
Numerical ODE solvers and integration methods in the computation of
CPA Lyapunov functions

Sigurdur Freyr Hafstein∗,1

Abstract— Recently, several publications have been pub-
lished, where continuous and piecewise-affine Lyapunov func-
tions are constructed for nonlinear systems by numerically
computing their values on a grid and then interpolating these
values over the simplices of a simplicial complex. The value
of such a Lyapunov function is computed at a grid point
by numerically solving an initial-value problem and then
integrating a positive definite function of the solution on a
given time-interval. In this paper we systematically investigate
how different initial-value solution methods compare in this
application. Further, we propose a method to compute the
integrals that is superior to former approaches.

I. INTRODUCTION

We consider a general ordinary differential equation
(ODE) of the form

x′ = f(x), where f : Rd → Rd and f(0) = 0. (1)

If f is locally Lipschitz the ODE (1) has a unique solution t 7→
φ(t,ξ ) for every initial-value ξ ∈Rd and defines a dynamical
system. The stability of the equilibrium at the origin, i.e. the
constant solution t 7→ φ(t,0)= 0, is usually studied within the
framework of the Lyapunov stability theory. Its centerpiece,
the Lyapunov function, is a scalar-valued function V from the
state-space of the system, that has a minimum at the origin
and is decreasing along all solution trajectories of the system
in a neighbourhood of the equilibrium at the origin. If the
Lyapunov function is C1 the latter condition is equivalent to
its orbital derivative being negative in a neighbourhood of
the origin, i.e.

V ′(x) :=
d
dt

φ(t,x)
∣∣∣∣
t=0

= ∇V (x) • f(x)< 0, ∀x ∈N \{0},

where N ⊂Rd is an open neighbourhood of the origin. If V
is merely locally Lipschitz the same proposition holds true
with the orbital derivative defined as the Dini-derivative

V ′(x) := limsup
h→0+

V (x+hf(x))−V (x)
h

. (2)

The condition that V has a minimum at the origin is usually
stated

V (0) = 0 and V (x)> 0 if x 6= 0.

The usefulness of the Lyapunov function comes from the
fact that if one exists for the system (1), then the origin is

*This research was supported by the Icelandic Research Fund (Rannı́s) in
grants number 163074-052 and 152429-051, Complete Lyapunov functions:
Efficient numerical computation and Lyapunov Methods and Stochastic
Stability respectively.

1Sigurdur Freyr Hafstein is with the Science Institute, University of
Iceland, Dunhagi 5, 107 Reykjavk, Iceland shafstein@hi.is

asymptotically stable and if the connected component of the
sublevel-set

LV,m := {x ∈ Rd : V (x)≤ m}

containing the origin is a compact subset of the open
neighbourhood N , then it is a subset of the origin’s basin
of attraction. This holds for every m > 0. We denote the in-
tersection of this connected component and N by L cc

V,m(0).
Thus if there exists a Lyapunov function V for the system
(1) and L cc

V,m(0)⊂⊂ Rd (compact subset), then

x ∈L cc
V,m(0) implies lim

t→∞
φ(t,x) = 0.

If local stability is a sufficiently strong concept for the
problem at hand, one often resorts to linearizing the system
(1) at the origin. It is well known that if the Jacobian A :=
Df(0)∈Rd×d is Hurwitz, i.e. all its eigenvalues have strictly
negative real parts, then V (x) = xT Px is a Lyapunov function
for the system, where P ∈ Rd×d is the (unique) symmetric
and positive definite solution to the so-called Lyapunov
equation, a particular case of the Sylvester equation [35],
PA+PAT = −I, I ∈ Rd×d being the identity matrix. Indeed
‖P−1‖−1‖x‖2 ≤V (x)≤ ‖P‖‖x‖2 and V ′(x) =−‖x‖2, where
‖ • ‖ denotes the Euclidian norm.

If a reasonably sized lower bound on the basin of attraction
for a nonlinear system is needed, one must resort to more
advanced methods to compute a Lyapunov function for the
system, that does take its nonlinearities into account.

