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Abstract

Recently the authors proved the existence of piecewise affine Lyapunov func-
tions for dynamical systems with an exponentially stable equilibrium in two
dimensions [7]. Here, we extend these results by designing an algorithm to
explicitly construct such a Lyapunov function. We do this by modifying and
extending an algorithm to construct Lyapunov functions first presented in [17]
and further improved in [10]. The algorithm constructs a linear programming
problem for the system at hand, and any feasible solution to this problem pa-
rameterizes a Lyapunov function for the system. We prove that the algorithm
always succeeds in constructing a Lyapunov function if the system possesses
an exponentially stable equilibrium. The size of the region of the Lyapunov
function is only limited by the region of attraction of the equilibrium and it
includes the equilibrium.

1 Introduction

Lyapunov functions are a fundamental tool to determine the stability of an equilib-
rium and its region of attraction, cf. [16, 23, 11]. Consider the autonomous system
ẋ = f(x), f ∈ C2(Rn,Rn), and assume that the origin is an exponentially stable equi-
librium of the system. Denote by A its region of attraction. The standard method
to verify the exponential stability of the origin is to solve the Lyapunov equation,
i.e. to find a positive definite matrix Q ∈ Rn×n that is a solution to JTQ+QJ = −P ,
where J := Df(0) is the Jacobian of f at the origin and P ∈ Rn×n is an arbitrary
positive definite matrix. Then the function x 7→ xTQx is a local Lyapunov function
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for the system ẋ = f(x), i.e. it is a Lyapunov function for the system in some neigh-
borhood of the origin, cf. e.g. Theorem 4.6 in [16]. The size of this neighborhood is
a priori not known and is, except for linear f , in general a poor estimate of A, cf.
[8]. This method to compute local Lyapunov functions is constructive because there
is an algorithm to solve the Lyapunov equation that succeeds whenever it possesses
a solution, cf. Bartels and Stewart [2]. However, linear systems are often approxi-
mations to nonlinear systems and the approximation is valid only over certain set
of parameters.

The construction of Lyapunov functions for true nonlinear systems is a much
harder problem than the linear case and it has been studied intensively in the last
decades and there have been numerous proposals of how to construct Lyapunov func-
tions numerically. To name a few, Johansson and Rantzer proposed a construction
method in [13] for piecewise quadratic Lyapunov functions for piecewise affine au-
tonomous systems. Julian, Guivant, and Desages in [15] and Julian in [14] presented
a linear programming problem to construct piecewise affine Lyapunov functions for
autonomous piecewise affine systems. This method can be used for autonomous,
nonlinear systems if some a posteriori analysis of the generated Lyapunov function
is done. Garcia and Agamennoni recently published a paper based on similar ideas
[5]. In [12], Johansen uses linear programming to parameterise Lyapunov functions
for autonomous nonlinear systems, but does not give error estimates. Giesl proposed
in [6] a method to construct Lyapunov functions for autonomous systems with an ex-
ponentially stable equilibrium by solving numerically a generalised Zubov equation,
cf. [25],

∇V (x) · f(x) = −p(x), (1.1)

where usually p(x) = ∥x∥22. A solution to the partial differential equation (1.1) is a
Lyapunov function for the system. He uses radial basis functions to find a numerical
solution to (1.1) and there are error estimates given.

Parrilo in [20] and Papachristodoulou and Prajna in [19] consider the numerical
construction of Lyapunov functions that are presentable as sum of squares of polyno-
mials for autonomous polynomial systems. These ideas have been taken further by
recent publications of Peet [21] and Peet and Papachristodoulou [22], where the ex-
istence of a polynomial Lyapunov function on bounded regions for exponentially sta-
ble systems in proven. The sum of squares polynomial method (SOS) complements
the continuous - locally affine (CLA) Lyapunov function computational method pre-
sented in this paper in an interesting way. SOS uses polynomials and CLA affine
functions on simplices in a simplicial complex as functions spaces. Both use convex
optimization for the computations of Lyapunov functions and both are designed to
compute Lyapunov functions on compact neighborhoods of an exponentially stable
equilibria of a dynamical systems.

An interesting question is whether an algorithm makes the existence of a Lya-
punov function numerically decidable or not. For both SOS or CLA it is if the rate
of decay, i.e. the constants M and λ in ∥ϕ(t, ξ)∥ ≤ Meλt are a priori given [8, 22]. In
[18] Part II, there is an algorithm given that explicitly checks this by using a simpler
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linear programming than needed to actually compute a Lyapunov function. These
estimates are however so conservative, both for SOS and CLA, that the authors of
this article consider them an interesting theoretical fact but not necessarily useful
for the further development of algorithms to compute Lyapunov functions. At least
in the case of CLA trial and error methods are much more effective [8].

In [17], Hafstein (alias Marinosson) presented a method to compute piecewise
affine Lyapunov function. In this method one first triangulates a compact neigh-
borhood C ⊂ A of the origin and then constructs a linear programming problem
with the property, that a continuous Lyapunov function V , affine on each triangle
of the triangulation, can be constructed from any feasible solution to it. In [8] it
was proved that for exponentially stable equilibria this method is always capable
of generating a Lyapunov function V : C \ N −→ R, where N ⊂ C is an arbitrary
small, a priori determined neighborhood of the origin. In [9] these results were gen-
eralized to asymptotically stable systems, in [10] to asymptotically stable, arbitrary
switched, non-autonomous systems, and in [1] to asymptotically stable differential
inclusions.

In [7], the authors showed that the triangulation scheme used in [17, 8, 9, 10]
does in general generate suboptimal triangles at the equilibrium. However, in the
same paper they proposed for planar systems a new, fan-like triangulation around
the equilibrium, and proved that a piecewise affine Lyapunov function with respect
to this new triangulation always exists. In this paper we show how to compute such
Lyapunov functions algorithmically by using linear optimization. The modification
to the algorithm in [10] is to use a fine, fan-like triangulation around the equilibrium,
as suggested in [7].

In Section 2 we define a linear programming problem in Definition 2.4 and show
that the solution of this problem defines a Lyapunov function, cf. Theorem 2.6.
In Section 3, we explain how to algorithmically find a triangulation for the linear
programming problem in Definition 3.2. The main result is Theorem 3.3 showing
that the algorithm always succeeds in computing a Lyapunov function for a system
with an exponentially stable equilibrium. Section 4 applies the algorithm to two
examples.

Notations

For a vector x ∈ Rn and p ≥ 1 we define the norm ∥x∥p = (
∑n

i=1 x
p
i )

1/p
. We

also define ∥x∥∞ = maxi∈{1,...,n} |xi|. The induced matrix norm ∥ · ∥p is defined by
∥A∥p = max∥x∥p=1 ∥Ax∥p. Clearly ∥Ax∥p ≤ ∥A∥p∥x∥p. The convex combination of
vectors x0,x1, . . . ,xm ∈ Rn is defined by co{x0,x1, . . . ,xm} := {

∑m
i=0 λixi : 0 ≤

λi ≤ 1,
∑m

i=0 λi = 1}. Furthermore, Bδ is defined as the open ball with center 0 and
radius δ: Bδ = {x ∈ Rn | ∥x∥2 < δ}. A set of vectors x0,x1, . . . ,xm ∈ Rn is called
affinely independent if

∑m
i=1 λi(xi−x0) = 0 implies λi = 0 for all i = 1, . . . ,m. Note

that this definition does not depend on the choice of x0. N0 := {0, 1, 2, . . .} is the set
of the non-negative integers. We will repeatedly use the Hölder inequality |x · y| ≤
∥x∥p∥y∥q, where p−1 + q−1 = 1. The set of m-times continuously differentiable
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functions from a set M to a set N is denoted by Cm(M,N ).

