equilibrium
at the origin and is a lower bound on its basin of attraction. Note that the CPA Lyapunov function does not
fulfill the decrease condition in the white area and we do not consider it to be defined there in our algorithm.

4.3. Example 3. The third and last example is the three-dimensional system given by the
ODE \left\{   

\.x = x - x3 + y2 + 0.5z,
\.y =  - x2  - y  - y3 + 0.5z2,
\.z = x+ x2 + 2y  - y2  - z3.

(4.4)

This system has two equilibria, which we computed numerically at

q1 = (1.1097993202745274, - 0.5236146236173852, - 1.0625246308420705)T and

q2 = (1.3621076986428951, - 0.8290987269673093, 0.9553138697139557)T .

We computed a CPA Lyapunov function for the system similarly as in Example 2, but for the
equilibrium q1 and using the formula

(4.5) V (\xi ) =

\int 20

0

\| S\tau \xi  - q1\| 22
0.2 + \| S\tau \xi  - q1\| 0.62

d\tau .
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This system is included because it is very difficult to determine by trial-and-error a subset of
the domain of attraction from the level sets of the computed CPA Lyapunov function. Our
algorithm, however, does it with ease. As before we use the standard triangulation and map
the vertices \{ (zx, zy, zz) \in \BbbZ 3 |  - 80 \leq zx \leq 10,  - 54 \leq zy \leq 36,  - 80 \leq zz \leq 10\} using
F(x, y, z) = (axx, ayy, azz)

T with ax = 0.1 and ay = az = 1/9. As in Example 2 the validity
of the conditions for a Lyapunov function is checked by considering a feasibility problem and
these conditions fail on a subset of the domain where we generated the problem. Again, this
set is not considered to be in the domain of the CPA Lyapunov function in our algorithm.
The domain of the generated function is thus F([ - 80, 10]\times [ - 54, 36]\times [ - 80, 10]) \approx [ - 8, 1]\times 
[ - 6, 4]\times [ - 8.89, 0.111] and the domain of the CPA Lyapunov function is this cube minus the
area where the conditions for a Lyapunov function are not fulfilled. In the verification we set
the constants B\nu 

i,j , i, j = 1, 2, 3, as described in [12], equal to

B\nu 
1,1 = max

(x,y,z)\in T\nu 

max\{ 6x, 2\} , B\nu 
2,2 = max

(x,y,z)\in T\nu 

max\{ 6y, 2\} , B\nu 
3,3 = max

(x,y,z)\in T\nu 

max\{ 6z, 1\} ,

and zero otherwise. The level sets computed for the function with our algorithm are depicted
in Figure 8 and the movie M126252 03.mp4 [local/web 7.70MB]. In the movie and the first
two figures of Figure 8 we draw the green vertices computed by the algorithm. Then, to
emphasize the form of the sublevel set computed, we draw it as a three-dimensional object
and rotate it; see also the rightmost plot in Figure 8. The area where the Lyapunov function
fails the decrease condition is shown in purple; the algorithm does not consider the Lyapunov
function to be defined in this area.

Figure 8. Level sets for the CPA Lyapunov function computed for system (4.4). The green area is the
connected component containing the equilibrium at the origin and is a lower bound on its basin of attraction.
Note that the CPA Lyapunov function does not fulfill the decrease condition in the purple area in the rightmost
figure and we do not consider it to be defined there in our algorithm.

Appendix A. Proof of Lemma 2.4. In this section we give the proof of Lemma 2.4.

Proof of Lemma 2.4. Since \partial S \subseteq S, for a point x \in \partial S there exists by [1, Lemma 2.5] a
unique p-simplex T \in \scrK such that x is an inner point of T , i.e., ve(T ) = \{ v0, . . . , vp\} ,

x =

p\sum 
i=0

\lambda ivi with

p\sum 
i=0

\lambda i = 1, and \lambda i > 0 for i = 0, . . . , p.

Let us assume in contrast to the statement that one of the vertices, say v0, is in the interior
of S, i.e., v0 \in S\circ . Note that \lambda 0 \not = 1, since otherwise x = v0, which cannot hold since x \in \partial S

M126252_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/19M1262528/suppl_file/M126252_03.mp4
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while v0 \in S\circ . Since x \in \partial S there is a sequence of points xj /\in S with limj\rightarrow \infty xj = x. Let
d := 2 supj\in \BbbN \| xj  - v0\| < \infty , where \| \cdot \| = \| \cdot \| 2 denotes the Euclidean norm in \BbbR n.

Since v0 \in S\circ , we have B\epsilon (v0) \subseteq S for \epsilon > 0 which can be chosen such that

\epsilon <
d

1 - \lambda 0
.(A.1)

For each j \in \BbbN we now define the point yj which lies on the straight line between v0 and xj
by

yj := v0 +
\epsilon 

d
(xj  - v0) \in B\epsilon (v0) \subseteq S,

since by definition of d

\| yj  - v0\| =
\epsilon 

d
\| xj  - v0\| < \epsilon .