II. LYAPUNOV FUNCTIONS FOR NONLINEAR SYSTEMS

For the reasons discussed in the last section there have
been numerous methods proposed in the literature to generate
Lyapunov functions for nonlinear systems. To name a few
[30], [8], [9], [31], [1] parameterize Lyapunov functions that
are the sums-of-squared (SOS) polynomials, see also the
software [29]. For other polynomial methods cf. e.g. [32],
[24], [34] and in particular [36], where the Zubov equation
[39] is solved. Some other methods that rely on solving the
Zubov equation are [7], [13]. In [23], [22], [26], [17] linear
programming is used to parameterize Lyapunov functions,
see also the software [4]. For an overview of numerical
methods to compute Lyapunov functions see the recent
review [15].

One approach is to approximate numerically formulas
for Lyapunov functions [2], [18], [10], [11] from classical
converse theorems [27], [38], [25] in the Lyapunov stability
theory. These converse theorems assert the existence of
Lyapunov functions for systems with asymptotically stable

2019 18th European Control Conference (ECC)
Napoli, Italy, June 25-28, 2019

978-3-907144-01-5 ©2018 EUCA 1136



equilibria and give formulas, in terms of the systems’s solu-
tion, for these Lyapunov functions. Because these formulas
include the solutions to the systems, that are in general not
obtainable for nonlinear systems, one resorts to approximate
their values at a finite number of points. The Lyapunov
function must be decreasing along solution trajectories in
a whole neighbourhood of the equilibrium in question. If
this cannot be asserted the constructed (Lyapunov) function
is of little use, i.e. an approximation to a Lyapunov function
is of little value. Therefore the computed values must be
interpolated such that the resulting function is a true Lya-
punov function in a whole area. This can be achieved by
using the linear programming (LP) problem from [14], but
instead of using LP to compute the values of the Lyapunov
function at the vertices of a simplicial complex, one uses a
formula from a converse theorem to fix its values at the
vertices and then verifies if the linear constraints of the
LP problem are fulfilled using these values. If the linear
constraints are fulfilled for all vertices of a simplex, then the
affine interpolation of these values over the simplex defines
a function, whose orbital derivative is negative along all
solution trajectories passing through this simplex. This was
already shown in [2].

In this paper we will study different ODE solvers in this
regard. The values V (x) of a potential Lyapunov functions
are computed on a grid using the formula

V (x) =
∫ T

0
α(φ(τ,x))dτ, (3)

where α :Rd→R is a positive definite function, i.e. α(0)= 0
and α(x) > 0 for x 6= 0, and T > 0 is a constant that is
large enough. These grid points are also the vertices of the
simplices of a triangulation used to create an LP problem as
in [14]. Then these values are written into the variables of the
LP problem and its linear constraints are verified. If the linear
constraints are fulfilled for all vertices of a simplex in the
triangulation, then we can be sure that the function obtained
by interpolating the values at the grid points/vertices over the
simplex is indeed decreasing along solution trajectories on
the simplex. If one of the constraints is not fulfilled or if the
ODE solver failed to deliver a value for one of the vertices,
then we cannot guarantee that the function is decreasing
along solution trajectories on that particular simplex. By
counting the simplices where we can guarantee the decrease
condition, we have a quantitative measure on how well the
different ODE solution methods perform in this particular
application.

Before we discuss the different ODE solution methods we
compared, we propose a more exact numerical integration of
the integral (3) than used in [3], [5], [19], [20].

III. THE NUMERICAL INTEGRATION

An approximation to the solution of system (1) with a
particular initial-value φ(0,ξ ) = ξ is computed at N + 1

equally distributed time points on the time interval [0,T ]:

φ i ≈ φ(ti,ξ ) at ti =
iT
N

for i = 0 : N, where (4)

N = 2nm, m,n ∈ N and m is not divisible by 2.

