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Abstract. Algorithms that parameterize continuous and piecewise
affine Lyapunov functions for nonlinear systems, both in continuous and
discrete time, have been proposed in numerous publications. These algo-
rithms generate constraints that are linear in the values of a function
at all vertices of a simplicial complex. If these constraints are fulfilled
for certain values at the vertices, then they can be interpolated on the
simplices to deliver a function that is a Lyapunov function for the sys-
tem used for their generation. There are two different approaches to
find values that fulfill the constraints. First, one can use optimization to
compute appropriate values that fulfill the constraints. These algorithms
were originally designed for continuous-time systems and their adapta-
tion to discrete-time systems and control systems poses some challenges
in designing and implementing efficient algorithms and data structures
for simplicial complexes. Second, one can use results from converse the-
orems in the Lyapunov stability theory to generate good candidates for
suitable values and then verify the constraints for these values. In this
paper we study several efficient data structures and algorithms for these
computations and discuss their implementations in C++.

Keywords: Simplicial complex · Algorithm · Lyapunov function
Nonlinear system

1 Introduction

A Lyapunov function V for a dynamical system is a continuous function from
the state-space to the real numbers that has a minimum at an equilibrium and
is decreasing along the system’s trajectories. For a continuous-time system given
by a differential equation x′ = f(x) the decrease along solution trajectories can
be ensured by the condition

DfV (x) := ∇V (x) • f(x) < 0. (1)

For a discrete-time system xk+1 = g(xk) the corresponding condition is

ΔgV (x) := V (g(x)) − V (x) < 0. (2)
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In [13,19,32] novel algorithms for the computation of Lyapunov functions
for nonlinear discrete-time systems were presented. In these algorithms the rel-
evant part of the state-space is first triangulated, i.e. subdivided into simplices,
and then a continuous and piecewise affine (CPA) Lyapunov function is param-
eterized by fixing its values at the vertices of the simplices. These algorithms
resemble earlier algorithms for the computation of Lyapunov functions for non-
linear continuous-time systems, cf. e.g. [4,15,16,24,25,33,34], referred to as the
CPA algorithm. The essential idea is to formulate the conditions for a Lyapunov
function as linear constraints in the values of the Lyapunov function to be com-
puted at the vertices of the simplices of the simplicial complex.

The implementation of these algorithms for discrete-time systems can be done
similarly to the continuous-time case. First a simplicial complex is constructed
that triangulates the relevant part of the state-space. Then an appropriate linear
programming problem for the system at hand is generated, of which any feasible
solution parameterizes a Lyapunov function for the system. Then one either
uses a linear programming solver, e.g. GLPK or Gurobi, to search for a feasible
solution, or one uses results from converse theorems in the Lyapunov stability
theory to compute values that can be expected to fulfill the constraints and
then verifies if these computed values constitute a feasible solution to the linear
programming problem.

The non-locality of the dynamics in the discrete-time case, however, poses
an additional challenge in implementing the construction of a suitable simplicial
complex and the generation of the linear constraints in an efficient way. Namely,
whereas the condition (1) for a continuous-time system is a local condition that
can be formulated as linear constraints for each simplex, the condition (2) for
a discrete-time system is not local. For a vertex x of a simplex Sν in the tri-
angulation T we must be able find a simplex Sμ ∈ T such that g(x) ∈ Sμ to
formulate this condition as linear constraints and we must know the barycen-
tric coordinates of g(x) in Sμ. For triangulations consisting of many simplices a
linear search is very inefficient and therefore more advanced methods are called
for.

The first contribution of this paper is an algorithm that efficiently searches for
a simplex Sμ ∈ T such that x ∈ Sμ and computes its barycentric coordinates for
fairly general simplicial complexes, that were specially designed for our problem
of computing Lyapunov functions.

The CPA algorithm has additionally been adapted to compute Lyapunov
functions for differential inclusions [2] and control Lyapunov functions [3] in the
sense of Clarke’s subdifferential [9]. The next logical step is to compute control
Lyapunov functions in the sense of the Dini subdifferential, a work in progress
with promising first results. For these computations one needs information on the
common faces of neighbouring simplices in the simplicial complex and detailed
information on normals of the hyperplanes separating neighbouring simplices.
Efficient algorithms and data structures for these computations are presented.
This is the second contribution of this paper.
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The third contribution is an algorithms to compute circumscribing hyper-
spheres of the simplices of the simplicial complex. These can be used to imple-
ment more advanced algorithms for the computation of Lyapunov functions for
discrete-time systems, also a work in progress.

The fourth contribution is an efficient algorithm combining the four-step
Adam-Bashforth method for initial-value problems and Simpson’s Rule for
numerical integration to approximate values of a Lyapunov function from a
converse theorem in the Lyapunov stability theory [35] at the vertices of the
simplicial complex. We also undertake a detailed error analysis of our approach.

The first three contributions are the same as in [18] but improved and
advanced in numerous ways. We discuss more general functions F in Sect. 3 than
in [18] and in all three the algorithms and data structures have been tweaked
for performance. For example, Stroustrup’s statements, e.g. [42], motivated us
to replace linked lists with vectors in several places, and because the old code
relied on member functions of stl::list the code had to be adapted to use
stl::vector and/or suitable functions from stl::algorithm where appropri-
ate. Further, care must be taken to avoid methods that are inheritably inefficient
for vectors. We try to keep the discussion largely self-contained, but to keep it
at a reasonable length we avoid repetitions of material presented in [18] that is
not necessary to understand the approach here. We thus refer to [18] for numer-
ous issues and more detailed results and keep the same notation. The fourth
contribution has not been published in any form before.

Before we describe our algorithms in Sects. 2.1 and 3, we first discuss suit-
able triangulations for the computation of CPA Lyapunov functions in Sect. 2.
In Sect. 4 we describe, analyze and give the implementation of our method to
approximate a Lyapunov function from a converse theorem at the vertices of a
simplicial complex and in Sect. 5 we sum up the contributions give a few con-
cluding remarks.

