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We study stability for dynamical systems specified by autonomous stochastic differential equations of the form 𝑑X(𝑡) = f(X(𝑡))𝑑𝑡+
g(X(𝑡))𝑑W(𝑡), with (X(𝑡))𝑡≥0 anR𝑑-valued Itô process and (W(𝑡))𝑡≥0 anR𝑄-valuedWiener process, and the functions f : R𝑑 → R𝑑

and g : R𝑑 → R𝑑×𝑄 are Lipschitz and vanish at the origin, making it an equilibrium for the system. The concept of asymptotic
stability in probability of the null solution is well known and implies that solutions started arbitrarily close to the origin remain
close and converge to it. The concept therefore pertains exclusively to system properties local to the origin. We wish to address
the matter in a more practical manner: Allowing for a (small) probability that solutions escape from the origin, how far away can
they then be started? To this end we define a probabilistic version of the basin of attraction, the 𝛾-BOA, with the property that any
solution started within it stays close and converges to the origin with probability at least 𝛾. We then develop a method using a local
Lyapunov function and a nonlocal one to obtain rigid lower bounds on 𝛾-BOA.

1. Introduction

Lyapunov theory of stability [1] for deterministic systems
has been very successful as a tool to study qualitative
system behavior. For mathematically oriented studies of the
Lyapunov theory, compare, for example, [2–4] or [5–7] for a
more modern treatment including complete Lyapunov func-
tions. For more application oriented surveys, compare, for
example, [8–10]. The centerpiece of the theory is the Lya-
punov function, a real function of state-space which is
nonincreasing along solution trajectories. A deterministic
Lyapunov function gives rigid estimates on the basin of
attraction (BOA) of an equilibrium through its sublevel sets.
The equilibrium under consideration can be assumed to be
the originwithout loss of generality and one then often speaks
of the stability of the null solution. Its usefulness has sparked
the development of methods to find Lyapunov functions.
Breaking the system domain up and addressing each part
separately can sometimes work in the deterministic case.

With 0 ∈ B ⊂ N ⊂ A ⊂ R𝑑, one starts by generating a local
Lyapunov function 𝑊 on the small neighbourhood N of
the origin and then finding a nonlocal Lyapunov function𝑉 : A\B → R+, using entirely differentmethods suited away
from the equilibrium.

In this paper (see Section 2), we shall develop the
theory necessary to enable such a splitting for a stochastic
system. Advanced numerical methods taking advantage of
the splitting are in the final stages of development by the
authors and their collaborators; see [11] for first results on
the local part at the equilibrium. An example using analytical
solution at the origin and the shooting method further away
is presented in Section 3 in this paper.

To set the stage, we shall start by discussing the local
andnonlocal Lyapunov functions in the deterministic setting.
For definition of the notations used, see Section 1.1. Consider
a deterministic system given by an autonomous ordinary
differential equation (ODE) ẋ = f(x), where f : R𝑑 →
R𝑑 is sufficiently smooth and such that f(0) = 0. To
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characterize asymptotic stability of the null solution it is
convenient to resort to the function classes K∞ and KL
(defined in Section 1.1). The null solution is called (locally)
asymptotically stable (AS) if there exists aKL function𝛽 and
a neighbourhood A of the origin such that for every x ∈ A
and 𝑡 ≥ 0 we have ‖𝜙(𝑡, x)‖ ≤ 𝛽(‖x‖, 𝑡), where 𝑡 󳨃→ 𝜙(𝑡, x) is
the solution to the ODE started at x at 𝑡 = 0. In particular,
A is a subset of the equilibrium’s BOA defined as {x ∈ R𝑑 :
lim sup𝑡→∞‖𝜙(𝑡, x)‖ = 0}. If one can even take A = R𝑑

the origin is called globally asymptotically stable (GAS). Obvi-
ously (local) AS is too weak a condition and GAS is an
unnecessary strict condition for most applications. One is
interested in AS where the setA is of reasonable size for the
problem at hand. A rigorous lower bound on the BOA can be
made if a Lyapunov function 𝑉 for the system is known, that
is, a continuously differentiable function𝑉 : U → R+ defined
on an open neighbourhood U ⊂ R𝑑 of the origin and such
that 𝜇1(‖x‖) ≤ 𝑉(x) ≤ 𝜇2(‖x‖) and∇𝑉(x)⋅f(x) ≤ −𝜇3(‖x‖) for
some𝜇1, 𝜇2, 𝜇3 ∈ K∞ and all x ∈ U. For a Lyapunov function𝑉 all sublevel sets 𝑉−1([0, 𝑐]), 𝑐 > 0, that are compact subsets
ofU are subsets of the BOA.

For the general deterministic setting, constructing a
Lyapunov function 𝑉 on a reasonably sized setU is usually a
very difficult problem. Often, however, the construction of a
Lyapunov function on a small neighbourhoodN of the origin
is simple. Indeed, if the spectrum of the Jacobian 𝐽 fl 𝐷f(0)
of f at the origin does not have any purely imaginary points,
then the origin is AS iff the equation 𝐽⊤𝑃 + 𝑃𝐽 = −𝑄 has
a positive definite solution 𝑃 ∈ R𝑑×𝑑 for a positive definite𝑄 ∈ R𝑑×𝑑. Indeed, then𝑉𝑃(x) = x⊤𝑃x is a Lyapunov function
for the ODE ẋ = 𝐽x on R𝑑 and on some neighbourhood
N of the origin it is a Lyapunov function for the nonlinear
system ẋ = f(x). The size of N, however, depends strongly
on the nonlinearities of f ; compare, for example, [12, p. 659]
for an explicit estimate. By using this or a different method
to compute a local Lyapunov function for the system ẋ =
f(x), one can compute a set B ⊂ N that is a subset of the
equilibrium’s BOA. To assert that a larger set A ⊃ B is in
the BOA, it now suffices to show that ‖𝜙(𝑡, x)‖ ≤ 𝛽(‖x‖, 𝑡)
whenever x,𝜙(𝑡, x) ∈ A \ B, because the local Lyapunov
function 𝑉𝑃 and the semigroup property 𝜙(𝑡,𝜙(𝑠, x)) = 𝜙(𝑡 +𝑠, x) of the flow deliver themissing part. Formanymethods to
numerically compute Lyapunov functions for the system ẋ =
f(x) on a reasonably sizedU ⊂ R𝑑 it is either advantageous or
even necessary to use the fact that a (small) set B is already
known to be in the BOA; compare, for example, [12–18] or
[19, Section 2.11] and the references therein for an over-
view.