2 The linear programming problem

Consider ẋ = f(x), where f ∈ C2(R2,R2) and f(0) = 0. It is well known that the
asymptotic stability of the equilibrium at the origin is equivalent to the existence of
a positive definite functional of the state space that is decreasing along the solution
trajectories of the system, i.e. a continuously differentiable functional V : C → R,
where C is a compact neighborhood of the origin, fulfilling V (0) = 0 and V (x) > 0
for all x ∈ C \ {0} and

d

dt
V (ϕ(t, ξ)) < 0 for all ϕ(t, ξ) ∈ C \ {0}. (2.1)

Here, t 7→ ϕ(t, ξ) is the solution to the initial value problem ẋ = f(x), x(0) = ξ. Such
a functional V is called a (strict) Lyapunov function. Since we are only interested
in asymptotic and exponential stability, and thus in ‘strict’ Lyapunov functions,
we will omit the characterization ‘strict’ in this paper. It is also well known that
the condition ‘continuously differentiable’ can be mollified to ‘continuous’ if the
condition (2.1) is replaced with

lim sup
h→0+

V (ϕ(t+ h, ξ))− V (ϕ(t, ξ))

h
< 0, (2.2)

cf. e.g. Part I in [18].
In this paper, we are interested in an even more restrictive class of equilibria,

namely exponentially stable ones. The class of Lyapunov functions which char-
acterizes this type of stability satisfies the growth bounds, for some a, b, c > 0;
a∥ξ∥2 ≤ V (ξ) ≤ b∥ξ∥2 and

D+V (ϕ(t, ξ)) := lim sup
h→0+

V (ϕ(t+ h, ξ))− V (ϕ(t, ξ))

h
≤ −c∥ϕ(t, ξ)∥2 (2.3)

for all ϕ(t, ξ) ∈ C. Note that a local version of this characterization was shown in [7,
Corollary 4.2]. In this paper, we will show that a piecewise affine Lyapunov function
satisfying the above growth bounds exists and, moreover, can be constructed using
linear programming.

For this paper, we are interested in a specific type of Lyapunov function, which
we will define in the following Definition 2.1.

Definition 2.1 Consider the system ẋ = f(x), f ∈ C2(Rn,Rn), and its solution
ϕ(t, ξ). A continuous function V ∈ C(C,R), where C ⊂ Rn is a neighborhood of the
origin, is called a Lyapunov function for the system if there are constants a, c > 0
such that

a∥ξ∥2 ≤ V (ξ) and D+V (ϕ(t, ξ)) ≤ −c∥ϕ(t, ξ)∥2
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for all ξ ∈ C and ϕ(t, ξ) ∈ C respectively. Here D+ denotes the Dini derivative as
defined in (2.3).
Note: For our application the upper bound V (ξ) ≤ b∥ξ∥2 is redundant. Moreover,
if V is a Lyapunov function, then with s = max{a−1, c−1} the Lyapunov function
Vs := sV satisfies ∥ξ∥2 ≤ Vs(ξ) and D+Vs(ϕ(t, ξ)) ≤ −∥ϕ(t, ξ)∥2.

The idea of how to search for a Lyapunov function for the system is to start
by triangulating an area C around the equilibrium at the origin, i.e. to cut C into
triangles T = {Tν : ν = 1, 2, . . . , N}. This must be done in a certain way described
later. Then we construct a linear programming problem, of which every feasible
solution parameterizes a continuous function V that is affine on each triangle, i.e. if
Tν is a triangle of our triangulation T , then V |Tν (x) = wν ·x+aν with wν ∈ R2 and
aν ∈ R. The linear programming problem imposes linear constraints that force the
conditions V (x) ≥ ∥x∥2 for all x ∈ C and wν ·f(x) ≤ −∥x∥2 for every ν = 1, 2, . . . , N
and every x ∈ Tν . Because we cannot use a linear programming problem to check
the conditions V (x) ≥ ∥x∥2 and wν · f(x) ≤ −∥x∥2 for more that finitely many x,
the essence of the algorithm is how to ensure this by only using a finite number of
points in C. Note that the condition wν ·f(x) ≤ −∥x∥2 is (2.3) for our specific choice
of V as shown later.

First, one verifies that if Tν = co{x0,x1,x2}, then it is enough to force V (xi) ≥
∥xi∥2, i = 0, 1, 2, to ensure that V (x) ≥ ∥x∥2 for all x ∈ Tν . Second, for every
triangle Tν = co{x0,x1,x2} one picks out one vertex, say x0, and introduces positive
constants Eν,i, i = 1, 2, dependent on the vector field f and the triangle Tν , and then
uses the linear programming problem to force wν · f(x0) ≤ −∥x0∥2 and wν · f(xi) +
Eν,i∥wν∥1 ≤ −∥xi∥2 for i = 1, 2. For practical reasons it is convenient to introduce
the constants Eν,0 := 0 for ν = 1, 2, . . . , N . Then the last two inequalities can be
combined to

wν · f(xi) + Eν,i∥wν∥1 ≤ −∥xi∥2 for i = 0, 1, 2.

These last inequalities can be made linear in the components of wν , and with a
proper choice of the Eν,i’s they ensure that wν ·f(x) ≤ −∥x∥2 for all x ∈ Tν . Because
this holds true for every Tν ∈ T one can show that D+V (ϕ(t, ξ)) ≤ −∥ϕ(t, ξ)∥2.
Hence, e.g. by Theorem 2.16 in [10], the function V is a Lyapunov function for the
system ẋ = f(x) in the strict sense of Definition 2.1.

The main difficulty of designing the algorithm to compute Lyapunov functions
is how to choose the Eν,i’s in a proper way, such that one can always compute a
Lyapunov function for a system that possesses one. In order to overcome the prob-
lems at the origin, the new triangulation has a local part around the origin, which
is a fan-like triangulation, and this local part is linked to the usual triangulation, cf.
[10], away from the equilibrium. We will discuss the details of this triangulation in
Section 3.

For the following results we will define a piecewise affine interpolation of a func-
tion g by the values of g at the vertices xi. This interpolation at the convex com-
bination x =

∑2
i=0 λixi is defined by

∑2
i=0 λig(xi). In the following proposition

5



we estimate the difference of a function g and its piecewise affine interpolation as
described above.

Proposition 2.2 Let x0,x1,x2 ∈ R2 be affinely independent vectors (i.e. that they
do not lie on one line) and define Tν := co{x0,x1,x2}. Let g ∈ C2(R2,R) and define
BH := max

z∈Tν

∥Hg(z)∥2, where Hg(z) is the Hessian of g at z. Then∣∣∣∣∣g
(

2∑
i=0

λixi

)
−

2∑
i=0

λig(xi)

∣∣∣∣∣ ≤ 1

2

2∑
i=1

λiBH∥xi−x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥xi − x0∥2
)

for every convex combination

2∑
i=0

λixi ∈ Tν , i.e. 0 ≤ λi ≤ 1 for i = 0, 1, 2 and∑2
i=0 λi = 1.