1.1 Notation

We denote by Z, N0, R, and R+ the sets of the integers, the nonnegative inte-
gers, the real numbers, and the nonnegative real numbers respectively. For inte-
gers r, s ∈ Z, r < s, we write r : s for r, r + 1, . . . , s. We write vectors in
boldface, e.g. x ∈ R

n and y ∈ Z
n, and their components as x1, x2, . . . , xn

and y1, y2, . . . , yn. All vectors are assumed to be column vectors unless speci-
fied otherwise. An inequality for vectors is understood to be component-wise,
e.g. x < y means that all the inequalities x1 < y2, x2 < y2, . . . , xn < yn

are fulfilled. The null vector in R
n is written as 0 and the standard orthonor-

mal basis as e1, e2, . . . , en, i.e. the i-th component of ej is equal to δi,j , where
δi,j is the Kronecher delta, equal to 1 if i = j and 0 otherwise. The scalar
product of vectors x,y ∈ R

n is denoted by x • y, the Euclidean norm of x
is denoted by ‖x‖2 :=

√
x • x, and the maximum norm of x is denoted by

‖x‖∞ := maxi=1:n |xi|. The transpose of a vector x is denoted by xT and simi-
larly the transpose of a matrix A ∈ R

n×m is denoted by AT . For a nonsingular
matrix A ∈ R

n×n we denote its inverse by A−1 and the inverse of its transpose
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by A−T . This should not lead to misunderstandings since (A−1)T = (AT )−1. In
the rest of the paper n and in the code the global variable const int n is the
dimension of the Euclidean space we are working in.

We write sets K ⊂ R
n in calligraphic and we denote the closure, interior, and

the boundary of K by K, K◦, and ∂K respectively.
The convex hull of an (m + 1)-tuple (v0,v1, . . . ,vm) of vectors

v0,v1, . . . ,vm ∈ R
n is defined by

co(v0,v1, . . . ,vm) :=

{
m∑

i=0

λivi : 0 ≤ λi,

m∑
i=0

λi = 1

}
.

If v0,v1, . . . ,vm ∈ R
n are affinely independent, i.e. the vectors v1 − v0,v2 −

v0, . . . , vm −v0 are linearly independent, the set co(v0,v1, . . . ,vm) is called an
m-simplex. For a subset {vi0 ,vi1 , . . . ,vik

}, 0 ≤ k < m, of affinely independent
vectors {v0,v1, . . . ,vm}, the k-simplex co(vi0 ,vi1 , . . . ,vik

) is called a k-face of
the simplex co(v0,v1, . . . ,vm). Note that simplices are usually defined as convex
combinations of vectors in a set and not of ordered tuples, i.e. co{v0,v1, . . . ,vm}
rather than co(v0,v1, . . . ,vm). For the implementation of the simplicial com-
plexes below it is however very useful to stick to ordered tuples. A function
ρ : R+ → R+ is said to be of class K∞ if it is continuous, strictly increasing, and
fulfills ρ(0) = 0 and limx→∞ ρ(x) = ∞.

In the implementations of the algorithms we make heavy use of the Standard
C++ Library and the Armadillo linear algebra library [40]. We thus always
assume in the code that using namespace std and using namespace arma

have been declared. Further, we assume that all the necessary libraries are
accessible. Very good documentation on Armadillo is available at http://arma.
sourceforge.net and some comments on its use for the implementation of the
basic simplicial complex in Sect. 2 are also given in [17]. The vector and matrix
types of Armadillo we use in this paper are ivec, vec, and mat, which represent
a column vector of int, a column vector of double, and a matrix of double

respectively.

2 The Simplicial Complex T std
N,K

In [17] the simplicial complex T std
N,K and its efficient implementation is elabo-

rately described. For completeness we recall its definition but refer to [17] for
the details. To define the simplicial complex T std

N,K we first need several prelimi-
nary definitions.

An admissible triangulation of a set C ⊂ R
n is the subdivision of C into

n-simplices, such that the intersection of any two different simplices in the sub-
division is either empty or a common k-face, 0 ≤ k < n. Such a structure is often
referred to as a simplicial n-complex.

For the definition of T std
N,K we use the set Sn of all permutations of the set

{1 : n}, the characteristic functions χJ (i) equal to one if i ∈ J and equal to
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zero if i /∈ J . Further, we use the functions RJ : Rn → R
n, defined for every

J ⊂ {1 : n} by

RJ (x) :=
n∑

i=1

(−1)χJ (i)xiei.

Thus RJ (x) puts a minus in front of the i-th coordinate of x whenever i ∈ J .
To construct the triangulation T std

N,K , we first define the triangulations T std
N

and T std
K,fan as intermediate steps.

Definition of T std
N,K

1. For every z ∈ N
n
0 , every J ⊂ {1 : n}, and every σ ∈ Sn define the simplex

SzJ σ := co(xzJ σ
0 ,xzJ σ

1 , . . . ,xzJ σ
n ) (3)

where

xzJ σ
i := RJ

⎛
⎝z +

i∑
j=1

eσ(j)

⎞
⎠ for i = 0 : n. (4)

2. Let Nm,Np ∈ Z
n, Nm < 0 < Np, and define the hypercube N := {x ∈ R

n :
Nm ≤ x ≤ Np}. The simplicial complex T std

N is defined by

T std
N := {SzJ σ : SzJ σ ⊂ N}. (5)

3. Let Km,Kp ∈ Z
n, Nm ≤ Km < 0 < Kp ≤ Np, and consider the intersec-

tions of the n-simplices SzJ σ in T std
N and the boundary of the hypercube

K := {x ∈ R
n : Km ≤ x ≤ Kp}. We are only interested in those inter-

sections that are (n − 1)-simplices, i.e. intersections that can be written as
co(v1,v2, . . . ,vn) with exactly n-vertices. For every such intersection add the
origin as a vertex to it, i.e. consider co(0,v1,v2, . . . ,vn). The set of such con-
structed n-simplices is denoted T std

K,fan. It is a triangulation of the hypercube
K.

4. Finally, we define our main simplicial complex T std
N,K by letting it contain all

simplices SzJ σ in T std
N , that have an empty intersection with the interior K◦

of K, and all simplices in the simplicial fan T std
K,fan. It is thus a triangulation

of N having a simplicial fan in K.

The triangulation T std
K,fan of the hypercube K := {x ∈ R

n : Km ≤ x ≤ Kp} is a
straightforward extension of the 3D graphics primitive triangular fan to arbitrary
dimensions. Therefore the term simplicial fan. For a graphical presentation of the
complex T std

N,K with n = 2 see Fig. 1 taken form [18]. For figures of the complex
with n = 3 see Figs. 2 and 3 in [17].
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Fig. 1. The simplicial complex T std
N,K in two dimensions with Km = (−4, −4)T ,Kp =

(4, 4)T ,Nm = (−6, −6)T , and Np = (6, 6)T .