Now, consider a set of stochastic differential equations
(SDEs) of the form: 𝑑X(𝑡) = f(X(𝑡))𝑑𝑡 + g(X(𝑡))𝑑W(𝑡), f :
R𝑑 → R𝑑 and g : R𝑑 → R𝑑×𝑄, with equilibrium at the origin;
that is, f(0) = 0 and g(0) = 0. As in the deterministic case,
a Lyapunov function is a function 𝑉 defined on some neigh-
bourhoodU ⊂ R𝑑 of the origin, such that 𝜇1(‖x‖) ≤ 𝑉(x) ≤𝜇2(‖x‖) for some 𝜇1, 𝜇2 ∈ K∞. The condition for deter-
ministic systems that 𝑉 is decreasing along solution traject-
ories, that is, ∇𝑉(x) ⋅ f(x) ≤ −𝛼(‖x‖) for an 𝛼 ∈ K∞,

is replaced by the condition that the expectation of the
process 𝑡 󳨃→ 𝑉(Xy(𝑡)) is a decreasing function of time. Here𝑡 󳨃→ Xy(𝑡) is the stochastic process started at y at time 𝑡 = 0.
By Itô’s formula

𝑉 (Xy (𝑡)) = 𝑉 (y) + ∫𝑡
0
𝐿𝑉 (Xy (𝑠)) 𝑑𝑠

+ ∫𝑡
0
∇𝑉 (Xy (𝑠)) ⋅ g (Xy (𝑠)) 𝑑W (𝑠) ,

(1)

with

𝐿𝑉 (x) fl ∇𝑉 (x) ⋅ f (x)
+ 12
𝑑∑
𝑖,𝑗=1

[g (x) g (x)⊤]𝑖𝑗 𝜕2𝑉𝜕𝑥𝑖𝜕𝑥𝑗 (x) ,
(2)

where [g(x)g(x)⊤]𝑖𝑗 denotes the (𝑖, 𝑗)-th element of thematrix
g(x)g(x)⊤. The expectation of the second integral in the Itô
formula is zero because the process 𝑡 󳨃→ ∇𝑉(Xy(𝑡)) ⋅ g(Xy(𝑡))
is adapted and therefore the decrease of the expectation, that
is, E{𝑉(Xy(𝑡))} < 𝑉(y), is implied by 𝐿𝑉(x) ≤ −𝛼(‖x‖). In
order to find such a Lyapunov function for a stochastic sys-
tem, one could go about as in the deterministic case and solve
the partial differential equation (PDE) 𝐿𝑉(x) = −𝛼(‖x‖) for
an 𝛼 ∈ K∞. However, in the deterministic case, the solution𝑉 to the PDE ∇𝑉(x) ⋅ f(x) ≤ −𝛼(‖x‖) will automatically have
local minima at the AS equilibrium but this is not the case
for a solution to 𝐿𝑉(x) = −𝛼(‖x‖). The PDE is markedly
different, and the condition 𝐿𝑉(x) ≤ −𝛼(‖x‖) alone is no
longer sufficient to ensure that the Lyapunov function𝑉 has a
local minimum at the equilibrium at the origin. It is therefore
a natural first approach to try and solve the PDE 𝐿𝑉(x) =−𝛼(‖x‖) imposing boundary conditions𝑉(0) = 0 and𝑉(x) =𝑉0 > 0 on the boundary 𝜕U. The problem with this approach
is that the PDE cannot be strictly elliptic at the equilibrium
at the origin and the standard theory for existence and
uniqueness of solutions to PDE does not apply. Making a cut-
out of some small neighbourhood B containing the origin
from the domainA and solving the PDE onA\B instead can
ensure strict ellipticity and hence existence and uniqueness of
the solution; compare, for example, [20, Theorem 6.14], and
better yet, solving 𝐿𝑉(x) = 0 so that solutions satisfy both
a minimum and a maximum principle (of elliptic PDE) will
guarantee that the minima and the maxima of𝑉 are taken on
the boundary and with 𝑉 = 0 on 𝜕B and 𝑉 = 1 on 𝜕A we
automatically have 0 ≤ 𝑉 ≤ 1 onA \ B.

Even if the PDE is not strictly elliptic, aswill happen if𝑄 <𝑑, the condition 𝐿𝑉(x) < 0 instead of 𝐿𝑉(x) = 0 means that
one has more room to actually compute numerically a true
Lyapunov function, rather than a numerical approximation
of a function we know is a Lyapunov function, as done in [21]
where solutions to the PDE are interpreted in the viscosity
sense. This will be discussed briefly in Section 4.

Despite these advantages, the cut-out of course removes
the equilibrium itself from the domain of the Lyapunov
function and one must take care off that the null solution is
actually stable. In Section 2,we describe the details of how this
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can be achieved by using a different (local) Lyapunov function
on a superset of the cut-out set B. In Section 3, we show an
example of our approach and in Section 4,we draw a roadmap
of how the results in Section 2 can be used to develop a general
method to give rigid estimates of 𝛾-BOAof reasonable size for
practical applications.

1.1. Notation. We denote a (column)-vector x = (𝑥1, 𝑥2,. . . , 𝑥𝑑)⊤ in R𝑑 in boldface and its transpose by x⊤. We also
write the matrix-valued function g : R𝑑 → R𝑑×𝑄 in boldface.
We denote the Euclidian norm of a vector x by ‖x‖ and for a
matrix ‖ ⋅ ‖ denotes the induced matrix norm. We denote the
scalar-product of two vectors x, y ∈ R𝑑 by x ⋅ y. We write sets
A ⊂ R𝑑 in calligraphic and denote by A∘ its interior, by A
its closure, by 𝜕A its boundary, and by A𝐶 its complement.
We defineR+ fl [0,∞) and denote byN the set of the natural
numbers larger than zero.