Since there are finitely many simplices in \scrT that intersect B\epsilon (v0), there exists an n-simplex
T \prime \in \scrT such that a convergent subsequence (which we still call yj) of the yj lies in T \prime . For its
limit we have

y := lim
j\rightarrow \infty 

yj = v0 +
\epsilon 

d
(x - v0)

and we have y \in T \prime since T \prime is closed.
Let us show that y \in T . Indeed, we can write

y = v0

\Bigl( 
1 - \epsilon 

d

\Bigr) 
+

\epsilon 

d
x = v0

\Bigl( 
1 + (\lambda 0  - 1)

\epsilon 

d

\Bigr) 
\underbrace{}  \underbrace{}  

=:\mu 0

+

p\sum 
i=1

\epsilon 

d
\lambda i\underbrace{}  \underbrace{}  

=:\mu i

vi

with
\sum p

i=0 \mu i = 1 (since
\sum p

i=0 \lambda i = 1) and \mu i > 0 for all i \geq 0. Indeed, for i \geq 1 we have
\mu i > 0 since \lambda i > 0. For i = 0 we have with (A.1) and 1 - \lambda 0 > 0 that

\mu 0 = 1 + (\lambda 0  - 1)
\epsilon 

d
> 0.

Since \scrT is a triangulation, there is a unique way of writing y in this form (see [1, Lemma
2.5]), and thus ve(T ) \subseteq ve(T \prime ); i.e., we have ve(T \prime ) = \{ v0, . . . , vp, vp+1 . . . , vn\} .

Now we show that xj \in T \prime if j is sufficiently large. We can write

yj =

n\sum 
i=0

\mu 
(j)
i vi

with
\sum n

i=0 \mu 
(j)
i = 1 and \mu 

(j)
i \geq 0. Note that limj\rightarrow \infty \mu 

(j)
i = \mu i for each fixed i, since

limj\rightarrow \infty yj = y; here, we set \mu i = 0 for i > p. We have

xj =
d

\epsilon 
(yj  - v0) + v0

= v0

\biggl( 
1 - d

\epsilon 

\biggr) 
+

d

\epsilon 
yj

= v0

\biggl( 
1 + (\mu 

(j)
0  - 1)

d

\epsilon 

\biggr) 
\underbrace{}  \underbrace{}  

=:\nu 
(j)
0

+
n\sum 

i=1

d

\epsilon 
\mu 
(j)
i\underbrace{}  \underbrace{}  

=:\nu 
(j)
i

vi.
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It is easy to see that
\sum n

i=0 \nu 
(j)
i = 1 since

\sum n
i=0 \mu 

(j)
i = 1. We have \nu 

(j)
i \geq 0 for i \geq 1 as \mu 

(j)
i \geq 0.

Since limj\rightarrow \infty \mu 
(j)
0 = \mu 0 there is a J \in \BbbN such that

| \mu (j)
0  - \mu 0| < \lambda 0

\epsilon 

d
for all j \geq J.

Hence, we have, using \mu 0 = 1 + \epsilon 
d(\lambda 0  - 1),

\nu 
(j)
0 = 1 + (\mu 

(j)
0  - 1)

d

\epsilon 

\geq 1 - d

\epsilon 
+

d

\epsilon 

\Bigl( 
\mu 0  - | \mu (j)

0  - \mu 0| 
\Bigr) 

> 1 - d

\epsilon 
+

d

\epsilon 

\Bigl( 
1 +

\epsilon 

d
(\lambda 0  - 1) - \lambda 0

\epsilon 

d

\Bigr) 
\geq 1 - d

\epsilon 
+

d

\epsilon 
 - 1

= 0 for j \geq J.

Thus, xj \in T \prime \subseteq S for all j \geq J , which is a contradiction to xj \not \in S. This proves the
lemma.

Appendix B. Proof of Theorem 3.10. We will break the proof of Theorem 3.10 into several
parts, proving first statement 4 in Lemma B.1, statement 2 in Lemma B.2, and statements
1 and 3 in Lemma B.3. Finally, Lemma B.4 implies statement 5.

Let us begin by looking at entirely green simplices.

Lemma B.1 (\scrS g00 inside). At step k \in \{ 1, . . . , N\} in the algorithm \scrS (k)
g00 \subseteq \scrO V,m,0 holds

for all mk - 1 < m \leq mk.

Proof. Select T \in \scrS (k)
g00 and s \in T . To show that s is an element of \scrO V,m,0, we show that

there exists a continuous path l : [0, 1] \rightarrow S, l(0) = 0, and l(1) = s with V (l(\theta )) < m for all
\theta \in [0, 1] by induction with respect to ng, the number of green vertices of T . We start by
looking at \scrS 200.