The class T std NK implements the basic simplicial complex T std
N,K is. It is

defined as follows:

1 class T std NK {
2 public:
3 ivec Nm,Np,Km,Kp;
4 Grid G;
5 int Nr0;
6 vector<ivec> Ver;
7 vector<vector<int>> Sim;
8 vector<zJs> NrInSim;
9 vector<int> Fan;

10 int InSimpNr(vec x); // returns -1 if not found
11 bool InSimp(vec x,int s);
12 T std NK(ivec Nm,ivec Np,ivec Km,ivec Kp);
13 // added since (Hafstein, 2013) below
14 vector<vector<int>> SimN;
15 vector<vector<int>> SCV;
16 vector<vector<vector<int>>> Faces;
17 vector<int> BSim;
18 int SVerNr(int s,int i);
19 ivec SVer(int s,int i);
20 };

Nm = Nm and Np = Np define the hypercube N and Km = Km and Kp

= Kp define the hypercube K. vector<ivec> Ver is a vector containing
all the vertices of all the simplices in the complex, the value of int Nr0

is such that Ver[Nr0] is the zero vector, and vector<vector<int>> Sim

is a vector containing all the simplices of the complex. Each simplex is
stored as a vector of (n + 1)-integers, the integers referring to the positions
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of the vertices of the simplex in vector<ivec> Ver. G is a Grid initial-
ized by ivec Nm,Np that is used to enumerate the vertices of T std NK and
vector<int> Fan and vector<zJs> NrInSim are auxiliary structures that
allow for a given x ∈ R

n to efficiently compute an int s such that for
Sν =Sim[s] we have x ∈ Sν . Their properties and implementation is described
in detail in [17]. vector<vector<int>> SimN, vector<vector<int>> SCV,
vector<vecotr<vector<int>>> Faces, and vector<int> BSimp are vari-
ables in the class T std NK that have been added since [17]. Their purpose and
initialization is described in the next section.

2.1 Added Functionality in T std NK

In this section we describe the functionality that has been added to the class
T std NK since [17]. The added functionality is as described in [18] but the imple-
mentation has been made more efficient. To simplify the notation we write T
for the basic simplicial complex T std

N,K from now on. Further we denote the set of
all its vertices by VT and its domain by DT :=

⋃
Sν∈T Sν .

In [17] a fast algorithm is given to compute a simplex Sν ∈ T such that
x ∈ Sν , but fell back on linear search if x was in the simplicial fan T std

K,fan

of T . Under the premise that the simplicial fan is much smaller than the rest
of the simplicial complex this is a reasonable strategy. Therefore we did not
add a fast search structure zJs to vector<zJs> NrInSim for simplices in the
fan. However, for a simplicial complex for which this premise is not fulfilled,
an improved strategy shortens the search time considerably. This might also be
of importance to different computational methods for Lyapunov functions that
use conic partitions of the state-space, a topic that has obtained considerable
attention cf. e.g. [1,8,22,23,28–31,36–39,44].

We achieve this by first adding the simplices in T std
K,fan with appropriate values

for z, J , and σ to vector<zJs> NrInSim. This is very simple to make: In
CODE BLOCK 1 in [17] directly after Fan.push back(SLE); simply add

NrInSim.push back(zJs(z,J,sigma,SLE));.

To actually find such simplices fast through their z, J , σ values a little more
effort is needed. If x ∈ R

n is in the simplicial fan of T , i.e. if Km < x < Kp,
we project x radially just below the boundary of the hypercube K := {y ∈ R

n :
Km ≤ y ≤ Kp}. Thus if originally x ∈ co(0,v1,v2, . . . ,vn) its radial projection
xr, xr := rx with an appropriate r > 0, will be in co(v0,v1,v2, . . . ,vn), where
v0 is the vertex that was replaced by 0 as in step 3 in the definition of T = T std

N,K .
When we compute the appropriate z, J , and σ for xr we will actually get the
position of the simplex co(0,v1,v2, . . . ,vn), because of the changes described
above in CODE BLOCK 1.
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1 int T std NK::InSimpNr(vec x){
2 vec origx=x;
3 if(!(min(Np-x)>=0.0 && min(x-Nm)>=0.0)){
4 // not in the simplicial complex
5 return -1;
6 }
7 if(min(Kp-x)>0.0 && min(x-Km)>0.0){
8 // in the fan
9 double eps = 1e-15;

10 if(norm(x,"inf")>eps) {
11 double r=numeric limits<double>::max();
12 for(int i=0;i<n;i++){
13 if(abs(x(i))>eps){
14 r=min(r,(x(i)>0 ? Kp(i):Km(i))/x(i));
15 }
16 }
17 x ∗= r∗(1-eps);
18 }
19 else{
20 // be careful, use linear search
21 for(int i=0;i<Fan.size();i++){
22 if(InSimp(x,Fan[i])){
23 return Fan[i];
24 }
25 }
26 }
27 }
28 // compute the zJs of the simplex,
29 // for details cf. (Hafstein, 2013)
30 int J=0;
31 ivec z(n),sigma;
32 for(int i=0;i<n;i++){
33 if(x(i)<0){
34 x(i)=-x(i);
35 J|=1<<i;
36 }
37 z(i)=static cast<int>(x(i));
38 }
39 sigma=conv to<ivec>::from(sort index(x-z,1));
40 // find and return the appropriate simplex
41 auto found=
42 equal range(NrInSim.begin(),NrInSim.end(),zJs(z,J,sigma));
43 // If one wants to be sure everything is OK
44 assert(found.first!=found.second);
45 assert(InSimp(origx,found.first->Pos));
46 return found.first->Pos;
47 }
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The simplices are stored as a vector of vector<int>, the integers being indices
of vertices in vector<ivec> Ver. Thus vector<vector<int>> Sim contains
the simplices in T and Sim[s][i] is the index of the i-th vertex of simplex
number s in Ver. To make this access more transparent the member functions
int SVerNr(int s,int i) and ivec SVer(int s,int i) were added:

1 int T std NK::SVerNr(int s,int i){
2 // returns a j such that Ver[j] is the
3 // i-th vertex of simplex Sim[s]
4 return Sim[s][i];
5 }
6

7 ivec T std NK::SVer(int s,int i){
8 // returns the i-th vertex of simplex Sim[s]
9 return Ver[SVerNr(s,i)];

10 }

To be able to use the Standard C++ Library functions set intersection and
set difference we sort each vector<int> Sim[s]. This is implemented in
the constructor of T std NK in the trivial way:

1 for(int s=0;s<Sim.size();s++){
2 sort(Sim[s].begin(),Sim[s].end());
3 }

The vector<vector<int>> SimN contains the neighbouring simplices for each
simplex and vector<vector<int>> SCV contains all simplices, of which a
particular vertex in VT is a vertex of. More exactly SimN[s] is a sorted vector of
the indices in Sim of the simplices neighbouring simplex Sim[s] (not including
s itself) and SCV[i] is a sorted vector of the indices in Sim of the simplices, of
which Ver[i] is a vertex. They are constructed as follows in the constructor of
T std NK:

1 SCV.resize(Vertices.size());
2 for(int s=0;s<Sim.size();s++){
3 for(int i=0;i<=n;i++){
4 SCV[SVerNr(s,i)].push back(s);
5 }
6 }
7

8 vector<vector<int>>::iterator pSCV;
9 for(pSCV=SCV.begin();pSCV!=SCV.end();pSCV++){

10 sort((∗pSCV).begin(),(∗pSCV).end());
11 }
12

13 SimN.resize(Sim.size())
14 for(int s=0;s<SimN.size();s++){
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15 list<int> lSimN;
16 for(int i=0;i<=n;i++){
17 lSimN.insert(lSimN.end(),
18 SCV[SVerNr(s,i)].begin(),
19 SCV[SVerNr(s,i)].end());
20 }
21 lSimN.sort();
22 lSimN.unique();
23 lSimN.remove(s);
24 SimN[s].assign(lSimN.begin(),lSimN.end());
25 }

For every neighbouring simplex Sim[k] of the simplex Sim[s] we keep track
of the common face. The member vector<vector<vector<int>>> Faces of
T std NK was added for this purpose. A face is stored as a vector<int> of
the indices of its vertices in vector<ivec> Ver. Each Faces[s] is a vector
containing the faces the simplex Sim[s] shares with other simplices in T and
they are listed in the same order as in SimN[s], i.e.

1 vector<int>::iterator pSN=SimN[s].begin();
2 vector<vector<int>>::iterator p=Faces[s].begin();
3 for(;pSN!=SimN[s].end();pSN++,p++){
4 // here (∗p) is a vector<int> containing the
5 // indices in Ver of the vertices of the
6 // common face of Sim[s] and (∗pSN).
7 }

The vector Faces is built as follows in the constructor of T std NK:

1 Faces.resize(Simp.size());
2 for(int s=0;s<Faces.size();s++){
3 for(auto p=SimN[s].begin();p!=SimN[s].end();p++){
4 vector<int> F(n); // Face
5 auto Fend=set intersection(Sim[∗p].begin(),Sim[∗p].end(),
6 Sim[s].begin(),Sim[s].end(),
7 F.begin());
8 F.resize(Fend-F.begin());
9 Faces[s].push back(F);

10 }
11 }

One application of storing the common faces is when one uses the CPA method
to compute control Lyapunov functions as in [3]. The faces can also be used
to identify the simplices of T that build the boundary ∂DT of DT . A face is
said to be maximal if it is an (n − 1)-simplex and thus spanned by exactly n of
its vertices. We define a simplex Sν to be an interior simplex in T if all of its
maximal faces are common with other simplices in T . Otherwise, we define Sν

to be a boundary simplex in T . Note that an n-simplex has
(
n+1

n

)
= n+1 number
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of maximal faces. We can thus identify a boundary simplex Sim[s] by simply
counting the number of its maximal faces in Faces[s]. The boundary simplices
of T are stored sorted in vector<int> BSim, which is build as follows in the
constructor of T std NK:

1 for(int s=0;s<Sim.size();s++){
2 int NrMax=0;
3 for(auto pF=Faces[s].begin();pF!=Faces[s].end();pF++){
4 if((∗pF).size()==n){
5 NrMax++;
6 }
7 }
8 if(NrMax<n+1){
9 BSim.push back(s);

10 }
11 }
12 sort(BSim.begin(),BSim.end());

The linear program from the CPA method always posses a feasible solution if
the system x′ = f(x) has an exponentially stable equilibrium at the origin and
if the simplices used have a small enough diameter and are not too degenerated,
cf. e.g. [15]. For discrete time systems xk+1 = g(xk) an analogous proposition
holds true [13]. When generating such linear programming problems it is con-
venient to map the basic simplicial complex T to a simplicial complex T F with
smaller simplices using a map F : Rn → R

n. A simplex Sν := co(v0,v1, . . . ,vn)
in T is mapped to the simplex SF

ν = co(F(v0),F(v1), . . . ,F(vn)) in T F. This
is implemented by the class FT, which is the subject of the next section.

3 The Simplicial Complex T F

The simplicial complex T = T std
N,K is not adequate for the generation of lin-

ear programming problems for the computation of Lyapunov functions because
its simplices are too large. Our solution to this issue is the simplicial complex
T F, which is implemented in class FT. An instance SC (Simplicial Complex)
of class FT holds a pointer T std NK ∗pBC to an underlying basic simplicial
complex T and a mapping F : Rn → R

n that maps the vertices of T to the
vertices of T F.

The relationship between T and T F is that

co(F(v0),F(v1), . . . ,F(vn)) ∈ T F, if and only if co(v0,v1, . . . ,vn) ∈ T .

For Sν = co(v0,v1, . . . ,vn) in T we denote the corresponding simplex in T F by
SF

ν := co(F(v0),F(v1), . . . ,F(vn)). Clearly the collection of the vertices of the
simplices in T F are the set VT F := F(VT ). Note that the mapping F : Rn → R

n

must be chosen such that T F is an admissible triangulation and in general this
is not true, even for a homeomorphism F : Rn → R

n, and in general neither
F(Sν) 
= SF

ν nor F−1(SF
ν ) = Sν .
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Suitable candidates for the mapping F are discussed in [18]. A mapping that
generalizes the mapping suggested there is given by the generic form

F(x) =
ρ(‖x‖∞)

‖x‖∗
Ax, (6)

where ‖ · ‖∗ is any norm on R
n, ρ : R+ → R+ is a function of class K∞, and

A ∈ R
n×n is a nonsingular matrix.