A function 𝛼 : R+ → R+ is said to be of class K∞ if
it is continuous, monotonically increasing, 𝛼(0) = 0, and
lim𝑥→∞𝛼(𝑥) = ∞. A function 𝛾 : R+ → R+ is said to be
of class L if it is continuous, monotonically decreasing, and
lim𝑥→∞𝛾(𝑥) = 0. A function 𝛽 : R2+ → R+ is said to be of
classKL if 𝑟 󳨃→ 𝛽(𝑟, 𝑠) is of classK∞ for every fixed 𝑠 ∈ R+
and 𝑠 󳨃→ 𝛽(𝑟, 𝑠) is of classL for every fixed 𝑟 ∈ R+.

We write P and E for probability and expectation,
respectively.The underlying probability spaces should always
be clear from the context. Conditional probabilities and
expectations are denoted by P(⋅ | ⋅) and E(⋅ | ⋅), respectively.
We denote the characteristic function of a set A by 1A.
The abbreviation a.s. stands for almost surely, that is, with
probability one, and a.s.= means equal a.s. ByL𝑝(R+,R𝑑) and
L𝑝(R+,R𝑑×𝑄), we denote the set of allR𝑑-valued andR𝑑×𝑄-
valued adapted processes (Y(𝑡))𝑡∈R+

such that ∫𝑇
0

‖Y(𝑠)‖𝑝𝑑𝑠 <∞ a.s. for all 𝑇 ∈ R+. Finally, 𝑎 ∧ 𝑏 fl min(𝑎, 𝑏).
2. Stochastic Differential Equations
and Stability

Stochastic differential equations (SDEs) often come up
when modeling a physical system described by an ODE and
perturbing this system with noise, corresponding to either
uncertainty, measurement error, or unknown complications
in the system.The stochastic integral as presented by Itô is in
some sense the natural way to approach the situation when
the underlying deterministic system responds causally to the
noise. This is the case for example when describing financial
markets when it is instrumental that the noise has no
autocorrelation. In cases when the noise is an effective model
of some unknown and/or complicated dynamic subsystem,
then it can be more natural to represent this via the so-called
Stratonovich stochastic integral. In this paper, we shall restrict
our attention to the Itô stochastic integral since a Stratonovich
approach is easily represented by a slightly modified Itô
system. We study the stability of the origin of the SDE of Itô
type

𝑑X (𝑡) = f (X (𝑡)) 𝑑𝑡 + g (X (𝑡)) 𝑑W (𝑡) , (3)

where f : R𝑑 → R𝑑 and g : R𝑑 → R𝑑×𝑄 are (globally)
Lipschitz continuous functions; that is, there exists a 𝐾 > 0
such that󵄩󵄩󵄩󵄩f (x) − f (y)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩g (x) − g (y)󵄩󵄩󵄩󵄩 ≤ 𝐾 󵄩󵄩󵄩󵄩x − y󵄩󵄩󵄩󵄩

∀x, y ∈ R
𝑑, (4)

and such that f(0) = 0 and g(0) = 0.
We consider strong solutions to (3), that is, given a

filtered probability space (Ω,F, (F𝑡)𝑡≥0,P) satisfying the
usual conditions (F complete, (F𝑡)𝑡≥0 right continuous, F0
containing allF null sets), aR𝑄-valued BrownianmotionW
defined on [𝑡0,∞), and anF𝑡0 measurable initial distribution
Z fulfilling E{‖Z‖2} < ∞, an R𝑑-valued stochastic process
X defined on [𝑡0,∞) is called a (unique) solution to (3) if it
has the following properties (cf., e.g., [22, Section 2.3], [23,
Section 21]):

Existence

(i) 𝑡 󳨃→ X(𝑡) is continuous a.s. andF𝑡-adapted.
(ii) The processes 𝑡 󳨃→ f(X(𝑡)) and 𝑡 󳨃→ g(X(𝑡)) belong to

L1(R+,R𝑑) andL2(R+,R𝑑×𝑄), respectively.
(iii) For every 𝑡 ≥ 𝑡0, the equation

X (𝑡) = Z + ∫𝑡
𝑡0

f (X (𝑠)) 𝑑𝑠 + ∫𝑡
𝑡0

g (X (𝑠)) 𝑑W (𝑠) (5)

holds a.s. The second integral is interpreted in the Itô
sense.

Uniqueness. Any solution Y to (3) is indistinguishable from
X; that is, for every 𝑡 ≥ 0, we have X(𝑡) a.s.= Y(𝑡).

For deterministic initial solutions, that is, X(𝑡0) = Z =
x ∈ R𝑑 a.s., we write Xx for the solution.

The following theorem provides the standard solution
theory, the backdrop to our study of stability later.

Theorem 1. The SDE (3) with initial distribution Z has a
unique solution XZ. Further, 𝑡 󳨃→ XZ(𝑡) is a strong Markov
process; that is, for every bounded Borel-measurable function𝜑 : R𝑑 → R, anyF𝑡-stopping-time 𝜏 < ∞ a.s., and any 𝑡 ≥ 0,
we have

E {𝜑 (XZ (𝜏 + 𝑡)) | F𝜏}
= E {𝜑 (XZ (𝜏 + 𝑡)) | XZ (𝜏)} . (6)

For a proof of the last theorem, compare, for example,
[22, Section 2.3 and Theorem 2.9.3]. Note that since we have
f(0) = 0 and g(0) = 0 the Lipschitz condition implies the
so-called linear growth condition.

A plethora of concepts are in use concerning the stability
of SDEs. Here we will be concerned with the so-called
asymptotic stability in probability of the zero solution [24,(5.15)], also referred to as stochastic asymptotic stability [22,
Definition 4.2.1]. For a more detailed discussion of the
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stability of SDEs, see the books by Khasminskii [24] or Mao
[22]. For completeness, we recall the definitions of stability in
probability and asymptotic stability in probability.