Let g \in Xi be a green vertex that has been turned green in step i+1, so i \in \{ 0, . . . , k - 1\} .
Then we have with Lemma 3.5 that V (g) = mi \leq mk - 1 < m for all 0 \leq i \leq k  - 1.

Now we show that for every point \~g \in \scrS 200 we have V (\~g) < m. Select \~g \in \scrS 200; then
there exist green vertices vi, vj \in \scrS 100, i, j \in \{ 0, 1, 2, . . . , k  - 1\} adjacent to one another such
that \~g \in \{ \theta vi + (1  - \theta )vj | \theta \in [0, 1]\} . Then, as V is affine on all simplices, this means that
V (\~g) \leq max(V (vi), V (vj)) < m. So T \in \scrS 200 implies T \subseteq \scrO V,m.

To show that \scrS 200 \subseteq \scrO V,m,0 it remains to show that there is a continuous path connecting
any \~g \in \scrS 200 to 0, which lies in \scrO V,m. If \~g \in T with T \in \scrS 200, then there is a finite sequence of
green vertices xq(i) \in Xq(i), i = 0, . . . , l with q(\cdot ) strictly increasing, q(0) = 0, and xq(l) \in ve(T );
furthermore, xq(i) and xq(i+1) are adjacent. Define the straight lines \beta i : [0, 1] \rightarrow S for each
i = 0, . . . , l  - 1 connecting xq(i) with xq(i+1). By concatenating these paths and finally with
the straight line connecting xq(l) with \~g, we have constructed a path connecting 0 with \~g,
which lies completely in elements of \scrS 200 and thus, as we have shown above, in \scrO V,m. Hence,
\~g \in \scrO V,m,0.
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After having established that \scrS 200 \subseteq \scrO V,m,0, we will now use this as the inductive step to
show that \scrS ng00 \subseteq \scrO V,m,0 for all ng \leq n+1. Assume that \scrS ng - 1,00 \subseteq \scrO V,m,0 for 3 \leq ng \leq n+1.
Select an element s \in T with T \in \scrS ng00. Then s is either in the boundary of T , in which case

s \in \~T with \~T \in \scrS n\prime 
g00 \subseteq \scrO V,m,0 with n\prime 

g < ng by inductive hypothesis, or s is in the interior
of T = co\{ v0, . . . , vng\} . Denote by \=v a vertex with V (\=v) = maxj=0,...,ng V (vj). As \=v \in \scrS 100 \subseteq 
\scrS 200 \subseteq \scrO V,m,0 as shown above, there is a path connecting 0 with \=v. By concatenating this path
with the straight line from \=v to s we have constructed a path l : [0, 1] \rightarrow S from 0 to s such
that V (l(\theta )) < m holds for all \theta \in [0, 1]---this is clear for the path from 0 to \=v since \=v \in \scrO V,m,0,
and follows from the fact that V is affine on T and thus V (l(\theta )) \leq V (\=v) = maxj=0,...,ng V (vj)
for the part such that l(\theta ) \in T . Since \{ \=v\} \in \scrS 100 \subseteq \scrS 200 \subseteq \scrO V,m,0 we have V (\=v) < m. This
concludes the proof.

We now consider the yellow simplices and show that they are outside \scrO V,m,0.

Lemma B.2 (\scrS 0y0 outside). At step k \in \{ 1, . . . , N\} in the algorithm \scrS (k)
0y0 \cap \scrO V,m,0 = \emptyset for

all mk - 1 < m \leq mk.

Proof. Select T \in \scrS 0y0 and y \in T . To show that y /\in \scrO V,m,0 it is sufficient to establish
V (y) \geq m. Indeed, this is true since by Lemma 3.6 we have V (y) \geq mk \geq m.

We now look at \scrS 00r and \scrS 0yr and show that they are also outside \scrO V,m,0.

Lemma B.3 (\scrS 00r and \scrS 0yr outside). At step k \in \{ 1, . . . , N\} in the algorithm \scrS (k)
00r \cap 

\scrO V,m,0 = \emptyset as well as \scrS (k)
0yr \cap \scrO V,m,0 = \emptyset for all mk - 1 < m \leq mk.

Proof. Assume that x \in T \cap \scrO V,m,0 with T \in \scrS 00r or T \in \scrS 0yr. Then there is a path
connecting 0 to x, i.e., a continuous function l : [0, 1] \rightarrow S, with l(0) = 0, l(1) = x, and
l(\theta ) \subseteq \scrO V,m,0 for all \theta \in [0, 1]. By Lemma 3.8 there exists \theta \ast \in [0, 1] with l(\theta \ast ) \in T \prime and
T \prime \in \scrS 0y0. However, by Lemma B.2 we have l(\theta \ast ) /\in \scrO V,m,0, which is a contradiction.