Here as elsewhere 0 : N is an abbreviation for 0,1, . . . ,N. The
integral in (3) for V (ξ ) is then approximated using a variant
of the Romberg integration, cf. e.g. [33]. Set αi := α(φ i)
for i = 0 : N. First, we use the composite Trapezoidal rule to
approximate Iξ =V (ξ ) using N,N/2, . . . ,m intervals. For this
define recursively N0 :=N and Nk+1 :=Nk/2 for k = 0 : n−1.
Define hk := T/Nk for k = 0 : n and B := (α0 +αN)/2. We
set

Trapk = hk

(
B+

Nk−1

∑
j=1

α j2k

)
for k = 0 : n. (5)

It is well known that in the ideal case that αi = α(φ(ti,ξ ))
we have that Trapk = Iξ +O(h2

k) and by using extrapolation
we get, using the tableau

Rr,0 := Trapr for r = 0 : n (6)

and then for s = 1 : n,

Rr,s =
4sRr,s−1−Rr+1,s−1

4s−1
for 0≤ r ≤ n− s, (7)

that R0,n = Iξ +O(h2(n+1)) with h = h0 = T/N = T/(2nm)
as the length of the interval between two consecutive time-
points the solution is computed at.

The advantage of using this formula is that Trapk can be
computed by setting Trapk = 0 for k= 0 : n, and then updating
the values without the need to store old results of α j, j < i.
When φ i is computed we add αi to Trapk, if and only if i/2k

is an integer. This can easily be implemented in C/C++ as:

1 int r=i,k=0;
2 double alpha_i = alpha(phi_i);
3 Trap[k++] += value;
4 while(r%2 == 0){ // or !(r&1)
5 r /= 2; // or r >>= 1;
6 Trap[k++] += alpha_i;
7 }
8

In [2], [5], [19], [20] the composite Simpson’s rule was used
to integrate the integral (3). This corresponds in our novel
approach to using R0,1 as an approximation of the integral.

IV. THE ODE SOLUTION METHODS

For our comparison of numerical ODE solution methods
we used the Euler method and Runge-Kutta methods of
order 4 and 6, all of which are explicit one-step methods,
the Adams-Bashforth explicit multi-step methods of order 4
and 5, and the Adams-Bashforth-Moulton predictor-corrector
multi-step methods of order 4 and 5. The Euler method
is only of first order, i.e. φ i = φ(ti,ξ ) + O(hk) for k = 1
and with 0 ≤ ti ≤ T and h = ti+1− ti. Note, however, that
the order is quite misleading because the constant implicitly
hidden in O(hk) can grow exponentially with T . The order
of the other methods also refers to k in this formula, but they

1137



also have the same problem with the implicit constant. Note
that we did not consider variable step-size methods. One of
the reasons is that they would additionally complicate the
numerical integration over the solutions.

For reference we write the formulas for the methods used.
Here ti = ih, and φ i is the approximation to the solution
t 7→ φ(t,ξ ) of x′ = f(x) at time ti, in particular φ 0 = ξ , and
fi = f(φ i).

Euler method:
φ i+1 = φ i +hfi

Runge-Kutta of order 4 (RK 4):

φ i+1 = φ i +
1
6
(k1 +2k2 +2k3 +k4)

k1 = hfi

k2 = hf(φ i +k1/2)
k3 = hf(φ i +k2/2)
k4 = hf(φ i +k3)

Runge-Kutta of order 6 (RK 6):

φ i+1 = φ i +
h

160
(23k1 +58k3 +58k4−k5−k6 +23k7)

k1 = hfi

k2 = hf(φ i +k1)

k3 = hf(φ i +4/9k1 +2/9k2)

k4 = hf(φ i +11/36k1 +1/9k2−1/12k3)

k5 = hf(φ i +151/36k1 +29/9k2−7/4k3−6k4)

k6 = hf(φ i−112/9k1−116/9k2 +32/3k3 +18k4

−2k5)

k7 = hf(φ i−5/4k1−29/23k2 +397/276k3

+152/69k4−10/69k5 +1/69k6)

Adams-Bashforth four-step method (AB 4); of order 4:

φ i+1 = φ i +
h

24
(55fi−59fi−1 +37fi−2−9fi−3)

Adams-Bashforth five-step method (AB 5); of order 5:

φ i+1 = φ i +
h

720
(1901fi−2774fi−1 +2616fi−2

−1274fi−3 +251fi−4)

Adams-Bashforth-Moulton predictor-corrector method of or-
der 4 (ABM 4); four-step predictor and three-step corrector:

φ i+1 = φ i +
h

24
(9̃fi+1 +19fi−5fi−1 +5fi−2)

φ̃ i+1 = φ i +
h

24
(55fi−59fi−1 +37fi−2−9fi−3)

f̃i+1 = f(φ̃ i+1)

Adams-Bashforth-Moulton predictor-corrector method of or-
der 5 (ABM 5); five-step predictor and four-step corrector:

φ i+1 = φ i +
h

720
(251̃fi+1 +646fi−264fi−1 +106fi−2

−19fi−3)

φ̃ i+1 = φ i +
h

720
(1901fi−2774fi−1 +2616fi−2

−1274fi−3 +251fi−4)

f̃i+1 = f(φ̃ i+1)

A few comments are in order. The Euler method is only
included for reference; we expect it to be the fastest but
also to deliver the worst results because it is only of order
one. The standard Runge-Kutta method of order 4 (RK 4)
is often considered to be the workhorse of ODE solvers;
it is easy to implement and fairly accurate. Further, if one
wants a higher-order Runge-Kutta method than four one
needs at least one more ki as an intermediate step than the
order of the method, cf. [6], where we also got our Runge-
Kutta method of order 6 from. Note that there are several
Runge-Kutta Methods of any order. We expect the Adams-
Bashforth multi-step methods to be faster than the Runge-
Kutta methods, because no intermediate steps (the kis) are
needed. Indeed, one uses the previous values of φ j, j < i,
when computing φ i, hence the name ‘multi-step methods’.
The initial steps were computed using the RK 6 method.
The Adams-Bashforth-Moulton predictor-corrector methods
use the Adams-Bashforth multi-step methods to predict the
value at next step, but then try to improve it using a step of
the implicit Adams-Moulton method of same order. All these
methods are commonly discussed in introductory books on
numerical solutions to ODE, cf. e.g. [33]. A more detailed
discussion is given in, for example, [21].

V. THE RESULTS

As our benchmark systems to compare the different ODE
solution methods for our application we choose three of the
systems investigated in [20], where they were studied using
the Adams-Bashforth method of fourth-order (AB 4) to solve
the initial-value problems and the composite Simpson’s rule
was used to compute the numerical integrals. The upper-
bounds Bν

i, j in the LP problem were fixed with the same
values as there and we we refer the interested reader to
that paper for more detailed information on the setup, the
results, and their interpretation. Here we only compare the
performance and the quality of the results of the different
ODE solution methods. Two different functions α : Rd →R
are used in the integral (3), the canonical α(x) = ‖x‖2, which
delivers the formula

V (x) =
∫ T

0
‖φ(τ,x)‖2dτ (1a,2a,3a) (8)

for the Lyapunov function candidate and the results from this
integral are labelled (1a) for Example 1, (2a) for Example
2, and (3a) for Example 3. We also use a more advanced
α that was shown in [19], [20] to deliver superior results in

1138



Euler’s Method for reference
Example Results F Computation time

1a 1,214,782 of 8,000,000 Failed (15.184775%) F Computed in 55.1 seconds
1b 1,429,778 of 8,000,000 Failed (17.872225%) F Computed in 77.7 seconds
2a 1,991,636 of 8,000,000 Failed (24.89545%) F Computed in 29.7 seconds
2b 1,996,344 of 8,000,000 Failed (24.9543%) F Computed in 52.2 seconds
3a 7,770,876 of 24,000,000 Failed (32.37865%) F Computed in 31.8 seconds
3b 8,694,822 of 24,000,000 Failed (36.22843%) F Computed in 31.8 seconds
3b† 8,851,776 of 24,000,000 Failed (36.8824%) F Computed in 3.65 seconds