Definition 2 (stability in probability). The null solution
X(𝑡) a.s.= 0 to the SDE (3) is said to be stable in probability
(SiP) if for every 𝑟 > 0 and every 0 < 𝜀 < 1 there exists a𝛿 > 0 such that

‖x‖ ≤ 𝛿 implies P{sup
𝑡≥0

󵄩󵄩󵄩󵄩Xx (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑟} ≥ 1 − 𝜀. (7)

Definition 3 (asymptotic stability in probability (ASiP)). The
null solution X(𝑡) a.s.= 0 to the SDE (3) is said to be
asymptotically stable in probability (ASiP) if it is SiP and in
addition for every 0 < 𝜀 < 1 there exists a 𝛿 > 0 such that

‖x‖ ≤ 𝛿 implies P { lim
𝑡→∞

󵄩󵄩󵄩󵄩Xx (𝑡)󵄩󵄩󵄩󵄩 = 0} ≥ 1 − 𝜀. (8)

Our definitions of SiP andASiP are equivalent to themore
common

lim
‖x‖→0

P{sup
𝑡>0

󵄩󵄩󵄩󵄩Xx (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑟} = 1
∀𝑟 > 0 for SiP and additionally

lim
‖x‖→0

P{lim sup
𝑡→∞

󵄩󵄩󵄩󵄩Xx (𝑡)󵄩󵄩󵄩󵄩 = 0} = 1 for ASiP.
(9)

The reason for our formulation is that we want to look at
a more practical concept related to such stability, namely,
stochastic analog of the BOA in the stability theory for
deterministic systems. We therefore back from the limit
x → 0 and consider the following instead: Given some
confidence 0 < 𝛾 ≤ 1how far from the origin the sample paths
can start and still approach the equilibrium as 𝑡 → ∞ with
probability greater than or equal to 𝛾. This is the motivation
for the next definition.

Definition 4 (𝛾-basin of attraction (𝛾-BOA)). Consider sys-
tem (3) and let 0 < 𝛾 ≤ 1. One refers to the set

{x ∈ R
𝑑 : P { lim

𝑡→∞

󵄩󵄩󵄩󵄩Xx (𝑡)󵄩󵄩󵄩󵄩 = 0} ≥ 𝛾} (𝛾-BOA) (10)

as the 𝛾-basin of attraction or short 𝛾-BOA.
Note that a 1-BOA corresponds to the usual BOA for

deterministic systems.
For the SDE (3), the associated generator is given by

𝐿𝑉 (x) fl ∇𝑉 (x) ⋅ f (x)
+ 12
𝑑∑
𝑖,𝑗=1

[g (x) g (x)⊤]𝑖𝑗 𝜕2𝑉𝜕𝑥𝑖𝜕𝑥𝑗 (x)
(11)

for some appropriately differentiable 𝑉 : U → R with U ⊂
R𝑑. Notice that this is just the drift term in the expression
for the stochastic differential of the process 𝑡 󳨃→ 𝑉(X(𝑡));

compare (1). As discussed in the Introduction, the generator
for a stochastic system corresponds to the orbital derivative
of a deterministic system.

Definition 5 (local Lyapunov function). Consider system (3).
A function 𝑊 ∈ 𝐶(N) ∩ 𝐶2(N \ {0}), where 0 ∈ N ⊂ R𝑑

is a domain, is called a (local) Lyapunov function for system
(3) if there are functions 𝜇1, 𝜇2, 𝜇3 ∈ K∞, such that𝑊 fulfills
the properties:

(i) 𝜇1(‖x‖) ≤ 𝑊(x) ≤ 𝜇2(‖x‖) for all x ∈ N.
(ii) 𝐿𝑊(x) ≤ −𝜇3(‖x‖) for all x ∈ N \ {0}.

Remark 6. It is of vital importance that 𝑊 is not necessarily
differentiable at the equilibrium, because otherwise a large
number of systems with an ASiP null solution do not possess
a Lyapunov function; compare [24, Remark 5.5].

The following theorem provides the first centerpiece of
Lyapunov stability theory for our application; compare [24,
Theorem 5.5 and Corollary 5.1].

Theorem7. If there exists a local Lyapunov function𝑊: N →
R+ as in Definition 5 for system (3), then the null solution is
ASiP. Further, let 𝑊𝑚𝑎𝑥 > 0 and assume that 𝑊−1([0,𝑊𝑚𝑎𝑥])
is a compact subset of N. Then, for every 0 < 𝛽 < 1, the set𝑊−1([0, 𝛽𝑊𝑚𝑎𝑥]) is a subset of the (1 − 𝛽)-BOA of the origin.

Proof. That the null solution is ASiP follows directly by [24,
Theorem 5.5 and Corollary 5.1].

To prove the second assertion fix 0 < 𝛽 < 1 and an
arbitrary x ∈ 𝑊−1([0, 𝛽𝑊max]). We must show that

P { lim
𝑡→∞

Xx (𝑡) = 0} ≥ 1 − 𝛽. (12)

Let 𝜌 fl inf{𝑡 > 0 : Xx(𝑡) ∉ 𝑊−1([0,𝑊max])} be the first exit-
time of the process 𝑡 󳨃→ Xx(𝑡) from𝑊−1([0,𝑊max]).Then 𝜌 is
a stopping-time and using identical argumentation as in the
proof of [24, Theorem 5.5], we note that a.s. on {𝜌 = ∞} we
have lim𝑡→∞‖Xx(𝑡)‖ = 0. It thus suffices to show that P{𝜌 =∞} ≥ 1 − 𝛽.

By [24, Lemma 5.4] the stochastic process 𝑡 󳨃→ 𝑊(Xx(𝜌∧𝑡)) is a supermartingale; compare also Remark 8. Therefore

𝛽𝑊max ≥ 𝑊(x) ≥ E [𝑊 (Xx (𝜌 ∧ 𝑡))]
= E [1 {𝜌 ≥ 𝑡}𝑊 (Xx (𝑡)) + 1 {𝜌 < 𝑡}𝑊 (Xx (𝜌))]
≥ E [1 {𝜌 < 𝑡}𝑊 (Xx (𝜌))] = P {𝜌 < 𝑡}𝑊max

(13)

for any 𝑡 > 0. Since {𝜌 < ∞} = ⋃𝑛∈N{𝜌 < 𝑛}, we can take
limits to get 𝛽 ≥ P{𝜌 < ∞}. Hence

P {𝜌 = ∞} = 1 − P {𝜌 < ∞} ≥ 1 − 𝛽 (14)

which proves the theorem.