We will now look at \scrS gy0, showing that the level set goes through those simplices. In par-
ticular, the level set intersects each of the n-simplices in an (n - 1)-dimensional hypersurface.

Lemma B.4 (level set goes through \scrS gy0). Consider step k \in \{ 1, . . . , N\} and let mk - 1 <
m \leq mk.

Let T \prime \in \scrS (k)
gy0; then there exists an n-simplex T \in \scrS (k)

gy0, such that T \prime is a subsimplex of T ,
as well as yT \in T \prime and nT \in \BbbR n such that

T \prime \cap \scrO V,m,0 = T \prime \cap \{ x \in \BbbR n | (x - yT )
TnT < 0\} = T \prime \cap \{ x \in \BbbR n | V (x) < m\} .

Furthermore, T \prime \cap \scrO V,m,0 \not = \emptyset and T \prime \setminus \scrO V,m,0 \not = \emptyset .

Proof. Consider a p-simplex T \prime \in \scrS gy0 with 0 \leq p \leq n. Then there is an n-simplex
T \in \scrS gy0 such that T \prime is a subsimplex of T . Indeed, we can add n  - p (adjacent) vertices to
the vertices ve(T \prime ) to obtain an n-simplex T , and since the vertices in T cannot be red by
Lemma 3.7, T \in \scrS gy0.

We order the vertices of T , (vi)
n
i=0, such that all green vertices are v0, . . . , vg - 1, and all

yellow vertices are vg, . . . , vn. We can assume that v0, vn \in ve(T \prime ) and we have 1 \leq g \leq n.
For a point x \in T \prime \subseteq T there are \lambda i \geq 0 with

\sum n
i=0 \lambda i = 1 such that x =

\sum n
i=0 \lambda ivi. We
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have V (x) = m if and only if

n\sum 
i=0

\lambda im = m = V

\Biggl( 
n\sum 

i=0

\lambda ivi

\Biggr) 
=

n\sum 
i=0

\lambda iV (vi) =

g - 1\sum 
i=0

\lambda iV (vi) +

n\sum 
i=g

\lambda iV (vi).(B.1)

From this we have

g - 1\sum 
i=0

\lambda i(V (vi) - m) +
n\sum 

i=g

\lambda i(V (vi) - m) = 0.(B.2)

Remember that all green vertices satisfy V (vi) \leq mk - 1 < m for all 0 \leq i \leq g  - 1 and we
have for the yellow vertices V (vi) \geq mk \geq m for all i \geq g by Lemma 3.6. This means
(V (vi)  - m) < 0 for 0 \leq i \leq g  - 1 and (V (vi)  - m) \geq 0 for g \leq i \leq n. In particular,

V (v0) - m < 0 and V (vn) - m \geq 0. Setting \lambda \ast 
0 = V (vn) - m

V (vn) - V (v0)
\geq 0, \lambda \ast 

n = m - V (v0)
V (vn) - V (v0)

> 0, and

\lambda \ast 
i = 0 for all other i, we have

\sum n
i=0 \lambda 

\ast 
i = 1. Setting yT =

\sum n
i=0 \lambda 

\ast 
i vi \in T \prime we have V (yT ) = m

by (B.2).
We will show that for all x \in T we have

(x - yT )
TnT = V (x) - m

with nT = \nabla V
\bigm| \bigm| 
T
.

For a fixed point x \in T we can write x =
\sum n

i=0 \lambda ivi, with
\sum n

i=0 \lambda i = 1, \lambda i \geq 0. By
Definition 2.5 we have nT = \nabla V

\bigm| \bigm| 
T
= X - 1

T vT , where the matrix XT is defined by writing the

components of the vector (vi  - v0)
T in its ith row, i = 1, 2, . . . , n, and the column vector vT

is defined by setting V (vi) - V (v0) as its ith component for i = 1, 2, . . . , n.
Now we have

x - yT = (x - v0) - (yT  - v0)

=

n\sum 
i=0

\lambda i(vi  - v0) - 
n\sum 

i=0

\lambda \ast 
i (vi  - v0)

=

n\sum 
i=0

(\lambda i  - \lambda \ast 
i )(vi  - v0)

=

n\sum 
i=1

(\lambda i  - \lambda \ast 
i )(vi  - v0)

= XT
T

\left(     
\lambda 1  - \lambda \ast 

1

\lambda 2  - \lambda \ast 
2

...
\lambda n  - \lambda \ast 

n

\right)     ,
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(x - yT )
TnT = (\lambda 1  - \lambda \ast 