RK 4 AB 4 ABM 4 AB 5 ABM 5 RK 6
Ex. Failed F Time Failed F Time Failed F Time Failed F Time Failed F Time Failed F Time
1a -20.72% F +322% -21.04% F +50% -20.70% F +169% -20.83% F +63% -20.70% F +169% -20.72% F +654%
1b -53.80% F +229% -53.89% F +38% -53.80% F +119% -53.84% F +40% -53.80% F +122% -53.80% F +455%
2a -0.835% F +378% -0.835% F +93% -0.835% F +257% -0.835% F +115% -0.835% F +247% -0.835% F +768%
2b -0.962% F +218% -0.962% F +51% -0.962% F +139% -0.962% F +64% -0.962% F +137% -0.962% F +435%
3a +0.122% F +386% +0.122% F +94% +0.122% F +253% +0.122% F +125% +0.122% F +277% +0.122% F +816%
3b -0.480% F +377% -0.481% F +51% -0.480% F +139% -0.480% F +64% -0.480% F +137% -0.480% F +829%
3b† -0.826% F +336% -2.029% F +116% -0.703% F +262% +8.211% F +141% -0.904% F +262% -0.830% F +708%

TABLE I
THE RESULTS OF OUR NUMERICAL EXPERIMENTS SUMMARIZED IN TWO TABLES. THE UPPER TABLE GIVES ABSOLUTE VALUES FOR THE EULER

METHODS AND THE LOWER GIVES VALUES RELATIVE TO THE EULER METHOD FOR THE OTHER METHODS. FOR A DETAILED DISCUSSION OF THE

RESULTS AND THE EXAMPLES SEE THE TEXT IN SECTION V.

the sense, that a much larger lower bound on the basin of
attraction can be asserted. The formula is

V (x) =
∫ T

0

‖φ(τ,x)‖2

δ +‖φ(τ,x)‖p dτ, (1b,2b,3b,3b†) (9)

where the parameters δ and p are specifically chosen for the
system at hand. The corresponding results are labelled (1b)
for Example 1, (2b) for Example 2, and (3b) and (3b†) for
Example 3.

Example 1 is a planar system from [12],

x′ = f(x) with f(x,y) =
(

−x+ y
0.1x−2y− x2−0.1x3

)
. (Ex.1)

We set T = 20 in the formulas (8) and (9) for a Lyapunov
function, and for the latter we set δ = 0.6 and p = 1.2. The
grid used for the vertices of the simplices was in both cases
2001× 2001 with 4,004,001 points/vertices and 8,000,000
simplices/triangles. The computation of the Lyapunov func-
tion using formula (8) was done on the rectangle [−20,20]2

and the computation of the Lyapunov function using formula
(9) was done on the rectangle [−20,20]× [−40,40]. In both
cases we used N = 1,000 in (4). Since 1,000 = 23 ·125 the
numerical integration method is of order 2 · (3+1) = 8

Example 2 is a planar system from [37],

x′= f(x) with f(x,y)=
(
−0.84x−1.44y−0.3xy
0.54x+0.34y+0.3xy

)
. (Ex.2)

Again we set T = 20 in formulas (8) and (9) and for the latter
we set δ = 0.3 and p= 1.4. As in Example 1 the grid used for
the vertices of the simplices was 2001×2001 with 4,004,001
points/vertices and 8,000,000 simplices/triangles. The com-
putation of the Lyapunov function using both formula (8)
and formula (9) was done on the rectangle [−8,8]× [−2,8]

and again we used N = 1,000 in (4); thus the numerical
integration is of order 8.

Example 3 is a three-dimensional system from [16], also
studied in [28]:

x′ = f(x) with f(x,y,z) =

−x+ y+ z2

−y+ xy
−z

 . (Ex.3)

We set T = 10 in formulas (8) and (9) and for latter we set
δ = 1 and p = 2. The grid was in both cases 201×201×101
with 4,080,501 points and 24,000,000 simplices/tetrahedra.
The computation of the Lyapunov function using both for-
mula (8) and (9) was done on the cube [−8,3]× [−3,8]×
[−2,2]. Here we used N = 1,000 in (3a) and (3b), resulting
in a numerical integration method of order 8. In (3b†) we did
an experiment with N = 100, which results in a numerical
integration method of order 6, but much faster computations.