Remark 8. If the condition𝐿𝑊(x) < 0 is violated, even at only
one point x ∈ N\{0}, one cannot conclude that 𝑡 󳨃→ 𝑊(Xx(𝑡∧𝜌)) is a supermartingale; compare [24, p. 149].The reasonwhy
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𝐿𝑊(x) ≤ 0 does not have to hold true at the equilibrium at
the origin is because it is so-called inaccessible point of the
SDE, compare again [24, p. 149], meaning that

P {∃𝑡 > 0 : Xx (𝑡) = 0} = 0 for every x ̸= 0. (15)

Instead of trying to compute a local Lyapunov function
for system (3) on a large domain N, we suggest to compute
it on a small N, for example, by using linearization, and
then to compute a nonlocal Lyapunov function, defined
below, to compute a reasonably sized rigid estimate on the
equilibrium’s 𝛾-BOA. The advantages of this procedure were
explained in the Introduction and are addressed again in
Section 4, where we give a roadmap of our approach.

Definition 9 (nonlocal Lyapunov function). Let A,B ⊂ R𝑑,
B ⊂ A∘, be simply connected compact neighbourhoods of
the originwith𝐶2 boundaries and setU fl A\B∘. A function𝑉 ∈ 𝐶2(U) for system (3) such that

(1) 0 ≤ 𝑉(x) ≤ 1 for all x ∈ U, 𝑉−1(0) = 𝜕B, 𝑉−1(1) =𝜕A, and either
(2a) 𝐿𝑉(x) < 0 for all x ∈ U or
(2b) 𝐿𝑉(x) ≤ 0 and g(x)g(x)⊤ is positive definite for all

x ∈ U,

is called a nonlocal Lyapunov function for system (3). We
refer to 𝜕A as the outer boundary ofU and 𝜕B as the inner
boundary ofU.

Lemma 10. Assume system (3) has a nonlocal Lyapunov
function𝑉 ∈ 𝐶2(U) as in Definition 9 and let x ∈ U = A\B∘.
Let 𝜏 fl inf{𝑡 > 0 : Xx(𝑡) ∉ U} be the exit-time fromU. Then

P {𝜏 < ∞} = 1,
P ({𝑋x (𝜏) ∈ 𝜕B}) ≥ 1 − 𝑉 (x) . (16)

Proof. We first assume that 𝑉 fulfills (2a) in Definition 9 and
set ℎ fl −maxx∈U𝐿𝑉(x) and note that since the solution
process remains inU for all 𝑠 ∈ [0, 𝑡∧𝜏], we get by [24, Lemma
3.2] and the nonnegativity of 𝑉 that

0 ≤ E {𝑉 (Xx (𝜏 ∧ 𝑡))}
= 𝑉 (x) + E{∫𝜏∧𝑡

0
𝐿𝑉 (Xx (𝑠)) 𝑑𝑠}

≤ 𝑉 (x) − ℎE {𝜏 ∧ 𝑡} ≤ 𝑉 (x) .
(17)

Now

E {𝜏 ∧ 𝑡} = E {1 {𝑡 > 𝜏} 𝜏 + 1 {𝑡 ≤ 𝜏} 𝑡} ≥ P {𝑡 ≤ 𝜏} 𝑡, (18)

and then

0 ≤ ℎP {𝑡 ≤ 𝜏} 𝑡 ≤ ℎE {𝜏 ∧ 𝑡} ≤ 𝑉 (x) ∀𝑡 > 0. (19)

Taking the limit 𝑡 → ∞ delivers P{∞ ≤ 𝜏} = 0 and then
P{𝜏 < ∞} = 1.

If the condition (2b) in Definition 9 is fulfilled (instead
of condition (2a)), then, by [20,Theorem 6.14], it follows that
the boundary value problem

𝐿𝑈 (x) = −1 ∀x ∈ U,
𝑈 (x) = 0 ∀x ∈ 𝜕B,
𝑈 (x) = 1 ∀x ∈ 𝜕A

(20)

has a solution 𝑈 ∈ 𝐶2(U). Just as above with 𝑈 substituted
for 𝑉, it follows that P{𝜏 < ∞} = 1.

For the second proposition of the lemma define the
stopping-times 𝜏𝜕A fl inf{𝑡 > 0 : Xx(𝑡) ∈ 𝜕A} and 𝜏𝜕B fl
inf{𝑡 > 0 : Xx(𝑡) ∈ 𝜕B} and observe that 𝜏 = 𝜏𝜕A ∧ 𝜏𝜕B a.s.
because 𝑡 󳨃→ Xx(𝑡) is continuous a.s. Now

𝑉 (Xx (𝜏)) = 1 {Xx (𝜏) ∈ 𝜕B} ⋅ 𝑉 (Xx (𝜏𝐵))
+ 1 {Xx (𝜏) ∈ 𝜕A} ⋅ 𝑉 (Xx (𝜏𝐴)) (21)

and then

E {𝑉 (Xx (𝜏))} = P {Xx (𝜏) ∈ 𝜕B} ⋅ 0
+ P {Xx (𝜏) ∈ 𝜕A} ⋅ 1

= P {Xx (𝜏) ∈ 𝜕A} ;
(22)

that is, we have

1 − P {Xx (𝜏) ∈ 𝜕B} = P {Xx (𝜏) ∈ 𝜕A}
= E {𝑉 (Xx (𝜏))} ≤ 𝑉 (x) (23)

because P{𝜏 < ∞} = 1, which completes the proof.

We now show how to combine a local Lyapunov function
and a nonlocal one to get a rigorous lower bound on 𝛾-BOA.
For the schematic representation of the interrelation between
the (sub)level sets in Theorem 11 see Figure 1.

Theorem 11. Consider system (3) and assume there exist a
local Lyapunov function𝑊: N → R+ as in Definition 5 and a
nonlocal Lyapunov function𝑉 : U → R+ as in Definition 9 for
the system. Assume further that the constants 𝑊𝑚𝑎𝑥 > 0 and0 < 𝛽 < 1 from Theorem 7 and the constants 0 < 𝜆 < 𝛼 < 1
and the setB from Lemma 10 are such that

𝑊−1 (𝑊𝑚𝑎𝑥) ⊂ 𝑉−1 ([0, 𝜆]) ,
𝜕B = 𝑉−1 (0) ⊂ 𝑊−1 ([0, 𝛽𝑊𝑚𝑎𝑥]) . (24)

Then the set 𝑉−1([0, 𝛼]) ∪ B is a subset of the 𝛾-BOA of the
origin, where 𝛾 fl (1 − 𝛼)(1 − 𝛽)/(1 − 𝛽(1 − 𝜆)).
Proof. Let x ∈ B∪𝑉−1([0, 𝛼]) be arbitrary but fixed.Wemust
show that

