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Abstract. We study the global asymptotic stability in probability of the zero

solution of linear stochastic differential equations with constant coefficients.
We develop a sum-of-squares program that verifies whether a parameterized

candidate Lyapunov function is in fact a global Lyapunov function for such a

system. Our class of candidate Lyapunov functions are naturally adapted to

the problem. We consider functions of the form V (x) = ‖x‖pQ := (x>Qx)
p
2 ,

where the parameters are the positive definite matrix Q and the number p > 0.
We give several examples of our proposed method and show how it improves

previous results.

1. Introduction. In deterministic Dynamical Systems given by autonomous or-
dinary differential equations (ODE), the (global) stability of an equilibrium is an
important property, which can be studied using Lyapunov functions. For linear
ODEs, a (global) Lyapunov function for exponentially stable equilibria can be con-
structed as a quadratic form by solving a linear matrix equation. Moreover, this
method also enables us to construct a Lyapunov function for a nonlinear equa-
tion: the Lyapunov function for the linearized system at the equilibrium is also a
Lyapunov function for the nonlinear system, but usually only in a small neighbor-
hood of the exponentially stable equilibrium. Apart from this method, there are no
general analytic construction methods for Lyapunov functions, however, there are
numerous numerical ones [8].

Stability in stochastic differential equations can also be analyzed using Lyapunov
functions [13, 12, 24, 7] and by considering viscosity solutions to the stochastic
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Zubov equation the authors of [9] even gave a numerical scheme to approximate
Lyapunov functions that deliver attraction probabilities to exponentially stable sets.
However, even for autonomous linear stochastic differential equations, there is no
general construction method for Lyapunov functions.

In this paper, we will propose an ansatz for a Lyapunov function of the form
V (x) = ‖x‖pQ := (x>Qx)

p
2 , where Q is a positive definite matrix Q and p > 0, and

develop a method to check whether this is a (global) Lyapunov function and thus
to prove global asymptotic stability in probability of the zero solution. The method
requires checking whether a certain polynomial is positive semi-definite, which is
achieved by SOS (sum-of-squares) programming. Our method allows for optimizing
with respect to certain parameters. This provides us with a tool which improves the
current ability to analyze stability, as we show in examples. Future work will show
that, similar to the ODE case, this method also enables us to construct Lyapunov
functions for nonlinear stochastic differential equations in a neighborhood of the
zero solution.

The SOS method has been used to study the stability of different stochastic
systems before. In [5], for example, linear and nonlinear polynomial systems with
probabilistic uncertainties in the system parameters are considered, and they are
transformed into a higher dimensional deterministic system, where classical Lya-
punov theory is applied; in particular, polynomial Lyapunov functions are con-
structed using SOS. The authors use SOS and BMI (bilinear matrix inequality) in
[6] to design a controller for such systems. In [23], SOS is used to compute a bound
on the probability of reaching a target set in finite time for jump-diffusion processes.
[3] considers linear stochastic impulsive systems and studies mean-square stability
and dwell-times by infinite-dimensional LMIs, namely matrix-valued functions. A
sufficient condition is obtained by assuming that these functions are polynomials
of a certain degree, and these conditions are then checked by using SOS. To the
best of our knowledge, however, using SOS to compute a non-polynomial Lyapunov
function of the form ‖x‖pQ, in particular with 0 < p < 1, for linear autonomous
SDE’s has not been proposed before.

The outline of the paper is as follows: In Section 2 we recall various definitions
of stochastic stability, and in Section 3 we discuss Lyapunov functions. Section 4
contains our main results, in particular we propose our ansatz for a Lyapunov func-
tion and describe how the nonnegativity is analyzed using sum-of-squares. Finally,
we apply the method to examples in Section 5 and show the improvements upon
previous results.

Remark on notations. We denote the nonnegative real numbers by R+, the
integers by Z, and the nonnegative integers by N0. We define [a, b]Z := {x ∈ Z :
a ≤ x ≤ b}. We write vectors x ∈ R

d in boldface and their components with
the same letter indexed. Further, we assume all vectors to be column vectors,
i.e. x = (x1, x2, . . . , xd)

>, where > denotes the transpose. We denote matrices
A ∈ Rn×m by capital letters and their elements by the same capital letter indexed,
i.e. A = (Aij)i∈[1,n]Z,j∈[1,m]Z

. Id denotes the identity matrix in Rd×d. Q < 0 means

that the symmetric matrix Q ∈ Rd×d is positive semi-definite and Q � 0 means
that Q is positive definite. Similarly Q 4 0 and Q ≺ 0 means that Q is negative
semi-definite and negative definite, respectively.

We denote the Euclidean norm of a vector x ∈ Rd by ‖x‖. For Q ∈ Rd×d, Q � 0,

we define ‖x‖Q := (x>Qx)
1
2 , note that ‖ · ‖Q is a norm on R

d. We denote the
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spectral norm of a matrix A ∈ Rd×d by ‖A‖2, i.e. ‖A‖2 is the square-root of the
largest eigenvalue of the positive semi-definite matrix A>A.