1, \lambda 2  - \lambda \ast 
2, . . . , \lambda n  - \lambda \ast 

n)XTX
 - 1
T vT

=
n\sum 

i=1

(\lambda i  - \lambda \ast 
i )(V (vi) - V (v0))

=
n\sum 

i=0

(\lambda i  - \lambda \ast 
i )(V (vi) - V (v0))

=
n\sum 

i=0

\lambda iV (vi) - V (v0) - 
n\sum 

i=0

\lambda \ast 
iV (vi) + V (v0)

= V (x) - V (yT )

= V (x) - m.(B.3)

Note that for x \in T we have V (x) < m if and only if (x  - yT )
TnT < 0. Since all green

vertices are in \scrO V,m,0 (see Lemma B.1), i.e., in particular path-connected to 0, and since V is
affine on each simplex, also the points x \in T with T \in \scrS gy0 and V (x) < m satisfy x \in \scrO V,m,0.
We have v0 \in T \prime \cap \scrO V,m,0 and vn \in T \prime \setminus \scrO V,m,0. This completes the proof.

Consider step k = 1. Using similar arguments as in the proof of the previous lemma, we
will show that \| x\| for all x with V (x) = m1 is bounded below away from 0.

Corollary B.5. Consider step k = 1 and let T \in \scrS (1)
gy0 be an n-simplex, where ve(T ) =

\{ v0, . . . , vn\} , v0 = 0 and 0 = V (v0) < V (v1) \leq \cdot \cdot \cdot \leq V (vn).
Then V (vn) \geq m1 and

min
x\in T,V (x)=m1

\| x\| 2 = m2
1

\| X - 1
T vT \| 2

> 0.

Proof. We have V (vn) \geq m1 by Lemma 3.6, since vn is yellow in step 1, as it is adjacent
to 0. We can follow the proof of the previous lemma with k = 1 and m = m1. To compute
the minimum of h(x) = xTx under the condition g(x) = (x - yT )

TnT = 0, which is equivalent
to V (x) = m1 (see (B.3)), we can conclude with \nabla h(x) = 2x and \nabla g(x) = nT , that there

is a Lagrange multiplier \lambda \in \BbbR with x = \lambda nT . Since (x  - yT )
TnT = 0, we have \lambda =

yTT nT

\| nT \| 2 ,

i.e., xTx =
(yTT nT )2

\| nT \| 2 .

Using v0 = 0 we obtain (see proof of Lemma B.4)

yT = \lambda \ast 
0v0 + \lambda \ast 

nvn = \lambda \ast 
nvn,

\lambda \ast 
n =

m1

V (vn)
\in (0, 1],

yTT nT = \lambda \ast 
n(vn  - v0)

TX - 1
T vT = \lambda \ast 

n(V (vn) - V (v0)) = m1,

xTx =
m2

1

\| nT \| 2
=

m2
1

\| X - 1
T vT \| 2

.

This shows the corollary.
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Appendix C. Proof of Theorem 3.13. The proof will be divided into several parts.
Initially we prove (3.1), before we show N = M and PmM = \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V .
Let m \in [m1,mN ). To establish Pm = \scrL V,m, recall that by Corollary 3.12 Pm = \scrO V,m,0.

Hence, it suffices to show that
1. 0 \in P \circ 

m,
2. Pm \subseteq S\circ .

We will look at each of these points individually in Lemmas C.3 and C.2.

Lemma C.1. Let A,B \subseteq \BbbR n both be nonempty sets such that A is path-connected, and
assume that A \cap B\circ \not = \emptyset and A \cap \partial B = \emptyset hold. Then A \subseteq B\circ .

Proof. Assume in contrast to the statement that there exists x \in A such that x /\in B\circ .
Then, as A \cap B\circ \not = \emptyset , pick y \in A \cap B\circ . As A is path-connected there exists a continuous
path l : [0, 1] \rightarrow A with l(0) = x, l(1) = y. But x /\in B\circ so there exists an \epsilon \in [0, 1] such that
l(\epsilon ) \in \partial B. A contradiction, hence A \subseteq B\circ .

Lemma C.2. Pm \subseteq S\circ for all 0 < m < mN .

Proof. Note that it is sufficient to show the statement for mN - 1 < m < mN as Pm \subseteq Pm\prime 

for m \leq m\prime by the characterization as Pm = \scrO V,m,0.
Hence, let us now assume mN - 1 < m < mN . We use Lemma C.1 with A = Pm = \scrO V,m,0,

which is path-connected by definition, and B = S. We have 0 \in Pm \cap S\circ \not = \emptyset . Hence, we need
to show that Pm \cap \partial S = \emptyset ; then by Lemma C.1 this will imply that Pm \subseteq S\circ .