The results for these examples are presented in Table
I. In the upper table we give absolute numbers for the
computational times and results when using the Euler method
for all the systems. For the interpretation of the results we
exemplary discuss the first line: ‘1a’ means that on the right
are the results for Example 1 using formula (8) (1b would
mean that formula (9) is used). ‘1,214,782 of 8,000,000
Failed’ means that in 1,214,782 of the 8,000,000 trian-
gles/simplices the method failed to guarantee that the orbital
derivative of the corresponding Lyapunov function candidate
has a negative orbital derivative on the triangle/simplex. The
reason for this can be threefold. First, it might be that the
orbital derivative is actually negative on the simplex, if we
were able to compute the values of (8) or (9) exactly, but
that our method fails to delivers values that are good enough.
Second, it might be that the orbital derivative is not negative
on the simplex, even when using exact values. Third, it might

1139



be that the Lyapunov function candidate using formulas (8)
or (9) is not defined on the simplex, because of finite-time
blowup of solutions. Anyways, we would like this number to
be as low as possible and this number is the ‘quality’ measure
we have on the different ODE solution methods for our
application. ‘Computed in 55.1 seconds’ is self explanatory.
The computer used had an i7-7700K CPU (4 cores@4.2GHz)
and the methods were coded in C++.

In the lower table we give results for the other numerical
ODE solution methods relative to the Euler method. Again
let us explain the table by discussing its first line: ‘1a’ has
the same meaning as in the table above. ‘-20.72%’ (Failed)
means that in 1,214,782 · (1−0.2072) = 963,079 simplices
the RK 4 method failed to guarantee the negativity of the
orbital derivative, i.e. in 20.72% fewer simplices than the
Euler method, which is a much improved result. ‘+322%’
(Time) means that the RK 4 methods needed 322% more
time than the Euler method, i.e. 55.1 · (1 + 3.22) = 233
seconds, to deliver the results.

Additional to the results in the table we also run Exam-
ple 1b with a computer with a faster CPU (i9-7900X, 10
cores@3.3GHz), to see how well the method parallelizes.
It needed 272 seconds vs. the 432 seconds the i7-7700K
needed, i.e. about 37% less time, which is not too far
off from a simply estimated maximum improvement of
4× 4.2GHz/(10 · 3.3GHz) ≈ 51%. Thus, as expected, this
method to compute CPA Lyapunov functions parallelizes
quite well with the number of cores.

VI. DISCUSSION

From the results in Table I we conclude that the Adams-
Bashforth method of fourth order (AB 4) is the most appro-
priate method to evaluate the Lyapunov function candidate at
the vertices of the triangulation. It need about 50-100% more
time than the Euler method, but delivers considerably better
results. Using a higher-order Adams-Bashforth method (AB
5) adds very little to the quality of the results at the cost of
ca. 10% added computational time.

Somewhat surprisingly the addition of an Adams-Moulton
correction step does not seem to have any positive effect
on the quality of the results and that, not so surprisingly,
at the considerable cost of ca. 75% added computational
time. The Runge-Kutta methods deliver just as good results
as the Adams-Bashforth methods, but are computationally
much more expensive because of their intermediate steps.

Note that this conclusion is drawn from our somewhat
limited computational experience. A more detailed study
might consider other parameters, for example, the minimum
size of time-steps for the ODE solution methods to deliver
qualitatively good results, more ODE solution methods,
higher-dimensional systems, etc.