Proof: By Taylor’s theorem, cf. e.g. Theorem 14.20 in [4]

g

(
2∑

i=0

λixi

)

= g(x0) +∇g(x0) ·
2∑

i=0

λi(xi − x0) +
1

2

2∑
i=0

λi(xi − x0)
THg(z)

2∑
j=0

λj(xj − x0)

=
2∑

i=0

λi

g(x0) +∇g(x0) · (xi − x0) +
1

2
(xi − x0)

THg(z)
2∑

j=0

λj(xj − x0)


for some z on the line segment between x0 and

2∑
i=0

λixi. Further, again by Taylor’s

theorem, we have for every i = 0, 1, 2 that

g(xi) = g(x0) +∇g(x0) · (xi − x0) +
1

2
(xi − x0)

THg(zi)(xi − x0)

for some zi on the line segment between x0 and xi. Hence,∣∣∣∣∣g
(

2∑
i=0

λixi

)
−

2∑
i=0

λig(xi)

∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
2∑

i=0

λi(xi − x0)
T

Hg(z)

2∑
j=0

λj(xj − x0)−Hg(zi)(xi − x0)

∣∣∣∣∣∣
≤ 1

2

∥∥∥∥∥
2∑

i=0

λi(xi − x0)

∥∥∥∥∥
2

∥Hg(z)∥2

∥∥∥∥∥∥
2∑

j=0

λj(xj − x0)

∥∥∥∥∥∥
2

+ ∥Hg(zi)∥2∥xi − x0∥2


≤ 1

2
BH

2∑
i=0

λi∥xi − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥xi − x0∥2
)
.
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�
Note that BH in the last Proposition exists and is finite since Tν is compact and
g smooth. In practice, however, it is usually sufficient and more convenient to use
the maximum of the elements of the Hessian. The next lemma thus compares BH ,
involving the spectral norm ∥ · ∥2 of the Hessian matrix, to the maximal element of
the Hessian matrix.

Lemma 2.3 Let g ∈ C2(R2,R), and Tν ⊂ R2 be compact. Then

Bν := max
z∈Tν

r,s=1,2

∣∣∣∣ ∂2g

∂xr∂xs
(z)

∣∣∣∣ ≥ 1

2
BH ,

where BH is the maximum of the spectral norm of the Hessian Hg of g on Tν , i.e.

BH = max
z∈Tν

∥Hg(z)∥2.

Proof: With Hg(z) = (hij(z))i,j=1,2 obviously |hij(z)| ≤ Bν for all z ∈ Tν so

max
z∈Tν

∥Hg(z)∥2 = max
z∈Tν

∥u∥2=1

∥Hg(z)u∥2 = max
z∈Tν

∥u∥2=1

√√√√√ 2∑
i=1

 2∑
j=1

hij(z)uj

2

≤ max
∥u∥2=1

√√√√√ 2∑
i=1

 2∑
j=1

Bν |uj |

2

≤ max
∥u∥2=1

√√√√ 2∑
i=1

2B2
ν

2∑
j=1

|uj |2

=
√

22B2
ν = 2Bν .

�
Applying Proposition 2.2 and Lemma 2.3 to the components of a vector field

f : R2 → R2 gives∥∥∥∥∥f
(

2∑
i=0

λixi

)
−

2∑
i=0

λif(xi)

∥∥∥∥∥
∞

≤ Bν

2∑
i=1

λi∥xi − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥xi − x0∥2
)
, (2.4)

where

Bν ≥ max
z∈T

m,r,s=1,2

∣∣∣∣ ∂2fm
∂xr∂xs

(z)

∣∣∣∣ .
We are now able to state our linear programming problem for the system

ẋ = f(x) and to prove that any feasible solution to it can be used to parameterize a
Lyapunov function for the system. The linear programming problem is constructed
in the following way:
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Definition 2.4 (The linear programming problem) We are considering the
system ẋ = f(x), f ∈ C2(R2,R2), and f(0) = 0. The variables of the problem
are Vxi for all vertices xi of the triangulation and Cν,i, i = 1, 2, for every Tν of the
triangulation. The constraints of the linear programming problem are given by (2.5),
(2.6), and (2.7).

1. We triangulate an area containing the origin into a finite number of closed,
non-degenerate triangles T = {Tν : ν = 1, 2, . . . , N}, such that the interior of

Dk :=
∪

Tν∈T
Tν is simply connected and 0 is an interior point of Dk. Further,

we demand that whenever 0 ∈ Tν , then 0 is a vertex of Tν .

We define V : Dk → R uniquely by:

• V : Dk → R is continuous.

• For every triangle Tν = co{x0,x1,x2} ∈ T we have V (xi) = Vxi, i =
0, 1, 2, and the restriction of V to any triangle Tν ∈ T is affine, i.e. there
is a wν ∈ R2 and an aν ∈ R such that V (x) = wν · x + aν for every
x ∈ Tν .

For such a function we define ∇Vν := wν for ν = 1, 2, . . . , N . It is not difficult
to see that the components of the vector ∇Vν are linear in Vx0, Vx1, and Vx2,
where Tν = co{x0,x1,x2}.

2. We set V0 = 0 and for every Tν = co{x0,x1,x2} ∈ T and every vertex xi ̸= 0

Vxi ≥ ∥xi∥2 (2.5)

is a linear constraint of the problem.

3. For every Tν ∈ T and i = 1, 2

|∇Vν,i| ≤ Cν,i, (2.6)

where ∇Vν,i is the i-th component of the vector ∇Vν , is a linear (e.g. [3], p. 17)
constraint of the problem.

4. For every Tν := co{x0,x1,x2} ∈ T and every vertex xi ∈ Tν , i = 0, 1, 2,

−∥xi∥2 ≥ ∇Vν · f(xi) + Eν,i(Cν,1 + Cν,2), (2.7)

is a linear constraint of the problem. Here Eν,i are constants fulfilling

Eν,i := ∥xi − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥xi − x0∥2
)
Bν , (2.8)

where

Bν ≥ max
m,r,s=1,2

max
z∈Tν

∣∣∣∣ ∂2fm
∂xr∂xs

(z)

∣∣∣∣
.

If 0 /∈ Tν we can choose the vertex x0 arbitrarily. If 0 ∈ Tν then 0 is necessarily
a vertex of Tν and in this case we set x0 = 0.
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Remark 2.5 An explicit triangulation as in 1. is constructed in Definition 3.1. A
triangulation of an area in R2 is defined as a subdivision of this area into triangles,
that intersect in a common face or not at all. For our triangles in T this reads for
µ ̸= ν,

Tµ ∩ Tν =


∅, or,
{y}, where y is a vertex common to Tµ and Tν , or
co{y, z}, where y and z are vertices common to Tµ and Tν .

This is necessary to define the function V : Dk → R uniquely by its values at the
vertices as described in 1.

We will explain the choice of the vertex x0 in 4: If 0 ∈ Tν then 0 is necessarily a
vertex of Tν and in this case we must set x0 = 0, for otherwise the constraint (2.7)
could not be fulfilled if Bν > 0. To see this observe that if e.g. x1 = 0 and then
x0 ̸= 0 we have

0 = −∥x1∥2 ≥ ∇Vν · f(x1)︸ ︷︷ ︸
=0

+Eν,1(Cν,1 + Cν,2) = Eν,1(Cν,1 + Cν,2).

But we have by (2.8)

Eν,1 := ∥x1 − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥x1 − x0∥2
)
Bν > 0

so (2.7) cannot be fulfilled unless Cν,1 + Cν,2 = 0, which is impossible because by
(2.6) V would be constant on Tν and (2.7) could not be fulfilled for all vertices of
Tν .

However, as we set x0 = 0, we have

Eν,0 := ∥x0 − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥x0 − x0∥2
)
Bν = 0

and (2.7) is trivially fulfilled. Obviously there is no loss of generality.
If 0 /∈ Tν we can choose x0 arbitrary. Different choices will obviously lead to

different linear programming problems, but all are equivalent in the sense that a
Lyapunov function can be parameterized from a feasible solution to them, cf. Theo-
rem 2.6.