Note that for F as in (6) with A = I we have ‖F(x)‖∗ = ρ(‖x‖∞), i.e. F
maps the hypercube [−a, a]n injectively onto the set {x ∈ R

n : ‖x‖∗ ≤ ρ(a)}.
By fixing the norm ‖ · ‖∗ as the energetic norm ‖x‖∗ = ‖x‖Q :=

√
xT Qx for a

symmetric, positive definite matrix Q ∈ R
n×n, we obtain by setting A := Q− 1

2 ,
i.e. A = OT diag(μ− 1

2
1 , μ

− 1
2

2 , . . . , μ
− 1

2
n )O where Q = OT diag(μ1, μ2, . . . , μn)O is

the eigendecomposition of Q with an orthogonal O ∈ R
n×n, that ‖F(x)‖Q =

ρ(‖x‖∞). That is, F maps the hypercube [−a, a]n injectively onto the closed
hyperellipsoid centered at the origin and of which the lengths of the principal
axes are ρ(a)/μ

1
2
i , μi > 0 an eigenvalue of Q. See Fig. 2 for a picture of T F with

F as in (6) with

Q =
(

3 1
1 3

)
and A = Q− 1

2 =
1
4

(
1 +

√
2 1 − √

2
1 − √

2 1 +
√

2

)
. (7)

Note especially that the axes of the simplicial complex are rotated to better fit
the level-sets of the energetic norm ‖ · ‖Q. Such F have been used, for example,
in [2–4,6]. As shown later in this section some algorithms can be made much

Fig. 2. The complex T F with F as in (6) with ρ(x) = 0.1x
3
2 , Q and A as in (7) and

‖ · ‖∗ = ‖ · ‖Q.
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more efficient if a formula for the inverse F−1 of F is available. If F is as in (6),
then its inverse is easily verified to be given by

F−1(x) =
ρ−1(‖A−1x‖∗)

‖A−1x‖∞
A−1x. (8)

Note that ρ ∈ K∞ implies ρ−1 ∈ K∞. In Sect. 3.2 we describe a fast algorithm
that given an x ∈ R

n and the inverse F−1 of F searches for a simplex SF
ν ∈ T F

such that x ∈ SF
ν .

3.1 Implementation of class FT

The data structure class FT implements the simplicial complex T F. Its defini-
tion is:

1 class FT {
2 public:
3 T std K ∗pBC;
4 function<vec(vec)> pF, ipF;
5 vec F(vec x);
6 vec F(ivec x);
7 vec iF(vec x);
8 vector<vec> xVer;
9 vector<mat> XmT;

10 vector<vec> SCC;
11 vector<double> SCR;
12 vector<vector<mat>> Fnor;
13 FT(T std K ∗ pBC, function<vec(vec)> pF,
14 function<vec(vec)> ipF=nullptr);
15 ∼FT();
16 int InSimpNrSlow(vec x,vec &L);
17 int InSimpNrFast(vec x,vec &L,int guess);
18 int InSimpNrAppr(vec x);
19 bool InSimp(vec x,int s,vec &L);
20 int SVerNr(int s,int i);
21 vec SVer(int s,int i);
22 bool CFSS; // default value "true"
23 };

We first discuss the constructor of FT declared in lines 13 and 14 in the code
above. Its first argument is a pointer T std NK ∗ pBC to the underlying basic
simplicial complex, which is assigned to the member variable T std NK ∗pBC.
The second argument of the constructor is the mapping F : Rn → R

n that is
used to map the vertices of the basic simplicial complex. It is assigned to the
member variable function<vec(vec)> pF and can be called with the member
functions vec FT::F(vec x) and vec FT::F(ivec x). Their implementation
is trivial:
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1 vec F(vec x){
2 return pF(x);
3 }
4

5 vec F(ivec x){
6 return pF(conv to<vec>::from(x));
7 }

The third argument of the constructor is the inverse F−1 of F. If it is available
it can be used to decrease the computational complexity of several algorithms
considerably. It is stored in the member variable function<vec(vec)> ipF.
If the inverse is not available we initialize ipF=nullptr. The implementation
of the member function vec iF(vec x) is analogous to the implementation of
vec F(vec x), just with pF replaced by ipF. To avoid that one delivers to
function<vec(vec)> ipF a function that is not the inverse of F we verify
F−1(F(x)) = x for a random sample in the domain DT and we verify F−1(0) =
0. If these tests are not passed we set ipF=nullptr and warn the user. This is
implemented as follows in the constructor of FT:

1 if(ipF!=nullptr){
2 arma rng::set seed random();
3 int NrRandVec=1000;
4 double tol=1e-10;
5 if(norm(iF(F(zeros<vec>(n))),"inf")>tol){
6 cerr<<"iF(F(0)) != 0"<<endl;
7 ipF=nullptr;
8 }
9 vec m=F(pBC->Nm);

10 vec M=F(pBC->Np);
11 for(int i=0;i<NrRandVec;i++){
12 vec r=randu<vec>(n);
13 vec x=r%(M-m)+m;
14 if(norm(iF(F(x))-x,2)>tol∗norm(x,2)){
15 cerr<<"iF(F(x)) != x for x="<<x.t();
16 ipF=nullptr;
17 break;
18 }
19 }
20 }

Note that for vec x and vec y in Armadillo x%y denotes element-by-element
multiplication, similar to x.∗y in Matlab, Scilab, and Octave.

We store the vertices vector<vec> xVer of T F in the same order as the
corresponding integer coordinate vertices vector<ivec> Ver of T in the basic
simplicial complex pointed to by T std NK ∗pBC. This is implemented in the
constructor of FT in the obvious way:
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1 for(auto p=pBC->Ver.begin();p!=pBC->Ver.end();p++){
2 xVer.push back(F(∗p));
3 }

We can thus refer to the simplex pBC->Sim[s] or just the simplex Sim[s]

in T F. It is the simplex with vertices xVer[pBC->Sim[s][i]] for i= 0 : n.
The implementation of the member function int FT::SVerNr(int s,int i)

simply calls the homonymous member function in the underlying basic simplicial
complex and the implementation of vec FT::SVer(int s,int i) is trivial.

1 int FT::SVerNr(int s,int i){
2 return pBC->SVerNr(s,i);
3 }
4

5 vec FT::SVer(int s,int i){
6 return xVer[SVerNr(s,i)];
7 }

The class FT stores for each simplex SF
ν the transpose of the inverse X−T

ν

of the so-called shape-matrix Xν of SF
ν , cf. [21]. The shape-matrix Xν of SF

ν =
co(v0,v1, . . . ,vn) is defined by writing the vectors v1 − v0, v2 − v0, . . ., vn −
v0 consecutively in its rows. Note that because the vectors v0,v1, . . . ,vn are
affinely independent the matrix Xν is invertible. The matrices X−T

ν are stored as
vector<mat> XmT in the same order as the simplices vector<int> pBC->Sim

in the basic simplicial complex. Thus XmT[s] is the transpose the inverse of the
shape-matrix of the simplex pBC->Sim[s] in T F. The reason why we store
X−T

ν rather than X−1
ν or simply Xν is that X−T

ν is the most useful form for
bool FT::InSimp(vec x,int s,vec &L).