P { lim
𝑡→∞

Xx (𝑡) = 0} ≥ (1 − 𝛼) (1 − 𝛽)
1 − 𝛽 (1 − 𝜆) . (25)
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Figure 1: A schematic figure of the (sub)level sets in Theorem 11.
Outward from the equilibrium (thick dot): 𝜕B = 𝑉−1(0) ⊂𝑊−1([0, 𝛽𝑊max]) ⊂ 𝑊−1([0,𝑊max]) and then 𝑉−1([0, 𝜆]) ⊂𝑉−1([0, 𝛼]) ⊂ 𝑉−1([0, 1]) = 𝜕A. In particular, 𝑊−1(𝑊max) ⊂𝑉−1([0, 𝜆]). The local Lyapunov function 𝑊 asserts that a solution
starting in the innermost area leaves the red area with probability
no higher than 𝛽 and the nonlocal Lyapunov function 𝑉 asserts
that a solution leaving the red area goes to the innermost area with
probability no less than 1 − 𝜆.

Define the stopping-times 𝜏𝜕A(y) fl inf{𝑡 > 0 : Xy(𝑡) ∈ 𝜕A},𝜏𝜕B(y) fl inf{𝑡 > 0 : Xy(𝑡) ∈ 𝜕B}, and 𝜏(y) fl 𝜏𝜕A(y)∧𝜏𝜕B(y). In the following, we suppress the argument of
stopping-times (as usual) if it can be seen from the context.
Define for every y ∈ 𝑉−1([0, 𝛼]) ∪ B the event

𝐸 (y) fl {∃𝑡 > 0 : Xy (𝑡) ∈ 𝜕A} . (26)

Note that since 𝜕A is closed and the sample paths are
continuous a.s., we have 𝐸(y) a.s.= {𝜏𝜕A < ∞}.

Let us first assume x ∈ 𝑉−1([0, 𝛼]); we deal with the case
x ∈ B below. Then

𝐸 (x) = {Xx (𝜏) ∈ 𝜕A}
∪ ({Xx (𝜏) ∈ 𝜕B} ∩ {∃𝑡 > 𝜏 : Xx (𝑡) ∈ 𝜕A}) . (27)

Because the events {Xx(𝜏) ∈ 𝜕A} and {Xx(𝜏) ∈ 𝜕B} are
disjoint we have

P (𝐸 (x)) = P {Xx (𝜏) ∈ 𝜕A}
+ P ({Xx (𝜏) ∈ 𝜕B} ∩ {∃𝑡 > 𝜏 : Xx (𝑡) ∈ 𝜕A})
= P {Xx (𝜏) ∈ 𝜕A}
+ P ({∃𝑡 > 𝜏 : Xx (𝑡) ∈ 𝜕A} | {Xx (𝜏) ∈ 𝜕B})
⋅ P {Xx (𝜏) ∈ 𝜕B} .

(28)

The strong Markov property of 𝑡 󳨃→ Xx(𝑡) (cf. Theorem 1)
delivers (cf., e.g., [25, Theorem 7.2.4] or [24, Theorem 2.9.5])

P ({∃𝑡 > 0 : XXx(𝜏) (𝑡) ∈ 𝜕A} | {Xx (𝜏) ∈ 𝜕B})
= P ({∃𝑡 > 𝜏 : Xx (𝑡) ∈ 𝜕A} | {Xx (𝜏) ∈ 𝜕B}) . (29)

Define

𝑃 fl sup
y∈𝜕B

P (𝐸 (y)) . (30)

Now ](G) fl P{Xx(𝜏) ∈ G}/P{Xx(𝜏) ∈ 𝜕B}, G ⊂ 𝜕B a
Borel set with respect to the relative topology of 𝜕B, defines
a probabilitymeasure on 𝜕B and, for example, by [23, Lemma
8.7], we get

P ({∃𝑡 > 0 : XXx(𝜏) (𝑡) ∈ 𝜕A} | {Xx (𝜏) ∈ 𝜕B})
= ∫
𝜕B

P (𝐸 (y)) ] (𝑑y) ≤ 𝑃∫
𝜕B

] (𝑑y) = 𝑃. (31)

Further, because P{𝜏 < ∞} = 1 by Lemma 10, we have
P{Xx(𝜏) ∈ 𝜕B} = 1 − P{Xx(𝜏) ∈ 𝜕A} and we get from (28)
the estimate

P (𝐸 (x)) ≤ P {Xx (𝜏) ∈ 𝜕A}
+ (1 − P {Xx (𝜏) ∈ 𝜕A}) 𝑃 (32)

which together with P{Xx(𝜏) ∈ 𝜕A} ≤ 𝛼 and the fact that𝑃 ≤ 1 implies

P (𝐸 (x)) ≤ 𝛼 + (1 − 𝛼) 𝑃. (33)

Similarly, we get for every y ∈ 𝑉−1([0, 𝜆]) that
P (𝐸 (y)) ≤ 𝜆 + (1 − 𝜆) 𝑃. (34)

Now let z ∈ 𝜕B be arbitrary and define the stopping-time𝜌 fl inf{𝑡 > 0 : Xz(𝑡) ∈ 𝑊−1(𝑊max)}. Then

P (𝐸 (z)) = P ({𝜌 < ∞} ∩ {∃𝑡 > 𝜌 : Xz (𝑡) ∈ 𝜕A})
= P ({∃𝑡 > 𝜌 : Xz (𝑡) ∈ 𝜕A} | {𝜌 < ∞})P {𝜌 < ∞} . (35)

The assumption 𝜕B ⊂ 𝑊−1([0, 𝛽𝑊max]) delivers by
Lemma 10 that P{𝜌 < ∞} ≤ 𝛽. By using the assumption𝑊−1(𝑊max) ⊂ 𝑉−1([0, 𝜆]) we can show just as above that

P ({∃𝑡 > 𝜌 : Xz (𝑡) ∈ 𝜕A} | {𝜌 < ∞})
≤ 𝜆 + (1 − 𝜆) 𝑃. (36)

Thus

P (𝐸 (z)) ≤ [𝜆 + (1 − 𝜆) 𝑃] 𝛽 (37)

and especially

𝑃 ≤ [𝜆 + (1 − 𝜆) 𝑃] 𝛽, i.e. 𝑃 ≤ 𝛽𝜆1 − 𝛽 (1 − 𝜆) . (38)