If a linear programming problem above possesses a feasible solution, i.e. the
variables Vxi and Cν,i have values such that the constraints (2.5), (2.6), and (2.7)
are all fulfilled, then it is always possible to algorithmically find a feasible solution,
e.g. by the simplex algorithm. In this case the function V : Dk → R defined in
Definition 2.4 is a Lyapunov function for the system as shown in the next theorem.

Theorem 2.6 Assume that a linear programming problem from Definition 2.4 has
a feasible solution and let V : Dk → R be the piecewise affine function parameterized
by it. Then V is a Lyapunov function in the sense of Definition 2.1 for the system
used in the construction of the linear programming problem.
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Proof: Clearly V (0) = 0. Now let x ∈ Dk \ {0}. Then we can write x as a convex
combination x =

∑2
i=0 λixi of the vertices of a triangle Tν = co{x0,x1,x2} ∈ T .

The affinity of V on Tν , the conditions (2.5) from the linear programming problem,
and the convexity of the norm ∥ · ∥2 imply

V (x) = V

(
2∑

i=0

λixi

)
=

2∑
i=0

λiV (xi) ≥
2∑

i=0

λi∥xi∥2 ≥

∥∥∥∥∥
2∑

i=0

λixi

∥∥∥∥∥
2

= ∥x∥2 > 0

as x ̸= 0. Hence, V is positive definite and satisfies the first condition of Definition
2.1 with a = 1.

For the second condition we show that D+V (ϕ(t, ξ)) ≤ −∥ϕ(t, ξ)∥2 for every
ϕ(t, ξ) in the interior of Dk. By Theorem 1.17 in [18] we have, with x := ϕ(t, ξ)
that

D+V (ϕ(t, ξ)) = lim sup
h→0+

V (x+ hf(x))− V (x)

h

and for all h > 0 small enough there is a Tν such that co{x,x+hf(x)} ⊂ Tν , cf. the
argumentation at the beginning of Section 6.7 in [10]. Hence,

lim sup
h→0+

V (x+ hf(x))− V (x)

h
= lim sup

h→0+

h∇Vν · f(x)
h

= ∇Vν · f(x)

and it is sufficient to prove ∇Vν · f(x) ≤ −∥x∥2 for every Tν ∈ T and every x ∈ Tν

to prove that V is a Lyapunov function for the system.
Pick an arbitrary Tν ∈ T and an arbitrary x ∈ Tν . Then x can be written as a

convex combination x =
∑2

i=0 λixi of the vertices x0,x1,x2 of Tν . We get by (2.4)
and the linear constraints from step 4 in the algorithm,

∇Vν · f

(
2∑

i=0

λixi

)
=

2∑
i=0

λi∇Vν · f(xi) +∇Vν · f

(
2∑

i=0

λixi

)
−

2∑
i=0

λi∇Vν · f(xi)

≤
2∑

i=0

λi∇Vν · f(xi) + ∥∇Vν∥1

∥∥∥∥∥f
(

2∑
i=0

λixi

)
−

2∑
i=0

λif(xi)

∥∥∥∥∥
∞

≤
2∑

i=0

λi∇Vν · f(xi) + (Cν,1 + Cν,2) ·
2∑

i=0

λiEν,i by (2.6) and (2.4)

=

2∑
i=0

λi (∇Vν · f(xi) + Eν,i(Cν,1 + Cν,2))︸ ︷︷ ︸
≤−∥xi∥2 by (2.7)

≤ −
2∑

i=0

λi∥xi∥2 ≤ −

∥∥∥∥∥
2∑

i=0

λixi

∥∥∥∥∥
2

.

Hence,
∇Vν · f(x) ≤ −∥x∥2

and we have finished the proof. �
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3 The Algorithm

In order to design an algorithm that is able to compute a Lyapunov function for
every system ẋ = f(x), f ∈ C2(R2,R2), with an exponentially stable equilibrium at
the origin, we first define inductively a sequence (Tk)k∈N0

of triangulations of R2. As
an example a schematic picture of the triangulation T2 close to the origin is given
in Figure 1.

Figure 1: A schematic picture of the triangulation T2 around the origin. When
going from Tk to Tk+1 the number of the triangles in the triangle fan at the origin is
doubled and all triangles are scaled down by a factor, but such that the results are
still a triangulation of the plane.

Definition 3.1 (The basic Triangulations)

1. The triangles of T0 are given by

co

{(
n1

n2

)
,

(
n1 + 1
n2

)
,

(
n1 + 1
n2 + 1

)}
, co

{(
n1

n2

)
,

(
n1

n2 + 1

)
,

(
n1 + 1
n2 + 1

)}
,

co

{(
−n1

n2

)
,

(
−n1 − 1

n2

)
,

(
−n1 − 1
n2 + 1

)}
, co

{(
−n1

n2

)
,

(
−n1

n2 + 1

)
,

(
−n1 − 1
n2 + 1

)}
,

co

{(
−n1

−n2

)
,

(
−n1 − 1
−n2

)
,

(
−n1 − 1
−n2 − 1

)}
, co

{(
−n1

−n2

)
,

(
−n1

−n2 − 1

)
,

(
−n1 − 1
−n2 − 1

)}
,

co

{(
n1

−n2

)
,

(
n1 + 1
−n2

)
,

(
n1 + 1
−n2 − 1

)}
, co

{(
n1

−n2

)
,

(
n1

−n2 − 1

)
,

(
n1 + 1
−n2 − 1

)}
,

for every

(
n1

n2

)
∈ N 2

0 .
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2. Let Tk be given. Then Tk+1 is constructed from Tk by scaling all triangles
down by a factor of 3

4 and then tessellate them, treating triangles where 0 ∈ Tν

differently than triangles where 0 /∈ Tν . The procedure is :

i) For every co{x0,x1,x2} ∈ Tk and 0 /∈ Tν the triangles

3

4
· co

{
x0,

x0 + x1

2
,
x0 + x2

2

}
,

3

4
· co

{
x1,

x0 + x1

2
,
x1 + x2

2

}
,

3

4
· co

{
x2,

x0 + x2

2
,
x1 + x2

2

}
,

3

4
· co

{
x0 + x1

2
,
x0 + x2

2
,
x1 + x2

2

}
are put into Tk+1.

ii) For every co{0,x1,x2} ∈ Tk the triangles

3

4
· co

{
0,x1,

x1 + x2

2

}
and

3

4
· co

{
0,

x1 + x2

2
,x2

}
are put into Tk+1.

By simple geometric reasoning one reckons: Those triangles in Tk, k ∈ N0, that
do not have 0 as a vertex are similar right-angled isosceles triangles. The angles

are thus 90◦ and twice 45◦. Moreover, the catheti have length
(
3
4

)k · 1
2k

and the

hypotenuse has length
√
2
(
3
4

)k · 1
2k
, and we have ∥xi − xj∥1 ≤ 2

2k

(
3
4

)k
. Moreover,

∥xi∥2 ≥
(
3
4

)k
.

Now we consider a triangle with 0 ∈ Tν , i.e. Tν = co{0,x1,x2} ∈ Tk. Here, we

have ∥x1∥∞ = ∥x2∥∞ =
(
3
4

)k
and ∥xi − x0∥2 = ∥xi∥2 ∈

[(
3
4

)k
,
√
2
(
3
4

)k]
as well

as ∥xi − x0∥1 = ∥xi∥1 ≤ 2
(
3
4

)k
. Moreover, ∥x1 − x2∥2 =

(
3
4

)k · 1
2k
. Additionally,

the angle ϑ0 at 0 fulfills 0 < ϑ0 ≤ 45◦ and the angle ϑx1 fulfills 45◦ ≤ ϑx1 ≤ 90◦.
Thus, the third angle ϑx2 satisfies ϑx2 = 180◦ − ϑx0 − ϑx1 , i.e. 45

◦ ≤ ϑxi < 135◦ for
i = 1, 2, independent of k .