Further information we want to have available for the simplices SF
ν in T F

are the centers of their circumscribing hyperspheres and their radii, stored in
vector<vec> SCC and vector<double> SCR respectively. Again, they are
stored in the same order as the simplices in the basic simplicial complex, thus
SCC[s] is the center and SCR[s] is the radius of the circumscribing hypersphere
of the simplex pBC->Sim[s] in T F. The formulas

c = v0 +
1
2
X−1

ν b, with bi = ‖vi − v0‖22 for i = 1 : n and r = ‖c − v0‖2

for the center c ∈ R
n of the circumscribing hypersphere of SF

ν =
co(v0,v1, . . . ,vn) and its radius r were derived in [18]. The construction of
vector<mat> XmT, vector<vec> SCC, and vector<double> SCR is imple-
mented in the constructor of FT as follows.

1 for(int s=0;s<pBC->Sim.size();s++){
2 mat XT(n,n);
3 vec v0=SVer(s,0);
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4 vec b(n);
5 for(int i=1;i<=n;i++){
6 XT.col(i-1)=SVer(s,i)-v0;
7 b(i-1)=pow(norm(XT.col(i-1),2),2);
8 }
9 XmT.push back(XT.i());

10 vec c=x0+0.5∗XmT[s].t()∗b;
11 SCC.push back(c);
12 SCR.push back(norm(c-v0,2));
13 }

Using the matrices vector<mat> XmT one can easily check whether a vector
x ∈ R

n is in a particular simplex SF
ν =Sim[s] or not. In [18] it was shown that

x ∈ R
n is in SF

ν = co(v0,v1,v2, . . . ,vn), if and only if

(λ1, λ2, . . . , λn)T = X−T
ν (x − v0) ∈ R

n
+ and λ0 := 1 −

n∑
i=1

λi ≥ 0.

Then λ0, λ1, . . . , λn are the barycentric coordinates of x in SF
ν . The implemen-

tation is:

1 bool FT::InSimp(vec x,int s,vec &L){
2 vec mu=XmT[s]∗(x-SVer(s,0));
3 if(min(mu)>= 0 && sum(mu)<=1){
4 L(0)=1.0-sum(mu);
5 L(span(1,n))=mu;
6 return true;
7 }
8 else{
9 return false;

10 }
11 }

If x is in the simplex Sim[s] in T F the function returns true and assigns the
barycentric coordinates of x to vec &L, i.e. L = (λ0, λ1, . . . , λn)T .

Finally, normals to the hyperplanes defining and separating neighbouring
simplices are stored. Although we have changed some data structures used
from list to vector the implementation given in [18] works and has not been
changed. Since the discussion is quite involved and the normals are not needed
in the rest of this paper, we refer the interested reader to [18].

3.2 Fast Search for SF
ν Such that x ∈ SF

ν

The following problem is often of interest: Given an x ∈ R
n find an SF

ν ∈ T F

such that x ∈ SF
ν . Additionally, one often then needs the barycentric coordinates

of x in Sν , i.e. the λi such that x =
∑n

i=0 λivi is the convex combination of the
vertices vi of SF

ν . Without any additional information one must rely on linear
search, implemented as:
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1 int FT::InSimpNrSlow(vec x,vec &L){
2 for(int s=0;s<pBC->Sim.size();s++){
3 if(InSimp(x,s,L)==true){
4 return s;
5 }
6 }
7 return -1;
8 }

Note that the vec &L corresponds to the vector (λ0, λ1, . . . , λn)T and if a simplex
containing x is not found the impossible value −1 is returned from the function.

If a formula for the inverse mapping F−1 of F is available a much faster search
is possible. For some applications, e.g. when plotting a computed Lyapunov
function, it might be sufficient to know a simplex SF

ν such that x is close to SF
ν .

If the mappings F and F−1 are not too exotic a simplex SF
ν ∈ T F, such that

y := F−1(x) ∈ Sν , is often a good candidate. Such an Sν can be computed very
efficiently in the member function T std NK::InSimpNr(vec x) as described in
[17]. This is implemented as

1 int FT::InSimpNrAppr(vec x){
2 assert(ipF!=nullptr);
3 return pBC->InSimpNr(iF(x));
4 }

For many applications, however, one needs a simplex SF
ν such that truly x ∈ SF

ν

and one needs the barycentric coordinates of x in SF
ν . An important example

is when a linear programming problem for discrete-time dynamical systems is
constructed, cf. [13,19,32].

The idea behind the fast search for a simplex SF
ν ∈ T F such that x ∈ SF

ν

is as follows: Given an x ∈ R
n, for which we need a simplex SF

ν ∈ T F such
that x ∈ SF

ν , start with a simplex SF
ξ ∈ T F that is a good guess. This guess

can either be delivered by the caller of the search function or one can compute
an Sξ ∈ T such that F−1(x) ∈ Sξ. If x ∈ SF

ξ we are finished. If not check
if x ∈ SF

μ for neighbouring simplices SF
μ of SF

ν . If an SF
μ is found such that

x ∈ SF
μ we are finished. If not check if x ∈ SF

η for neighbouring simplices SF
η

of the simplices SF
μ that have not already been checked. Repeat this procedure

until a simplex is found.
One comment about another speedup of the search before we give the imple-

mentation. If F−1(x) /∈ DT :=
⋃

Sν∈T Sν implies x /∈ DF
T :=

⋃
Sν∈T SF

ν the
member variable bool CFSS (careful simplex search), whose default value is
true, should be assigned the value false. It was shown in [18] that this impli-
cation holds true for many important triangulations and suitable F and F−1 as
in (6) and (8). This simple trick, and variants of it, can save a lot of computa-
tions because it is very laborious to search exhaustively for a simplex that is not
in the complex T F.
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1 int FT::InSimpNrFast(vec x,vec &L,int guess=-1){
2 int s;
3 if(guess!=-1){
4 s=guess;
5 }
6 else{
7 s=InSimpNrAppr(x);
8 }
9 if(s==-1){