Plugging this estimate for 𝑃 into (33) delivers

1 − P (𝐸 (x)) ≥ 1 − 𝛼 + (1 − 𝛼) (−𝑃)
≥ (1 − 𝛼) (1 − 𝛽)

1 − 𝛽 (1 − 𝜆)
(39)

for every x ∈ 𝑉−1([0, 𝛼]).
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That estimate (39) also holds true if x ∈ B ⊂𝑊−1([0, 𝛽𝑊max]) can be seen from the fact that estimate (37)
is clearly valid for any z ∈ 𝑊−1([0, 𝛽𝑊max]). Combining (37)
and (38) and noting that 0 < 𝛼 we get

1 − P (𝐸 (x)) ≥ 1 − 𝛽1 − 𝛽 (1 − 𝜆) > (1 − 𝛼) (1 − 𝛽)
1 − 𝛽 (1 − 𝜆) . (40)

We finish the proof by showing that 𝐸(x)𝐶 a.s.= {𝜏𝜕A =∞} is equal to {lim𝑡→∞Xx(𝑡) = 0} a.s. Note first that 𝑡 󳨃→
Xx(𝑡) cannot stay inA \ B for an infinitely long contiguous
time interval a.s. by Lemma 10. Second, as in the proof of
Theorem 7, we have lim𝑡→∞Xx(𝑡) = 0 a.s. if 𝑡 󳨃→ Xx(𝑡)
stays in𝑊−1([0,𝑊max]) for an infinitely long contiguous time
interval. Thus {𝜏𝜕A = ∞} ∩ {lim𝑡→∞Xx(𝑡) ̸= 0} implies the
following event a.s.:

There exists a sequence of increasing times (𝑡𝑛)𝑛∈N,𝑡𝑛 → ∞, such that Xx(𝑡2𝑛−1) ∈ 𝜕B and Xx(𝑡2𝑛) ∈𝜕𝑊−1(𝑊max) for all 𝑛 ∈ N.

Because 𝜕B ⊂ 𝑊−1([0, 𝛽𝑊max]) and 𝑊−1(𝑊max) ⊂ 𝑉−1([0,𝜆]) and by what we have showed above the probability of this
event is no larger than 𝛽 ⋅ (1 − 𝜆) ⋅ 𝛽 ⋅ (1 − 𝜆) ⋅ ⋅ ⋅ = 0, which
completes the proof.

Remark 12. Note that in the proof of Theorem 11 the condi-
tions on f and g in (3) need only to hold withinA, because we
stop our solutions at the boundary 𝜕A, and therefore f and g
can be altered outside ofAwithout changing the conclusions
of the theorem. It thus suffices that f and g fulfill the Lipschitz
condition (4) on A, which is, for example, always the case if
f and g are locally Lipschitz.

3. Worked Out Example

We consider an example to show how our approach works.
Because we do not want to consider appropriate methods
to solve the relevant PDEs in this paper we consider a 1-
dimensional example, but a highly nonlinear one.The system
is given by the SDE

𝑑𝑋 (𝑡) = 𝑎 ⋅ sin𝑋(𝑡) 𝑑𝑡 + 𝑏 ⋅ 𝑋 (𝑡)
1 + 𝑋 (𝑡)2 𝑑𝑊̃ (𝑡) , (41)

so that our coefficient functions in (3) are given by 𝑓(𝑥) =𝑎 sin𝑥 and 𝑔(𝑥) = 𝑏𝑥/(1 + 𝑥2) and we have only a single
Wiener process, denoted by 𝑊̃ because we reserve 𝑊 for the
local Lyapunov function, driving the noise.

We first compute a local Lyapunov function for (41) as in
Definition 5 using the ansatz 𝑊(𝑥) = |𝑥|𝑝 with 0 < 𝑝 < 1.
Direct calculations with 𝑥 ̸= 0 reveal

𝑊󸀠 (𝑥) = 𝑝 |𝑥|𝑝𝑥 ,
𝑊󸀠󸀠 (𝑥) = −𝑝 (1 − 𝑝) |𝑥|𝑝−2 ,

(42)

so

𝐿𝑊 (𝑥) = 𝑓 (𝑥)𝑊󸀠 (𝑥) + 12𝑔2 (𝑥)𝑊󸀠󸀠 (𝑥)
= 𝑎 sin𝑥 ⋅ 𝑝 |𝑥|𝑝𝑥

+ 𝑏22 𝑥2
(1 + 𝑥2)2 (−𝑝 (1 − 𝑝) |𝑥|𝑝−2)

= −𝑝 |𝑥|𝑝(𝑏2 (1 − 𝑝)
2 (1 + 𝑥2)2 − 𝑎 sin𝑥𝑥 ) .

(43)

We fix 𝑎 = 1, 𝑏 = 3, and 𝑝 = 1/2. This corresponds to the
deterministic system 𝑥̇ = sin𝑥with an unstable null solution.
The noise, however, stabilizes the null solution, which can
be seen from 𝐿𝑊(𝑥) < 0 for all 𝑥 ∈ [−2−1/2, 2−1/2] \ {0} ≈[−0.70711, 0.70711] \ {0} because then

9
4 (1 + 𝑥2)2 ≥ 1 > sin 𝑥𝑥 . (44)

Thus {±2−1/2} = 𝑊−1(𝑊max) with 𝑊max fl 2−1/4. To compute
a rigid lower estimate [−𝑟1−𝛽, 𝑟1−𝛽] on the (1 − 𝛽)-BOA of the
equilibrium using 𝑊 we can, by Theorem 7 and because 𝑊
is an even function, solve 𝑊(𝑟1−𝛽) = 𝛽𝑊max. Thus 𝑟1−𝛽 =
𝛽22−1/2. In the following we use 𝛽 = 0.02 which delivers𝑟0.98 = 4 ⋅ 10−4 ⋅ 2−1/2 ≈ 2.828 ⋅ 10−4.