In the algorithm we intend to compute a Lyapunov function on a simply con-
nected compact neighborhood of the origin C, so we are only interested in some of
the triangles of Tk, k ∈ N0. To do this we define another sequence of triangulations(
T C
k

)
k∈N0

by picking out those triangles from the sequence (Tk)k∈N0
useful for our

construction. The algorithm is as follows:

Definition 3.2 (The Algorithm) Consider the system ẋ = f(x), where f ∈
C2(R2,R2) and f(0) = 0. Let C ⊂ R2 be a compact, simply connected neighbor-
hood of the origin and define the sequence

(
T C
k

)
k∈N0

of sets of triangles by first
defining for k ∈ N0 the sets

T̃ C
k := {Tν

∣∣Tν ∈ Tk and Tν ⊂ C} and D̃k :=
∪

Tν∈T̃ C
k

Tν .

12



If the origin 0 is not an interior point of D̃k, then set T C
k := ∅. If the origin is an

interior point of D̃k, then let T C
k be the largest set of triangles in T̃ C

k such that the
interior of

Dk :=
∪

Tν∈T C
k

Tν

contains the origin and is a simply connected set. Note, that there is a number
K ∈ N0 such that T C

k = ∅ if k < K and T C
k ̸= ∅ if k ≥ K.

The procedure to search for a Lyapunov function for the system is defined as
follows :

1. Set k = K and let B be a constant such that

B ≥ max
m,r,s=1,2

sup
z∈C

∣∣∣∣ ∂2fm
∂xr∂xs

(z)

∣∣∣∣ .
2. Generate a linear programming problem as in Definition 2.4 using the trian-

gulation T C
k and setting Bν := B for all Tν ∈ T C

k .

3. If the linear programming problem has a feasible solution, then we can compute
a Lyapunov function V : Dk → R for the system as shown in Theorem 2.6 and
we are finished. If the linear programming problem does not have a feasible
solution, then increase k by one and repeat step 2.

The next theorem, the main result of this work, is valid for more general series
(Tk)k∈N0 of triangulations, where Tk+1 is constructed from Tk by scaling and tessel-
lating its triangles, than it is formulated for. We restrict ourselves to this special
series since it is quite difficult to get hold of the exact conditions that must be ful-
filled in a simple way and its long and technical proof would become even longer
and more technical.

Theorem 3.3 Consider the system ẋ = f(x), where f ∈ C2(R2,R2). Assume that
the origin is an exponentially stable equilibrium of the system and let C be a compact
neighborhood of the origin contained in the equilibrium’s region of attraction. Then
the algorithm from Definition 3.2 succeeds in a finite number of steps in computing
a Lyapunov function for the system.

Proof: For the sake of clarity, we split the proof into several steps.

1. A local and a global Lyapunov function
We begin by proving the existence of a Lyapunov function W for the system
with certain properties in the first three steps. We do this by gluing together
two Lyapunov functions Wloc and WC , constructed by standard methods cf.
Theorems 4.6, 4.7, and 4.14 in [16], where Wloc is a Lyapunov function close
to the origin and WC is a Lyapunov function in the whole region of attraction
and will be used away from the origin.

13



Let J := Df(0) be the Jacobian of f at the origin and let Q ∈ R2×2 be
the unique symmetric and positive definite matrix that is a solution to the
Lyapunov equation JTQ + QJ = −I, where I ∈ R2×2 is the identity matrix.
Then x 7→ xTQx = ∥Q

1
2x∥22 is a Lyapunov function for the system in some

neighborhood of the origin. Define Wloc(x) := ∥Q
1
2x∥2. Then Wloc, the square

root of a Lyapunov function, is also a Lyapunov function for the system on
the same neighborhood. Note, however, that Wloc is not differentiable at 0.

Define

WC(x) :=

∫ +∞

0
∥ϕ(τ,x)∥22dτ

for every x ∈ C. Then WC ∈ C2(C,R) is a Lyapunov function for the system,
cf. e.g. the proof of Theorem 4.14 in [16].

2. An auxiliary function h
Let r > 0 be such that the set {x ∈ R2 : Wloc(x) ≤ r} is a compact subset of C
and of the set where Wloc is a Lyapunov function for the system. Furthermore,
define the sets

E1 := {x ∈ R2 : Wloc(x) < r/2}

and
E2 := {x ∈ R2 : Wloc(x) > r} ∩ C.

Let ρ ∈ C∞(R, [0, 1]) be a non-decreasing function, such that ρ(x) = 0 if
x < r/2 and ρ(x) = 1 if x > r. Such a function can be constructed by
standard methods of partitions of unity, cf. e.g. [24]. Then h(x) := ρ(Wloc(x))
fulfills

d

dt
h(ϕ(t, ξ)) =

d

dt
ρ(Wloc(ϕ(t, ξ))) = 0

for all ϕ(t, ξ) ∈ E1 ∪ E2 and

d

dt
h(ϕ(t, ξ)) = ρ′(Wloc(ϕ(t, ξ)))︸ ︷︷ ︸

≥0

·∇Wloc(ϕ(t, ξ)) · f(ϕ(t, ξ))︸ ︷︷ ︸
<0

≤ 0

for all ϕ(t, ξ) ∈ C \ (E1 ∪ E2). Thus

d

dt
h(ϕ(t, ξ)) ≤ 0

for all ϕ(t, ξ) ∈ C.

3. Glue Wloc and WC together
Now we have everything we need to glue Wloc and WC together. Let a be the
supremum of the continuous function Wloc/WC on the set C \ (E1 ∪E2) and set
Wa(x) := aWC(x). Then Wa(x) ≥ Wloc(x) for all x ∈ C \ (E1 ∪ E2). Define

W (x) := h(x) ·Wa(x) + (1− h(x)) ·Wloc(x)

14



for every x ∈ C. Then W (0) = 0 and W (x) ≥ min{Wa(x),Wloc(x)} for all
x ∈ C. Further, we have for every ϕ(t, ξ) ∈ E1 that

d

dt
W (ϕ(t, ξ)) =

d

dt
Wloc(ϕ(t, ξ))

and for every ϕ(t, ξ) ∈ E2 that

d

dt
W (ϕ(t, ξ)) =

d

dt
Wa(ϕ(t, ξ)).

Finally, for every ϕ(t, ξ) ∈ C \ (E1 ∪ E2), we have

d

dt
W (ϕ(t, ξ))

=
d

dt
h(ϕ(t, ξ)) ·Wa(ϕ(t, ξ)) + h(ϕ(t, ξ)) · d

dt
Wa(ϕ(t, ξ))

− d

dt
h(ϕ(t, ξ)) ·Wloc(ϕ(t, ξ)) + (1− h(ϕ(t, ξ))) · d

dt
Wloc(ϕ(t, ξ))

=
d

dt
h(ϕ(t, ξ))︸ ︷︷ ︸

≤0

· (Wa(ϕ(t, ξ))−Wloc(ϕ(t, ξ)))︸ ︷︷ ︸
≥0

+h(ϕ(t, ξ)) · d

dt
Wa(ϕ(t, ξ)) + (1− h(ϕ(t, ξ))) · d

dt
Wloc(ϕ(t, ξ))

≤ max

{
d

dt
Wa(ϕ(t, ξ)),

d

dt
Wloc(ϕ(t, ξ))

}
.