Now assume that x \in Pm \cap \partial S \not = \emptyset . There is a p-simplex T with x \in T and we can choose
p minimal with this property. By Lemma 2.4 we have for all vertices ve(T ) \subseteq \partial S since x \in \partial S.
As the algorithm terminates, if it reaches the boundary of S, there will be no green vertices
in \partial S. This means that T \in \scrS 0y0 \cup \scrS 00r \cup \scrS 0yr.

Pm, on the other hand, only contains green vertices, and parts of green and yellow
simplices, but no entirely yellow simplices, and we will show below that also all points in
Pm = \scrO V,m,0 lie in a simplex in \scrS g00 \cup \scrS gy0. Hence T lies in both \scrS 0y0 \cup \scrS 00r \cup \scrS 0yr and
\scrS g00 \cup \scrS gy0, which is impossible.

We will now show that x \in Pm implies that x \in T \prime \prime , where T \prime \prime is a p-simplex with minimal
p and T \prime \prime \in \scrS g00\cup \scrS gy0. Assume that yi \in \scrO V,m,0 = Pm is a sequence with limit limi\rightarrow \infty yi = x.
Since there are finitely many simplices, there exists a simplex T \prime \in \scrS g00 \cup \scrS gy0 such that a
subsequence, which we still call yi, lies in T \prime . We have x \in T \prime as T \prime is closed, and we have
V (x) \leq m as V (yi) < m.

Either T \prime \in \scrS g00 or T \prime \in \scrS gy0. x cannot lie in a subsimplex T \prime \prime \subseteq T \prime with T \prime \prime \in \scrS 0y0

since by Lemma 3.6 in that case V (x) \geq mN , which is a contradiction to V (x) \leq m < mN .
Altogether, this shows T \prime \prime \in \scrS g00 \cup \scrS gy0.

Lemma C.3. 0 \in P \circ 
m for all m \in [m1,mN ].

Proof. We will show that B\epsilon (0) \subseteq Pm1 with \epsilon > 0 defined below. This will imply 0 \in P \circ 
m

since P \circ 
m1

\subseteq P \circ 
m for all m \geq m1.

Consider step k = 1 and define \scrT 0 :=
\bigcup 

T\in \scrT ,0\in \mathrm{v}\mathrm{e}(T ) T , i.e., the union of all n-simplices
which have 0 as a vertex. Note that \scrT 0 = \scrS gy0, and in particular we have for T \in \scrT 0 that
ve(T ) = \{ 0, v1, . . . , vn\} , where vi are yellow vertices, since 0 is the only green vertex in step 1
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and the vi are adjacent to 0. For each T \in \scrT 0 let us define with Corollary B.5

\epsilon T := min
x\in T,V (x)=m1

\| x\| > 0

and

\epsilon := min
T\in \scrT 0

\epsilon T > 0

as there are finitely many simplices in \scrT 0.
Assume in contradiction to the statement that there exists x \in B\epsilon (0) \setminus Pm1 = B\epsilon (0) \setminus 

\scrO V,m1,0; recall that \scrO V,m1,0 = Pm1 by Corollary 3.12. Consider the straight line l : [0, 1] \rightarrow S,
l(\theta ) = \theta x. There is a simplex T \in \scrT 0 and \theta \prime > 0 such that \theta x \in T for all \theta \in [0, \theta \prime ] and
\theta x /\in T for all \theta > \theta \prime . Denote ve(T ) = \{ v0 = 0, v1, . . . , vn\} , where vi are yellow vertices;
see above. We can write x =

\sum n
i=1 \lambda i(vi  - v0) with \lambda i \geq 0. Then for \theta \geq 0 we have

\theta x =
\sum n

i=1 \theta \lambda ivi =
\sum n

i=0 \mu ivi with \mu i = \theta \lambda i \geq 0 for i \geq 1 and \mu 0 = 1  - 
\sum n

i=1 \mu i. We
have

\sum n
i=0 \mu i = 1, so \theta x \in T , if and only if \mu 0 \geq 0, i.e., \theta \leq (

\sum n
i=1 \lambda i)

 - 1. This shows that
\theta \prime = (

\sum n
i=1 \lambda i)

 - 1. In particular,

\theta \prime x =

n\sum 
i=1

\mu ivi

with \mu 0 = 0, so \theta \prime x \in \partial T and is a convex combination of yellow vertices. Thus, V (\theta \prime x) \geq m1

by Lemma 3.6.
Since 0 \in \scrO V,m1,0 and x /\in \scrO V,m1,0 there is \theta \ast \in (0, 1] such that l(\theta ) \in \scrO V,m1,0 for all

\theta \in [0, \theta \ast ) and x\ast = l(\theta \ast ) \in \partial \scrO V,m1,0; in particular, V (x\ast ) = m1. Since V (\theta x) = \theta V (x)
for 0 \leq \theta \leq \theta \prime and V (\theta \prime x) \geq m1, we have \theta \ast \leq \theta \prime , so in particular, \theta \ast x \in T . Note that
x\ast = \theta \ast x \in B\epsilon (0) since \theta \ast \in (0, 1]. Then we have

\epsilon \leq \epsilon T = min
x\in T,V (x)=m1

\| x\| \leq \| x\ast \| < \epsilon ,

which is a contradiction.