To enlarge our estimate we solve the PDE 𝐿𝑉(𝑥) = 0
(note that 𝑔(𝑥)2 > 0 for 𝑥 ̸= 0) with the boundary conditions𝑉(10−4) = 0 and𝑉(𝜋𝑘/2) = 1with 𝑘 = 5; compare Lemma 10
and Theorem 11. Because the system is 1-dimensional the
PDE is also an ODE and can be conveniently solved with the
shooting method. With the initial conditions 𝑉(10−4) = 0
and 𝑉󸀠(10−4) = 0.00157296, we get 𝑉(2.5𝜋) = 0.99998 using
a very conservative step-size of 10−5. This corresponds to
B = [−10−4, 10−4] and A = [−2.5𝜋, 2.5𝜋]. From the results
(cf. Figure 2), we can estimate 𝑉−1([0, 0.09]) ⊃ [−5.77, 5.77]\B and 𝑉−1([0, 2 ⋅ 10−4]) ⊃ [−0.75, 0.75] \ B. This corre-
sponds to 𝛼 = 0.09 and 𝜆 = 2 ⋅ 10−4. Note that by
extending𝑉(𝑥) canonically for negative 𝑥, we have {±10−4} =𝑉−1(0) ⊂ [−𝑟0.98, 𝑟0.98] = 𝑊−1([0, 𝛽𝑊max]) and {±2−1/2} =𝑊−1(𝑊max) ⊂ [−0.75, 0.75] \ B ⊂ 𝑉−1([0, 𝜆]). Thus
Theorem 11 delivers that [−5.77, 5.77] is affirmed to be
contained in the 𝛾-BOA of the equilibrium at the origin with

𝛾 = (1 − 𝛼) (1 − 𝛽)
1 − 𝛽 (1 − 𝜆) = (1 − 0.09) (1 − 0.02)1 − 0.02 (1 − 2 ⋅ 10−4) ≈ 0.91. (45)

For comparison we get the rigid bound 𝑟1−0.1 = 0.12 ⋅2−1/2 = 0.00707, that is, [−0.00707, 0.00707] on the 0.9-
BOA, if we only use the local Lyapunov function 𝑊. Our
combined method thus delivers a considerably larger set
that is affirmed to be contained in the equilibrium’s 0.9-
BOA, namely, [−5.77, 5.77] instead of [−0.00707, 0.00707]
from the local Lyapunov function. For different 𝛾 the results
are comparable. In Figure 2 we show nonlocal Lyapunov
functions computed for the system, not only with 𝑘 = 5 but
also for 𝑘 = 1, 2, 3, 4 to give a better idea of what is happening.
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Figure 2: Nonlocal Lyapunov functions (solid blue) for system (41)
computed on [10−4, 𝜋𝑘/2] with 𝑘 = 1, 2, 3, 4, 5. Since the value 𝑉(𝑥)
is the probability that the solution started at 𝑥 leaves the domain
of the Lyapunov function 𝑉 at the outer boundary, one obviously
gets unnecessary conservative estimates on the 𝛾-BOA if the domain
is too small. Extending the domain beyond ca. 7.5 however does
not lead to notably larger estimates. The local Lyapunov function𝑊(𝑥) = |𝑥|1/2 (dotted red) is plotted on the interval [0, 2−1/2].

4. Conclusions and Further Work

In this paper, we have worked out theory in Theorem 11 for
a method to give rigid estimates on the 𝛾-basin of attraction
(𝛾-BOA) of the null solution as defined in Definition 4 for
stochastic systems given by SDEs (3). We showed how our
method works for a highly nonlinear 1-dimensional system
in Section 3. For higher dimensional systems, one has to
consider appropriate methods for our setting to solve PDEs.

Our roadmap for further advancing the method is as
follows:

(1) Given system (3), we start by finding a local Lyapunov
function 𝑊 : N → R+ as in Definition 5 and an𝑊max > 0 as large as possible, such that 𝑊−1([0,𝑊max]) is a compact subset ofN.

One method for doing this involves linearizing the
system (i.e., the functions f and g) via Taylor expan-
sion around x = 0. For a wide class of systems,
we expect the linearized system to admit locally a
Lyapunov function of the form 𝑊(x) = ‖𝑄x‖𝑝 with0 < 𝑝 < 1 and 𝑄 ∈ R𝑑×𝑑 a positive definite matrix;
compare [24, Theorem 5.12]. We have worked with
our collaborators on a method using sum-of-squares
programming for computing such Lyapunov func-
tions for linear systems and the initial results are
promising [11].

(2) Next we determine a nonlocal Lyapunov function 𝑉 :
A \ B∘ → R+ with A bounded but as large as prac-
tical. This must be done in such a way as to ensure
B ⊂ 𝑊−1([0, 𝛽𝑊max]) and 𝑊−1(𝑊max) ⊂ 𝑉−1([0, 𝜆])
for appropriate 0 < 𝛽, 𝜆 < 1; compare Theorem 11.
From these Lyapunov functions we know that for
every 𝛼, 𝜆 < 𝛼 < 1, the set 𝑉−1([0, 𝛼]) ∪ B is a
subset of the 𝛾-BOA of the null solution, where 𝛾 fl(1 − 𝛼)(1 − 𝛽)/(1 − 𝛽(1 − 𝜆)).

We propose to address this by solving the following
PDE boundary value problem using an appropriate
numerical method:

𝐿𝑉 = −ℎ on A \ B∘,
𝑉 = {{{

0 on 𝜕B,
1 on 𝜕A.

(46)

If the PDE 𝐿𝑉 = −ℎ is strictly elliptic, that is, the
matrix g(x)g(x)⊤ is positive definite for all x ∈ A\
B∘, then the PDE possesses a unique solution; com-
pare, for example, [20, Theorem 6.14]. In this case,
we can set ℎ = 0 and from a rigid error estimate
of the numerical approximate solution to the unique
solution, we can compute rigid sublevel sets of 𝑉 and
thus give rigid lower bounds on 𝛾-BOA.
If the PDE 𝐿𝑉 = −ℎ is not strictly elliptic, then we
suggest fixing ℎ > 0. In this case, we must be sure that
the solution 𝑉 we compute numerically really fulfills𝐿𝑉(x) < 0 for all x ∈ A \B∘ and that its sublevel sets
are compatiblewithTheorem 11.That is, the computed
function must be a true nonlocal Lyapunov function
for the system and not just an approximation!

We are optimistic that our suggested method to compute
rigid estimates to 𝛾-BOA can be developed into a useful tool
for the study of stochastic systems, both in practice and in
theory.
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