10 if(CFSS==true){ // might be in complex
11 s=InSimpNrSlow(x,L);
12 }
13 return s;
14 }
15 if(InSimp(x,s,L)==true){
16 return s;
17 }
18 vector<int> TC, CH, CN, CNtemp;
19 // TC = To Check
20 // CH = already CHecked
21 // CN = Check Next
22 // CNtemp = temporary values for CN
23 for(int is=0;is<pBC->SimN[s].size();is++){
24 if(pBC->Faces[s][is].size()==n){
25 TC.push back(pBC->SimN[s][is]);
26 }
27 }
28 for(auto p=TC.begin();p!=TC.end();p++){
29 if(InSimp(x,∗p,L)==true){
30 return s=∗p;
31 }
32 }
33 // initialize the main loop
34 CH.push back(s);
35 TC.push back(s);
36 int MaxSweeps=3;
37 while(MaxSweeps--){
38 CN.clear();
39 for(p=TC.begin();p!=TC.end();p++){
40 vector<int> A2CN; // add to CN
41 for(int is=0;is<pBC->SimN[∗p].size();is++){
42 if(pBC->Faces[∗p][is].size() == n){
43 A2CN.push back(pBC->SimN[∗p][is]);
44 }
45 CN.insert(CN.end(),A2CN.begin(),A2CN.end());
46 }
47 sort(CN.begin(),CN.end());
48 CNtemp.reserve(CN.size());
49 auto it=unique copy(CN.begin(),CN.end(),CNtemp.begin());
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50 CN.assign(CNtemp.begin(),it);
51 TC.clear();
52 set difference(CN.begin(),CN.end(),CH.begin(),CH.end(),
53 back inserter(TC));
54 if(TC.empty()==true){
55 return -1;
56 }
57 for(p=TC.begin();p!=TC.end();p++){
58 if(InSimp(x,∗p,L)==true){
59 return ∗p;
60 }
61 }
62 CH.insert(CH.end(),TC.begin(),TC.end());
63 sort(CH.begin(),CH.end());
64 }
65 // give up on being clever
66 return InSimpNrSlow(x,L);
67 }

We have four remarks on this algorithm, which is similar to the one given in
[18], but has been tweaked in several ways. First, using std::vector instead of
std::list for TC,CH,CN,CNtemp as in [18] turned out to be about 5% faster in
most cases and we therefore adapted the implementation accordingly. Second, if
one wants α1 in Eq. (9) in Sect. 4 to be a so-called CPA function defined on the
simplicial complex T F, cf. e.g. [15], then one sequentially searches for simplices
for points xi, i = 0 : N , where xi is close to xi+1. Thus it might significantly
speed up computations storing the last simplex found by this algorithm in a
static variable and check directly if the new point delivered to the algorithm is
in the same simplex as the point before. This however has the major drawback
that it interferes with searching for simplices in parallel using multithreading.
We achieve the same speedup of the search by adding the variable int guess,
which has the (impossible) default value −1. The caller of the function can deliver
the number of the simplex in guess to the algorithm where the search should
start. If nothing is delivered the search starts in the simplex whose number is
delivered by FT::InSimpNrAppr(x) as in [18]. Third, if the main loop is used to
search through the whole simplicial complex, then it is considerably slower than a
linear search through the whole simplicial complex by FT::InSimpNrSlow(x,L).
Thus, the implementation uses the parameter int MaxSweeps to decide when to
give up on searching for neighbours and just do a linear search. Its appropriate
value will depend on the kind of the problem at hand to be solved. We used
MaxSweeps=3 which worked quite well for our examples. Fourth, instead of using
all neighbours as in [18] it turned out to be about 10% faster in our examples to
use only neighbours with common faces that are maximal, i.e. (n − 1)-simplices
(n common vertices). Therefore the implementation was changed accordingly.
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4 Computing Values of V (ξ) for ξ ∈ VT F Directly

Instead of solving the linear optimization problem generated to obtain a Lya-
punov function, one can use a different method to make educated guesses of
their values and then verify if the linear constraints are fulfilled for these values.
This is the approach followed in, e.g. [4,5,7,10–12,19,20,32], and it generates
the values much faster than solving the linear programming problem. An addi-
tional advantage is that one can localize the area where the constraints are not
fulfilled, whereas a solver will simply state that the linear programming problem
does not possess a feasible solution when that is the case.

For a continuous-time system x′ = f(x) with an exponentially stable equi-
librium at the origin a Lyapunov function is given by

V (ξ) =
∫ T

0

α1(φ(τ, ξ))dτ, (9)

where τ �→ φ(τ, ξ) is the solution to x′ = f(x) with initial-value ξ at time
τ = 0, T > 0 is a large enough constant, and α1 : Rn → R+ is continuous and
positive definite function, i.e. α1(0) = 0 and α1(x) > 0 for x 
= 0. The idea
for constructing a Lyapunov function like this goes back to Massera [35], see
also [26], and is discussed in many textbooks on nonlinear systems, e.g. [27,43].
Typically for our applications α1(x) = α(‖x‖2), where α is of class K∞, but
there are other suitable choices, for example α1(x) = ‖f(x)‖2 is used in [7].

Note that although (9) gives an explicit formula for a Lyapunov function,
this formula includes the solution φ(τ, ξ) to the differential equation and the
solution is usually not known. It can, however, be approximated at the vertices
of the simplicial complex with a subsequent verification of the constraints of the
linear programming problem.

To approximate (9) numerically we used the Adam-Bashforth four-step
method for obtaining numerically a solution t �→ φ(t, ξ) to the initial-value
problem

x′ = f(x), x(0) = ξ,

on [0, T ] and the composite Simpson’s Rule to integrate α1(φ(t, ξ)) over the
same interval. Both are standard methods that are described in most textbooks
on numerical analysis, cf. e.g. [41].