Hence, W is a Lyapunov function for the system. Further, it was shown in
Proposition 4.1 in [7] that Wloc, and thus also W , satisfy inequalities W (x) ≥
a∗∥x∥2 and ∇W (x) · f(x) ≤ −c∗∥x∥2 for some constants a∗, c∗ > 0 in some set
Bδ∗\{0}, δ∗ > 0. Because W (x)/∥x∥2 and −∇W (x)·f(x)/∥x∥2 are continuous
functions on the compact set C\Bδ∗ they both have a finite lower bound b∗ > 0
on this set and thus b−1

∗ W (x) ≥ ∥x∥2 and b−1
∗ ∇W (x) · f(x) ≤ −∥x∥2 for all

x ∈ C \ Bδ∗ . Setting s := max{a−1
∗ , b−1

∗ , c−1
∗ } and defining Ws(x) := s ·W (x)

we have
Ws(x) ≥ ∥x∥2 and ∇Ws(x) · f(x) ≤ −∥x∥2

for all x ∈ C \ {0}. Thus Ws is Lyapunov function for the system in the strict
sense of Definition 2.1. Note that we will come back to Ws at the end of the
proof, and will rather consider W in the following steps.

4. Estimate on ∇W
Let D < +∞ be a constant such that ∥f(x)∥∞ ≤ D∥x∥2 for all x ∈ C. Such a
constant exists because f(0) = 0, f is Lipschitz continuous and all norms on
R2 are equivalent. Let B < +∞ be a constant such that

B ≥ max
z∈C

m,r,s=1,2

∣∣∣∣ ∂2fm
∂xr∂xs

(z)

∣∣∣∣
15



and C be a constant such that

sup
x∈C\{0}

∥∇W (x)∥2 ≤ C. (3.1)

To see that C < +∞ note that by the construction of W there is a δ > 0 such
that W (x) = Wloc(x) = ∥Q

1
2x∥2 for all x ∈ Bδ. ∇W is continuous on the

compact set C \ Bδ and thus bounded, and on Bδ \ {0} we have

∇W (x) =
Qx

∥Q
1
2x∥2

. (3.2)

By standard result on positive definite symmetric matrices this delivers

∥∇W (x)∥2 =
∥Qx∥2
∥Q

1
2x∥2

≤ λmax√
λmin

< +∞

for every x ∈ Bδ \ {0}, where λmax and λmin denote the largest and smallest
eigenvalue of Q, respectively.

5. Estimate on the second derivatives of W
For every k ∈ N0 define

ε(k) :=
1

2

(
3

4

)k

and let K∗ ∈ N0 be so large that both ε(K∗) ≤ δ/4 holds, where δ is the
constant from step 4, and K∗ ≥ K, where K was defined in Definition 3.2.
Note that for all k ≥ K∗ we have T C

k ̸= ∅, and for every Tν ∈ T C
k such that

0 ∈ Tν we have Tν ⊂ Bδ. For every k ≥ K∗ define

Ak := max
i,j=1,2

{∣∣∣∣ ∂2W

∂xi∂xj
(x)

∣∣∣∣ : x ∈ C \ Bε(k)

}
.

We show that there is a constant A > 0 such that

Ak ≤ A

(
4

3

)k

(3.3)

for all integers k ≥ K∗, where we define

A := max

 max
x∈C\Bδ

∣∣∣∣ ∂2W

∂xi∂xj
(x)

∣∣∣∣ , 2
Qmax

λ
1
2
min

+
λ2
max

λ
3
2
min

 .

Here, the maximal and minimal eigenvalue of the symmetric matrix Q are
denoted by λmax and λmin as before, and the maximal matrix element of Q is
denoted by Qmax := maxi,j∈{1,2} |qij |.
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Now, let y ∈ C \ Bε(k) and i, j ∈ {1, 2} be such that

Ak =

∣∣∣∣ ∂2W

∂xi∂xj
(y)

∣∣∣∣ .
To show (3.3) we distinguish between the two cases y ∈ C\Bδ and y ∈ Bδ\Bε(k).
In the first case, (3.3) holds trivially.

Now assume that y ∈ Bδ \Bε(k). In this case, the Hessian matrix HW of W at
x ∈ Bδ \ {0} is given by

HW (x) =
Q

∥Q
1
2x∥2

− (Qx)(Qx)T

∥Q
1
2x∥32

,

cf. the discussion before formula (3.2).

By definition, Ak is an upper bound on the absolute values of the elements of
the Hessian HW (x) for x ∈ Bδ \ Bε(k) and we have

Ak =

∣∣∣∣ ∂2W

∂xi∂xj
(y)

∣∣∣∣
≤ Qmax

λ
1
2
min∥y∥2

+
λ2
max∥y∥22

λ
3
2
min∥y∥32

≤

Qmax

λ
1
2
min

+
λ2
max

λ
3
2
min


︸ ︷︷ ︸

≤A/2

1

ε(k)

= A

(
4

3

)k

.

Thus (3.3) holds true for every k ≥ K∗.

6. Definition of hk
For every integer k ≥ K∗ define

hk :=
1

2k

(
3

4

)k

. (3.4)

The formula for hk is from the discussion after Definition 3.1 and is the length
of the catheti of the triangles Tν ∈ T C

k , 0 /∈ Tν . The length of the hypotenuses
of these triangles is

√
2hk and this is also the maximum distance ∥x − y∥2

between any two points x,y in such a triangle.

For a triangle Tν = co{0,x1,x2} ∈ T C
k the constant hk is the length of the

shortest side ∥x2 − x1∥2 of the triangle.
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7. Estimate on ∥X−1
k,ν∥1

Let k ≥ K∗ and define for every Tν = {x0,x1,x2} ∈ T C
k the 2 × 2 matrix

Xk,ν by writing the components of the vector x1 − x0 in its first row and the
components of the vector x2 − x0 in its second row

Xk,ν =

(
−− x1 − x0 −−
−− x2 − x0 −−

)
.

Since x0,x1,x2 are affinely independent, Xk,ν is invertible.

For any 2× 2 matrix

Y =

(
y1 y2
z1 z2

)
we have Y −1 =

1

detY

(
z2 −y2
−z1 y1

)
.

Since |detXk,ν | = ∥x1−x0∥2∥x2−x0∥2 sinβ, where β is the angle in [0◦, 180◦]
between the vector x1−x0 and the vector x2−x0, and the matrix norm ∥ · ∥1
is the maximum absolute column sum of the matrix, we have

∥X−1
k,ν∥1 =

1

∥x1 − x0∥2∥x2 − x0∥2 sinβ
max(∥x1 − x0∥1, ∥x2 − x0∥1). (3.5)

Let us first consider the case 0 /∈ Tν . Then β = 45◦ or β = 90◦, ∥xi−x0∥2 ≥ hk
and ∥xi − x0∥1 ≤ 2hk, i = 1, 2, so we have

∥X−1
k,ν∥1 ≤

2hk

h2k(
√
2/2)

= 2
√
2
1

hk
. (3.6)

Now consider the case 0 ∈ Tν . Then x0 = 0 and by the discussion after
Definition 3.1 we have ∥x2 − x1∥2 = hk, ∥x1 − x0∥2 = ∥x1∥2 ≥ (3/4)k, and
∥xi−x0∥1 = ∥xi∥1 ≤ 2(3/4)k, i = 1, 2. Let α ∈ [0◦, 180◦] be the angle between
the vector −x1 and the vector x2 − x1. Then, also by the discussion after
Definition 3.1 we have 45◦ ≤ α < 135◦. By law of sines ∥x2 − x0∥2 sinβ =
∥x2 − x1∥2 sinα and the formula (3.5) delivers

∥X−1
k,ν∥1 ≤

2(3/4)k

(3/4)k∥x2 − x1∥2 sinα
≤ 2

√
2
1

hk
.