Note that Lemmas C.2 and C.3 together show (3.1). The next lemma implies that the
case mentioned in Definition 3.2 never occurs and thus N = M .

Lemma C.4. Consider step k \in \{ 1, . . . , N\} . Assume that Xk \cap \partial S = \emptyset holds. If r \in 
ad(Xk) \cap Rk, then V (r) > mk. In particular, N = M .

Proof. Assume in contradication to the statement that Xk \cap \partial S = \emptyset holds and there is a
red vertex \=xk \in ad(Xk) \cap Rk, adjacent to an xk \in Xk, with V (\=xk) \leq mk = V (xk).

Step 1: \scrO V,mk,0 \subseteq S\circ and \scrL V,mk
\not = \emptyset . We will first establish

\scrO V,mk,0 \cap \partial S = \emptyset .

Indeed, assume that in contrast to the statement above there was a sequence of points yi \in 
\scrO V,mk,0 = Pmk

with limit x := limi\rightarrow \infty yi \in \partial S. Since V (yi) < mk, we have V (x) \leq mk.
Since there are finitely many simplices, there exists a simplex T \prime \in \scrS g00 \cup \scrS gy0 such that

a subsequence, which we still call yi, lies in T \prime . We have x \in T \prime as T \prime is closed.
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Since x \in \partial S, there is a p-simplex T with x \in T and we can choose p minimal with
this property. By Lemma 2.4 we have for all vertices ve(T ) \subseteq \partial S. By the definition of the
algorithm, there are no green vertices in \partial S. Since x \in T \prime \cap T , T \prime does not have any red
vertices and T does not have any green vertices, T \cap T \prime \in \scrS 0y0 and thus V (x) \geq mk by Lemma
3.6. This shows V (x) = mk and, in particular, that there is a vertex v \in Xk with v \in \partial S.
This is a contradiction to Xk \cap \partial S = \emptyset .

By Lemma C.1 with A = \scrO V,mk,0 and B = S we have \scrO V,mk,0 \subseteq S\circ since \scrO V,mk,0 is path
connected, 0 \in \scrO V,mk,0 \cap S\circ \not = \emptyset , and, as just shown, \scrO V,mk,0 \cap \partial S = \emptyset . Hence, we have
\scrO V,mk,0 \subseteq S\circ and \scrL V,mk

= \scrO V,mk,0 = Pmk
\not = \emptyset , since 0 \in P \circ 

mk
by Lemma C.3.

Step 2: xk \in A(0). We have xk \in \scrO V,mk,0 by Corollary 3.12. Since V is a strict Lyapunov
function in S, \scrO V,mk,0 is positively invariant and compact, so \emptyset \not = \omega (xk) \subseteq \scrO V,mk,0 \subseteq S\circ by
Step 1. By LaSalle's principle \.V (w) = 0 for all w \in \omega (xk), i.e., \omega (xk) = \{ 0\} , and, since 0 is
an asymptotically stable equilibrium as V is a strict Lyapunov function, we have xk \in A(0).

Step 3: Contradiction. Consider the straight line between xk and \=xk, namely L = \{ \theta \=xk +
(1 - \theta )xk | \theta \in (0, 1)\} . For all x \in L the minimal p-simplex T with x \in T is T = co\{ xk, \=xk\} \in 
\scrS 0yr, since xk is yellow and \=xk is red. Moreover, V (x) \leq mk for all x \in L, since V (xk), V (\=xk) \leq 
mk by assumption. By Lemma 3.9 we have for any x \in L that either x \not \in A(0) or the positive
orbit through x leaves S.

Since 0 \in S\circ , there exists \epsilon > 0 such that B\epsilon (0) \subseteq S\circ . Since 0 is stable, there exists \delta > 0
such that StB\delta (0) \subseteq B\epsilon (0) holds for all t \geq 0. Since xk \in A(0), which is open, there exists
\nu > 0 such that B\nu (xk) \subseteq A(0). Moreover, there exists T0 > 0 such that ST0xk \in B\delta /2(0)
since xk \in A(0). We have

min
t\in [0,T0]

dist(Stxk, \partial S) =: c > 0

since xk \in \scrO V,mk,0 \subseteq S\circ , \scrO V,mk,0 is positively invariant, and the function is continuous on a
compact interval. Also, St is defined on a neighborhood of xk and is uniformly continuous for
[0, T0], so there is \eta > 0 such that

x \in B\eta (xk) \Rightarrow \| Stx - Stxk\| <
1

2
min(\delta , c) for all t \in [0, T0].