VII. CONCLUSIONS

We compared several ordinary differential equation solu-
tion methods for the numerical computation of Lyapunov
function candidates for nonlinear systems. The Lyapunov
function candidates are computed by approximating their

values at the vertices of the simplices a triangulation and then
interpolation these values over the simplices. The quality
of the results can be quantified as the proportion of the
simplices, of which we can guarantee that the Lyapunov
function candidate is decreasing along solution trajectories
of the system. Our results indicate that the Adams-Bashforth
multi-step method of fourth order (AB 4) is the most effective
method in terms of the quality of the results and the compu-
tational time. Further, we presented a Romberg integration
scheme for our application, which allows for the numerical
integration over solution trajectories with higher accuracy at
practically none added computational cost in comparison to
earlier approaches.

REFERENCES

[1] J. Anderson and A. Papachristodoulou. Advances in computational
Lyapunov analysis using sum-of-squares programming. Discrete
Contin. Dyn. Syst. Ser. B, 20(8):2361–2381, 2015.

[2] J. Björnsson, P. Giesl, S. Hafstein, C. Kellett, and H. Li. Computation
of continuous and piecewise affine Lyapunov functions by numerical
approximations of the Massera construction. In Proceedings of the
CDC, 53rd IEEE Conference on Decision and Control, Los Angeles
(CA), USA, 2014.

[3] J. Björnsson, P. Giesl, S. Hafstein, C. Kellett, and H. Li. Computation
of Lyapunov functions for systems with multiple attractors. Discrete
Contin. Dyn. Syst. Ser. A, 35(9):4019–4039, 2015.

[4] J. Björnsson, Gudmundsson, and S. Hafstein. Class library in C++ to
compute Lyapunov functions for nonlinear systems. In Proceedings
of MICNON, 1st Conference on Modelling, Identification and Control
of Nonlinear Systems, number 0155, pages 788–793, 2015.

[5] J. Björnsson and S. Hafstein. Efficient Lyapunov function com-
putation for systems with multiple exponentially stable equilibria.
Procedia Computer Science, 108:655–664, 2017. Proceedings of the
International Conference on Computational Science (ICCS), Zurich,
Switzerland, 2017.

[6] J. Butcher. On Runge-Kutta processes of high order. J. Austral. Math.
Soc., 4(2):179–194, 1964.

[7] F. Camilli, L. Grüne, and F. Wirth. A generalization of Zubov’s method
to perturbed systems. SIAM J. Control Optim., 40(2):496–515, 2001.

[8] G. Chesi. LMI techniques for optimization over polynomials in
control: a survey. IEEE Trans. Automat. Control, 55(11):2500–2510,
2010.

[9] G. Chesi. Domain of Attraction: Analysis and Control via SOS
Programming. Springer, 2011.

[10] A. Doban. Stability domains computation and stabilization of non-
linear systems: implications for biological systems. PhD thesis:
Eindhoven University of Technology, 2016.

[11] A. Doban and M. Lazar. Computation of Lyapunov functions for
nonlinear differential equations via a Yoshizawa-type construction.
IFAC-PapersOnLine, 49(18):29 – 34, 2016.

[12] R. Genesio, M. Tartaglia, and A. Vicino. On the estimation of
asymptotic stability regions: State of the art and new proposals. IEEE
Trans. Automat. Control, 30(8):747–755, 1985.

[13] P. Giesl. Construction of Global Lyapunov Functions Using Radial
Basis Functions. Lecture Notes in Math. 1904, Springer, 2007.

[14] P. Giesl and S. Hafstein. Revised CPA method to compute Lyapunov
functions for nonlinear systems. J. Math. Anal. Appl., 410:292–306,
2014.

[15] P. Giesl and S. Hafstein. Review of computational methods for
Lyapunov functions. Discrete Contin. Dyn. Syst. Ser. B, 20(8):2291–
2331, 2015.

[16] O. Hachicho and B. Tibken. Estimating domains of attraction of a
class of nonlinear dynamical systems with LMI methods based on the
theory of moments,. In Proceedings of the 41th IEEE Conference on
Decision and Control (CDC), pages 3150–3155, Los Angeles (CA),
USA, 2002.