Thus, we have for every Tν ∈ T C
k that

hk · ∥X−1
k,ν∥1 ≤ 2

√
2, (3.7)

independent of k and ν.

8. Difference between w and X∇W , case 0 /∈ Tν

Let k ≥ K∗ and Tν ∈ T C
k and define

wk,ν :=

(
W (x1)−W (x0)
W (x2)−W (x0)

)
. (3.8)
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We will need upper bounds on ∥X−1
k,νwk,ν −∇W (xi)∥1 later on, for i = 0, 1, 2

if 0 /∈ Tν and for i = 1, 2 if 0 ∈ Tν . Here we derive the appropriate bounds
if 0 /∈ Tν and in the next step we consider the case 0 ∈ Tν , which is quite
different.

Assume 0 /∈ Tν . Note that in this case Tν ⊂ C \ Bε(k) by construction. More-
over, W is C2 in Tν = co{x0,x1,x2} and for i = 1, 2 we have by Taylor’s
theorem

W (xi) = W (x0) +∇W (x0) · (xi − x0) +
1

2
(xi − x0)

THW (zi)(xi − x0),

where HW is the Hessian of W and zi = x0 + ϑi(xi − x0) for some ϑi ∈ ]0, 1[.

By rearranging terms and combining this delivers

wk,ν −Xk,ν∇W (x0) =
1

2

(
(x1 − x0)

THW (z1)(x1 − x0)
(x2 − x0)

THW (z2)(x2 − x0)

)
.

With HW (z) = (hij(z))i,j=1,2 we have that maxz∈Tν |hij(z)| ≤ Ak because
Tν ⊂ C \ Bε(k). Hence, by Lemma 2.3, we have

max
z∈Tν

∥HW (z)∥2 ≤ 2Ak. (3.9)

By (3.3) and (3.4), we obtain

|(xi − x0)
THW (zi)(xi − x0)| ≤ (

√
2hk)

2∥HW (zi)∥2 ≤ 4Akh
2
k ≤ 4A

2k
hk.

Hence, ∥∥∥∥((x1 − x0)
THW (z1)(x1 − x0)

(x2 − x0)
THW (z2)(x2 − x0)

)∥∥∥∥
1

≤ 2
4A

2k
hk

and then

∥wk,ν −Xk,ν∇W (x0)∥1 ≤
4A

2k
hk.

Further, for i, j = 1, 2 there is a zij on the line segment between xi and x0,
such that

∂jW (xi)− ∂jW (x0) = ∇∂jW (zij) · (xi − x0),

where ∂jW denotes the j-th component of ∇W and ∇∂jW is the gradient of
this function. Then, by the definition of Ak we have

|∂jW (xi)− ∂jW (x0)| ≤ ∥∇∂jW (zij)∥2∥xi − x0∥2 ≤
√
2Ak

√
2hk = 2Akhk

so we have

∥∇W (xi)−∇W (x0)∥1 ≤ 2 · 2Akhk ≤ 4A

2k
.
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From this we obtain for i = 0, 1, 2 the inequality

∥X−1
k,νwk,ν −∇W (xi)∥1 ≤ ∥X−1

k,νwk,ν −∇W (x0)∥1 + ∥∇W (xi)−∇W (x0)∥1

≤ ∥X−1
k,ν∥1∥wk,ν −Xk,ν∇W (x0)∥1 +

4A

2k

≤ 4A

2k

(
hk∥X−1

k,ν∥1 + 1
)
≤ 4A

2k

(
2
√
2 + 1

)
, (3.10)

by (3.7). A further useful consequence is that

∥X−1
k,νwk,ν∥1 ≤ ∥∇W (xi)∥1+

4A

2k

(
2
√
2 + 1

)
≤

√
2C +

4A

2k

(
2
√
2 + 1

)
(3.11)

holds, where we have used (3.1).

9. Difference between w and X∇W , case 0 ∈ Tν

In this step we assume that 0 ∈ Tν . Let k ≥ K∗ and Tν ∈ T C
k such that

0 ∈ Tν = co{0,x1,x2}. Assume that i = 1; the case i = 2 follows identically.
Then, because x0 = 0 and W (x0) = 0 we have

wk,ν −Xk,ν∇W (x1) =

(
W (x1)− x1 · ∇W (x1)
W (x2)− x2 · ∇W (x1)

)
.

BecauseW (x) = ∥Q
1
2x∥2 for all x ∈ Bδ and Tν ⊂ Bδ due to δ ≥ 4ε(k) = 2

(
3
4

)k
,

we have for every x ∈ Tν \ {0} that

∇W (x) =
Qx

∥Q
1
2x∥2

by (3.2). Hence,

x1·∇W (x1) = x1·
Qx1

∥Q
1
2x1∥2

=
Q

1
2x1 ·Q

1
2x1

∥Q
1
2x1∥2

=
∥Q

1
2x1∥22

∥Q
1
2x1∥2

= ∥Q
1
2x1∥2 = W (x1)

and then
W (x1)− x1 · ∇W (x1) = 0. (3.12)

By Taylor’s theorem we have

W (x2) = W (x1) + (x2 − x1) · ∇W (x1) +
1

2
(x2 − x1)

THW (z1)(x2 − x1)

for some vector z1 on the line segment between x1 and x2. Note that by the
definitions of T C

k and ε(k) this line segment is in C \Bε(k) so by Lemma 2.3 we
have

∥HW (z1)∥2 ≤ 2Ak.

Rearranging the terms gives

W (x2)−x2 ·∇W (x1) = W (x1)−x1 ·∇W (x1)+
1

2
(x2−x1)

THW (z1)(x2−x1),
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i.e., by (3.12) and the bounds on ∥HW (z1)∥2 and ∥x2 − x1∥2, we get

|W (x2)− x2 · ∇W (x1)| ≤
1

2

∣∣(x2 − x1)
THW (z1)(x2 − x1)

∣∣ ≤ A

2k
hk,

where the last inequality is derived as shown in step 8. Hence, by (3.7),

∥X−1
k,νwk,ν −∇W (x1)∥1
≤ ∥X−1

k,ν∥1∥wk,ν −Xk,ν∇W (x1)∥1
= ∥X−1

k,ν∥1 (|W (x1)− x1 · ∇W (x1)|+ |W (x2)− x2 · ∇W (x1)|)

≤ ∥X−1
k,ν∥1hk

A

2k

≤ 2
√
2
A

2k
.

Hence, for i = 1, 2 we have

∥X−1
k,νwk,ν −∇W (xi)∥1 ≤ 2

√
2
A

2k
(3.13)

and thus with (3.1)

∥X−1
k,νwk,ν∥1 ≤ ∥∇W (xi)∥1 + 2

√
2
A

2k
≤

√
2C + 2

√
2
A

2k
. (3.14)

10. Assign values to the linear program
In this step we assign values to the variables and constants of the linear pro-
gramming problem from Definition 2.4 used by the algorithm in Definition 3.2.
In the last two steps we will show that the constraints (2.5), (2.6), and (2.7)
are fulfilled for these values of the variables if k ≥ K∗ is large enough. To
do this let k ≥ K∗ be arbitrary but fixed throughout the rest. We use the
Lyapunov function Ws from step 3 to assign values to the variables.

For every ν such that Tν ∈ T C
k we set:

• Bν := B, where B is the constant from step 4. This is just as in the
algorithm.

• Cν,i := 2s
∣∣∣ei ·X−1

k,νwk,ν

∣∣∣, where s is the constant from step 3 used to de-

fine Ws, and Xk,ν and wk,ν were defined in step 7 and step 8 respectively.