Choose

x \in L \cap B\eta (xk) \cap B\nu (xk) \not = \emptyset .

Then we have

Stx \in S\circ for all t \geq 0.(C.1)

Indeed, for t \in [0, T0] we have Stx \subseteq S\circ due to Lemma C.1 with A =
\bigcup 

t\in [0,T0]
Stx and

B = S and the fact that Stx \not \in \partial S since

dist(Stx, \partial S) \geq dist(Stxk, \partial S) - \| Stx - Stxk\| > c/2 > 0 for t \in [0, T0].

For t \geq T0 we have

\| ST0x\| \leq \| ST0xk\| + \| ST0x - ST0xk\| < \delta /2 + \delta /2
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and thus ST0+\theta x \in B\epsilon (0) \subseteq S\circ for all \theta \geq 0.
We have x \in A(0) since x \in B\nu (xk) and the positive orbit through x stays in S by (C.1).

This is a contradiction to the fact that either x \not \in A(0) or the positive orbit through x leaves
S.

We are now in a position to show that PmN is in fact equal to \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V as defined in Definition

2.7. This, together with Lemma C.4 concludes the proof of Theorem 3.13.

Lemma C.5. We have PmN = \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V .

Proof. To show that PmN \subseteq \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V , we first show

PmN \subseteq 
\bigcup 

mN - 1<m<mN

Pm.

We consider the coloring in step N . Note that if x \in PmN , then either x \in T with T \in \scrS g00

and then x \in 
\bigcup 

mN - 1<m<mN
Pm or x \in T with T \in \scrS gy0 and V (x) < mN . In this case we also

have V (x) < mN+V (x)
2 =: m < mN , which shows x \in 

\bigcup 
mN - 1<m<mN

Pm.
Now pick x \in PmN ; then there exists m with mN - 1 < m < mN such that x \in Pm, as

shown above. By (3.1) \scrL V,m = Pm \not = \emptyset , which implies that x \in 
\bigcup 

m\in \BbbR \scrL V,m = \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V . So

PmN \subseteq \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V .

It remains to show that \scrL \mathrm{s}\mathrm{u}\mathrm{p}
V \subseteq PmN . From Definition 2.7 remember that \scrL \mathrm{s}\mathrm{u}\mathrm{p}

V :=\bigcup 
m\in \BbbR \scrL V,m. Hence we look at different values m \in \BbbR and check to see when \scrL V,m \subseteq PmN . We

can split this into three cases. In each case either \scrL V,m = \scrO V,m,0, if a suitable \scrO V,m,0 exists
from Definition 2.7, or \scrL V,m = \emptyset . Remember that a suitable \scrO V,m,0 means that there exists
\scrO V,m,0 such that \{ 0\} \subseteq \scrO \circ 

V,m,0 \subseteq \scrO V,m,0 \subseteq S\circ . If \scrL V,m = \emptyset , then clearly \scrL V,m \subseteq PmN .
Case A: 0 \geq m. As V (x) \geq 0 for all x \in S, we have that \scrO V,m,0 = \{ 0\} and thus \scrL V,m = \emptyset 

by Definition 2.7.
Case B: 0 < m < mN . Then there exists \~m \geq m with m1 \leq \~m < mN . By (3.1) we

have \scrL V, \~m = \scrO V, \~m,0 = P \~m \not = \emptyset . And since \scrL V,m \subseteq \scrL V, \~m as well as P \~m \subseteq PmN , we have
\scrL V,m \subseteq P \~m \subseteq PmN .

Case C: m \geq mN . Since we have shown in Lemma C.4 that N = M , there exists
y \in XN \cap \partial S. We will conclude that \scrL V,m = \emptyset for all m \geq mN .

We will show that y \in \partial S \cap \scrO V,mN ,0. y is yellow and by Lemma 3.4 there is an adjacent
green vertex x \in Xk with k \in \{ 0, . . . , N  - 1\} and thus V (x) < V (y) by Lemma 3.5. Consider
the 1-simplex L = co\{ x, y\} \in \scrS gy0 given by the straight line l(\theta ) = x + \theta (y  - x), \theta \in [0, 1].
Then

V (l(\theta )) = V (x) + \theta (V (y) - V (x)) < V (y) = mN for 0 \leq \theta < 1.

Thus, the sequence l(1  - 1/p), p \in \BbbN , satisfies l(1  - 1/p) \in \scrO V,mN ,0 by Lemma B.4 as well
as l(1  - 1/p) \rightarrow l(1) = y as p \rightarrow \infty . Hence, y \in \partial S \cap \scrO V,mN ,0. Thus, \scrL V,m = \emptyset for all
m \geq mN .
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