For completeness we give a short-description: First choose the number of
steps N to be used, an even number ≥ 4, and define h := T/N , ti := ih, and
φi := φ(ti, ξ) for i = 0 : N . The composite Simpson’s Rule approximates the
integral in (9) with the sum

h

3

⎡
⎣α1(φ0) + α1(φN ) + 4

N/2∑
i=1

α1(φ2i−1) + 2
N/2−1∑

i=1

α1(φ2i)

⎤
⎦ (10)
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and the error is bounded by C1h
4 for some constant C1 > 0. The Adam-

Bashforth four-step method approximates the φi with numbers wi using the
formula

wi+1 = wi +
h

24
[55fi − 59fi−1 + 37fi−2 − 9fi−3] , where fi := f(wi), (11)

and an error bound is given by |wi − φi| ≤ C2(eLhi − 1)h4 for some constant
C2 > 0 and where L > 0 is a Lipschitz constant for f on the relevant subset
of R

n. We compute w1, w2, w3 with the Runge-Kutta Method of fourth order
(RK4), which has compatible error bounds. Thus, we compute

h

3

⎡
⎣α1(w0) + α1(wN ) + 4

N/2∑
i=1

α1(w2i−1) + 2
N/2−1∑

i=1

α1(w2i)

⎤
⎦ (12)

as an approximation to the integral in (9). With K > 0 as a Lipschitz constant
for α1 on the relevant subset of R

n the difference between (10) and (12) is
bounded by

h

3
· 2K

⎡
⎣ N∑

i=1

|wi − φi| +
N/2−1∑

i=1

|w2i−1 − φ2i−1|
⎤
⎦

≤ 2Kh

3
C2h

4

⎡
⎣ N∑

i=1

(eLhi − 1) +
N/2−1∑

i=1

(eLh(2i−1) − 1)

⎤
⎦ . (13)

Now
N∑

i=1

eLhi = eLh eLNh − 1
eLh − 1

≤ eLh eLT − 1
Lh

and similarly
N/2−1∑

i=1

eLh(2i−1) ≤ eLh eLT − 1
2Lh

and since Nh = T we can bound (13) by

2K

3
C2h

4

[
3eLh

2L
(eLT − 1) − 3

2
T + h

]
. (14)

Thus we have shown that the error we make when we compute (12) as an approx-
imation to the integral in (9) the error is bound by CeLT h4 for some constant
C > 0, or in big-O notation, the error is O(eLT h4).

The computation of V (ξ) was implemented through the class ODEsolInt with
ODEsolInt::operator()(vec x) doing the actual evaluation. Note that one
can evaluate V (ξ) for many different ξ simultaneously using multithreading. The
class ODEsolInt has the members function<vec(vec)> f, which is the right-
hand-side of the differential equation x′ = f(x), double T,h and int N, where
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T,h and N correspond to T, h, and N above. A further member is the function
function<double(vec)> alpha1, which is the function α1 in the integral (9).
By default it is fixed to α1(x) = ‖x‖2. The definition of the class ODEsolInt and
the implementation of its constructor are given below. Note that we need N to
be an even integer ≥ 4 for our implementation for the numerical approximation
of the integral to be correct, so an inadequate value for N is modified accordingly.
Recall that for int i,j the command i%j gives the reminder when i is divided
by j. Thus i%2 equals zero if i is an even number and i%2 equals one if i is
odd.

1 double def alpha1(vec x){ return norm(x, 2); }
2

3 class ODEsolInt{
4 public:
5 function<vec(vec)> f;
6 function<double(vec)> alpha1;
7 double T,h;
8 int N;
9 ODEsolInt(function<vec(vec)> f,double T,int N,

10 function<double(vec)> alpha1=def alpha1);
11 ODEsolInt(){};
12 double operator()(vec x);
13 };
14

15 ODEsolInt::ODEsolInt(function<vec(vec)> f,double T,
16 int N,function<double(vec)> alpha1) :
17 f( f),T( T),N( N),alpha1( alpha1) {
18 // N should be an even number >= 4
19 if(N<4){
20 N=4;
21 }
22 if(N%2==1){
23 N++;
24 }
25 h=T/N;
26 }

For an efficient implementation of formulas (11) and (12) we store as little infor-
mation as possible and plug the values of wi from (11) immediately into (12).
We use the Runga-Kutta Method of fourth-order to compute the first three ini-
tial w1, w2, w3 and then we use four-step Adam-Bashforth, which is multistep
method that only needs the evaluation of f(x) at one new point x for each new
value wi, instead of at four points as in the Runge-Kutta Method. The four-step
Adam-Bashforth Method achieves this by using already computed values as can
be seen in (11). We thus store fi, fi−1, fi−2, fi−3 in the columns of the matrix
mat AB(n,4), and after having used these values to compute wi+1 we compute
fi+1 using wi+1. Then we overwrite fi−3, which is not needed anymore, with
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fi+1. This can be implemented by accessing the columns of mat AB(n,4) with i
modulo 4, that is, fi =mat AB.col(i%4). Simultaneously to computing the wi

we sum up

α1(w0)+4α1(w1)+2α1(w2)+4α1(w3)+2α1(w4)+ . . .+4α1(wN−1)+2α1(wN )

and then subtract α1(wN ) in the end and multiply the sum by h/3 to obtain the
value from formula (12).

1 vec RK4(function<vec(vec)> f,vec w i,double h){
2 vec s1(n),s2(n),s3(n),s4(n);
3 s1=f(w i);
4 s2=f(w i+h/2∗s1);
5 s3=f(w i+h/2∗s2);
6 s4=f(w i+h∗s3);
7 return w i+h/6∗(s1+2∗s2+2∗s3+s4);
8 }
9

10 double ODEsolInt::operator()(vec x){
11 double ret=0.0;
12 mat AB(n,4);
13 vec x1,x0;
14 x0=x;
15 AB.col(0)=f(x0);
16 ret+=alpha1(x0);
17 for(int i=1;i<=3;i++){
18 x1=RK4(f,x0,h);
19 ret+=2.0∗(1+i%2)∗alpha1(x1);
20 AB.col(i)=f(x1);
21 x0=x1;
22 }
23 for(int i=3;i<N;i++) {
24 x1=x0+h/24.0∗(55.0∗AB.col(i%4)-59.0∗AB.col((i-1)%4)
25 +37.0∗AB.col((i-2)%4)-9.0∗AB.col((i-3)%4));
26 AB.col((i+1)%4)=f(x1);
27 ret+=2.0∗(2-i%2)∗alpha1(x1);
28 x0=x1;
29 }
30 ret-=alpha1(x1);
31 ret∗=h/3.0;
32 return ret;
33 }

5 Summary

We discussed the implementation in C++ of simplicial complexes using efficient
algorithms and data structures for the computation of Lyapunov functions for
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nonlinear systems. This paper builds upon [6,14,17] and advances and improves
the methods presented in [18] in various ways. The algorithms are designed for
both continuous-time and discrete-time systems and the implementation for con-
trol Lyapunov functions using the Dini subdifferential is accounted for. Addition-
ally, we gave a detailed description and error-analysis for the fast computation of
an approximation to a Lyapunov function at the vertices of a simplicial complex
using a Lyapunov function candidate from a converse theorem by Massera. This
approach has been used in several publications, cf. e.g. [4,5,7,10–12,19,20,32],
but its efficient implementation has not been discussed before.
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