• Vxi := 2Ws(xi) for every vertex xi of Tν = co{x0,x1,x2}.

By doing this, we have assigned values to all the variables of the linear pro-
gramming problem. Clearly, by the construction of Ws we have Vxi ≥ ∥xi∥2 for
every Tν ∈ T C

k and every vertex xi of Tν , cf. step 3. Therefore, the constraints
(2.5) are fulfilled.
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Further, for a triangle Tν := co{x0,x1,x2} we have by the definition of ∇Vν ∈
R2 that

2Ws(xi)− 2Ws(x0) = Vxi − Vx0 = ∇Vν · (xi − x0)

for i = 1, 2. Since the triple x0,x1,x2 is affinely independent, ∇Vν is the
unique solution to the linear equation

Xk,ν∇Vν =

(
2Ws(x1)− 2Ws(x0)
2Ws(x2)− 2Ws(x0)

)
= 2s ·wk,ν ,

i.e.
∇Vν = 2sX−1

k,νwk,ν . (3.15)

Hence,

|∇Vν,i| = |ei · ∇Vν | = 2s
∣∣∣ei ·X−1

k,νwk,ν

∣∣∣ = Cν,i

and the constraints (2.6) are fulfilled. Moreover, by (3.11) and (3.14) and with

F := 2s
[√

2C + 4A
(
2
√
2 + 1

)]
we have, using (3.15)

Cν,1 + Cν,2 = ∥∇Vν∥1 ≤ 2s

[√
2C +

4A

2k

(
2
√
2 + 1

)]
≤ F (3.16)

independent of whether 0 ∈ Tν or 0 /∈ Tν .

What is left is to show that the constraints (2.7) are fulfilled. We distinguish
between the cases 0 /∈ Tν and 0 ∈ Tν .

11. Constraints (2.7), case 0 /∈ Tν

Pick an arbitrary Tν = co{x0,x1,x2} ∈ T C
k such that 0 /∈ T C

k . By (3.15) we
have ∇Vν = 2sX−1

k,νwk,ν and for i = 0, 1, 2 we have

∇Vν · f(xi) = 2sX−1
k,νwk,ν · f(xi)

= 2∇Ws(xi) · f(xi) + 2s
(
X−1

k,νwk,ν −∇W (xi)
)
· f(xi)

≤ −2∥xi∥2 + 2s∥X−1
k,νwk,ν −∇W (xi)∥1∥f(xi)∥∞ by step 3

≤ −2∥xi∥2 + 2s
4A

2k
(2
√
2 + 1) ·D∥xi∥2

by (3.10) and step 4. Hence, the constraints (2.7), i.e.

−∥xi∥2 ≥ ∇Vν · f(xi) + Eν,i(Cν,1 + Cν,2)

are fulfilled whenever k is so large that, using (3.16),

−∥xi∥2 ≥ −2∥xi∥2 + 2s
4A

2k
(2
√
2 + 1) ·D∥xi∥2 + Eν,iF,
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which is equivalent to

1 ≥ 2s
4A

2k
(2
√
2 + 1) ·D +

1

∥xi∥2
Eν,iF. (3.17)

Because 0 /∈ Tν we have by (2.8)

Eν,i := ∥xi − x0∥2
(
max
j=1,2

∥xj − xi∥2 + ∥xi − x0∥2
)
B

≤
√
2hk(2

√
2hk) ·B = 4h2kB

and ∥xi∥2 ≥ (3/4)k. Thus (3.17) holds true if, using (3.4)

1 ≥ 2s
4A

2k
(2
√
2+1) ·D+

(
4

3

)k

4h2kBF = 2s
4A

2k
(2
√
2+1) ·D+4BF

1

22k

(
3

4

)k

,

which is clearly the case for large enough k.

12. Constraints (2.7), case 0 ∈ Tν

We now consider Tν = co{x0,x1,x2} ∈ T C
k , with x0 = 0. Then by (2.8)

Eν,0 := ∥x0 − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥x0 − x0∥2
)
B = 0

so the linear constraints (2.7) are automatically fulfilled with i = 0, because
the condition is

−∥0∥2︸︷︷︸
=0

≥ ∇Vν · f(0)︸︷︷︸
=0

+Eν,0︸︷︷︸
=0

(Cν,1 + Cν,2),

i.e. 0 ≥ 0.

For i = 1, 2 the constraints (2.7) read

−∥xi∥2 ≥ ∇Vν · f(xi) + Eν,i(Cν,1 + Cν,2).

Similar to (3.17) we get

∇Vν · f(xi) = 2sX−1
k,νwk,ν · f(xi)

= 2∇Ws(xi) · f(xi) + 2s
(
X−1

k,νwk,ν −∇W (xi)
)
· f(xi)

≤ −2∥xi∥2 + 2s∥X−1
k,νwk,ν −∇W (xi)∥1 · ∥f(xi)∥∞

≤ −2∥xi∥2 + 2s
2A

2k

√
2 ·D∥xi∥2

by (3.13). Thus, the constraints are fulfilled if

−∥xi∥2 ≥ −2∥xi∥2 + 2s
2A

2k

√
2 ·D∥xi∥2 + Eν,iF,
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which is equivalent to

1 ≥ 2s
2A

2k

√
2 ·D +

1

∥xi∥2
Eν,iF. (3.18)

Now, by (2.8)

Eν,i := ∥xi − x0∥2
(
max
j=1,2

∥xj − x0∥2 + ∥xi − x0∥2
)
B ≤ B∥xi∥22

√
2

(
3

4

)k

so (3.18) holds true if

1 ≥ 2s
2A

2k

√
2 ·D + 2

√
2BF

(
3

4

)k

,

which, again, is the case for large enough k.

13. Conclusion
We have shown that if k ≥ K∗ is large enough and the variables of the lin-
ear programming problem are assigned values as in step 11, then the linear
programming problem has a feasible solution. Because there are algorithms,
e.g. the Simplex algorithm, that always find a solution to a linear program-
ming problem whenever it possesses a feasible solution, we have finished the
proof. �

4 Examples

Consider the system

d

dt

(
x
y

)
=

(
−3x− 4y + r(x2 − y2)

x+ y

)
=: f(x, y) (4.1)

with r = 0.02. The Jacobian

Df(0) =

(
−3 −4
1 1

)
of f at the origin has the eigenvalue −1 with algebraic multiplicity two so the equi-
librium at zero is exponentially stable. For the algorithm from Definition 3.2 we can
set Bν = 2r and after one subdivision of the triangulation it finds a feasible solution
to the linear programming problem from Definition 2.4. The Lyapunov functions
generated is depicted in Figure 2 with domain C = [−9/4, 9/4]2.

The second example we consider is

d

dt

(
x
y

)
=

(
−εx− y
x− εy

)
=: g(x, y) (4.2)
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Figure 2: Lyapunov function for the system (4.1) computed by the algorithm from
Definition 3.2.

with ε = 0.2. Here, the Jacobian

Dg(0) =

(
−ε −1
1 −ε

)
of g at zero has the eigenvalues −ε ± i. Thus, the equilibrium at the origin is
exponentially stable but the convergence is slow for small ε > 0. This system is taken
from [7] and as pointed out there the linear programming problem from Definition
2.4 is not able to compute a Lyapunov function for the system without the triangular
fan at the origin. In the algorithm from Definition 3.2 we can set Bν = 0, as always
when the system is linear, and two subdivisions of the triangulation it finds a feasible
solution to the linear programming problem from Definition 2.4. The Lyapunov
functions generated is depicted in Figure 3 with domain C = [−99/64, 99/64]2.
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