[17] S. Hafstein. An algorithm for constructing Lyapunov functions,
volume 8 of Monograph. Electron. J. Diff. Eqns., 2007.

[18] S. Hafstein, C. Kellett, and H. Li. Computing continuous and
piecewise affine Lyapunov functions for nonlinear systems. Journal
of Computational Dynamics, 2(2):227 – 246, 2015.

1140



[19] S. Hafstein and A. Valfells. Study of dynamical systems by fast
numerical computation of Lyapunov functions. In Proceedings of
the 14th International Conference on Dynamical Systems: Theory and
Applications (DSTA), volume Mathematical and Numerical Aspects of
Dynamical System Analysis, pages 220–240, 2017.

[20] S. Hafstein and A. Valfells. Efficient computation of Lyapunov
functions for nonlinear systems by integrating numerical solutions.
submitted, 2018.

[21] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I: Nonstiff Problems. Springer, 3rd edition, 2008.

[22] T. Johansen. Computation of Lyapunov functions for smooth, nonlin-
ear systems using convex optimization. Automatica, 36:1617–1626,
2000.

[23] P. Julian, J. Guivant, and A. Desages. A parametrization of piecewise
linear Lyapunov functions via linear programming. Int. J. Control,
72(7-8):702–715, 1999.

[24] R. Kamyar and M. Peet. Polynomial optimization with applications
to stability analysis and control – an alternative to sum of squares.
Discrete Contin. Dyn. Syst. Ser. B, 20(8):2383–2417, 2015.

[25] C. Kellett. Converse Theorems in Lyapunov’s Second Method.
Discrete Contin. Dyn. Syst. Ser. B, 20(8):2333–2360, 2015.

[26] S. Marinósson. Lyapunov function construction for ordinary differ-
ential equations with linear programming. Dynamical Systems: An
International Journal, 17:137–150, 2002.

[27] J. Massera. Contributions to stability theory. Annals of Mathematics,
64:182–206, 1956. (Erratum. Annals of Mathematics, 68:202, 1958).

[28] L. Matallana, A. Blanco, and J. Bandoni. Estimation of domains of
attraction: A global optimization approach. Math. Comput. Modelling,
52(3-4):574–585, 2010.

[29] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler,

and P. Parrilo. SOSTOOLS: Sum of Squares Optimization Toolbox for
MATLAB. User’s guide. Version 3.00 edition, 2013.

[30] P. Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimiza. PhD thesis: California
Institute of Technology Pasadena, California, 2000.

[31] M. Peet and A. Papachristodoulou. A converse sum of squares
Lyapunov result with a degree bound. IEEE Trans. Automat. Control,
57(9):2281–2293, 2012.

[32] S. Ratschan and Z. She. Providing a basin of attraction to a
target region of polynomial systems by computation of Lyapunov-like
functions. SIAM J. Control Optim., 48(7):4377–4394, 2010.

[33] T. Sauer. Numerical Analysis. Pearson, 2nd edition, 2012.
[34] Z. She, H. Li, B. Xue, Z. Zheng, and B. Xia. Discovering polynomial

Lyapunov functions for continuous dynamical systems. J. Symbolic
Comput., 58:41–63, 2013.

[35] J. Sylvester. Sur l’equation en matrices px=xq. C. R. Acad. Sci. Paris.,
99(2):67–71, 115–116, 1884.

[36] A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and
domains of attraction for autonomous nonlinear systems. Automatica,
21(1):69–80, 1985.

[37] W. Wang and S. Ruan. Bifurcations in an epidemic model with
constant removal rate of infectives. J. Math. Anal. Appl., 291(1):775–
793, 2004.

[38] T. Yoshizawa. Stability theory by Liapunov’s second method. Publica-
tions of the Mathematical Society of Japan, No. 9. The Mathematical
Society of Japan, Tokyo, 1966.

[39] V. I. Zubov. Methods of A. M. Lyapunov and their application.
Translation prepared under the auspices of the United States Atomic
Energy Commission; edited by Leo F. Boron. P. Noordhoff Ltd,
Groningen, 1964.

1141