For a multiindex α = (α1, α2, . . . , αd) ∈ Nd0 with length |α| =
∑d
i=1 αi and a

vector x ∈ Rd we define xα := xα1
1 xα2

2 · · ·x
αd

d . Thus xα is a homogenous monomial
of degree |α|.

In general we call a function f : Rd → R homogenous of degree m if f(ρx) =
ρmf(x) for all ρ ∈ R and x ∈ Rd. If the equation f(ρx) = ρmf(x) only holds true
for all ρ > 0 we call f positively homogenous of degree m. We denote the set of
all continuous functions α : R+ → R+ that are strictly increasing and such that
α(0) = 0 and limx→+∞ α(x) = +∞ by K∞.
P is a probability measure and E denotes the expectation, the underlying

probability-spaces being the canonical ones for the SDE at hand, cf. e.g. [13, 18, 12].
For an open set U ⊂ Rd we denote the set of all functions U → R that are continuous
by C(U) and the set of all functions that are m-times continuously differentiable
by Cm(U). For a sufficiently smooth function f : Rd → R, we denote the first

and second partial derivatives by ∂if(x) := ∂
∂xi

f(x) and ∂2ijf(x) := ∂2

∂xi∂xj
f(x),

respectively.
We are working in R

d if not specified otherwise and if the limits in a sum are

suppressed, it means that the sum is over [1, d]Z, i.e.
∑
i :=

∑d
i=1.

2. Stochastic stability. We consider the d-dimensional, autonomous linear sto-
chastic differential equation (SDE) with constant coefficients

dX(t) = FX(t) dt+

U∑
u=1

GuX(t) dWu(t), (1)

where F,Gu ∈ Rd×d and the Wu are independent 1-dimensional Wiener processes.
We understand solutions to the system (1) in the Itô sense, cf. e.g. [13, §2.2],
especially Definition 2.1 and the discussion before Theorem 3.6, i.e. that (1) is a
shorthand notation for

Xx(t) = x +

∫ t

0

FXx(s)ds+

U∑
u=1

∫ t

0

GuXx(s)dWu(s), (2)

where the integrals over the GuXx(s) are understood as Itô integrals. We call
t 7→ Xx(t) in (2) a solution to system (1) with initial value x ∈ Rd. In general x
can be a random variable [13, Remark 2.2 (c)], but for our purposes it is sufficient
to consider solutions to (1) for constant x ∈ Rd, cf. [13, §4.2].

Remark 1. The system (1) is a special case of the autonomous SDE

dX(t) = f(X(t))dt+

U∑
u=1

gui (X(t))dWu(t), f(0) = gu(0) = 0, (3)

which in turn is a special case of the nonautonomous SDE

dX(t) = f(t,X(t))dt+

U∑
u=1

gui (t,X(t))dWu(t). (4)

For a study of existence and uniqueness of solutions to the system (4) we refer
the reader to [13, Chapter 2], [18, Chapter 5], or [12, Chapter 3].

The system (1) possesses a unique continuous solution R+ → R
d, t 7→ Xx(t) for

every x ∈ Rd, cf. e.g. [13, Theorem 3.6 in §2.4]. Here unique means that if t 7→ Yx(t)
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is another solution, then P{Xx(t) = Yx(t)} = 1 for all t ≥ 0. Note especially that
for every x ∈ Rd the solution Xx(t) is defined for all t ≥ 0. Further, X0(t) = 0 for
all t ≥ 0, i.e. the origin is an equilibrium of the system.

We are interested in the stability of the equilibrium at the origin for the system
(1). There are various stability concepts in the literature for the zero solution of (3).
The ones we use in this paper are listed in the next definition. For corresponding
definitions in the literature cf. e.g. [12, §5.3, §5.4, §5.7] or [13, §4.2, §4.4].

Definition 2. Consider the system (3), which includes (1) as a special case. The
origin (or the zero solution) is said to be :

i) Stable in probability (SiP), if for every pair ε, r > 0 there exists a δ = δ(ε, r) >
0 such that

P{sup
t≥0
‖Xx(t)‖ < r} ≥ 1− ε for every ‖x‖ ≤ δ.

ii) Asymptotically stable in probability (ASiP), if it is SiP and for every ε > 0
there exist a δ = δ(ε) > 0 such that

P{lim sup
t→∞

‖Xx(t))‖ = 0} ≥ 1− ε for every ‖x‖ ≤ δ.

iii) Globally asymptotically stable in probability (GASiP), if it is SiP and

P{lim sup
t→∞

‖Xx(t)‖ = 0} = 1 for every x ∈ Rd.

iv) pth moment exponentially stable or exponentially p-stable (p-ES) for a p > 0,
if there exist constants A,α > 0 such that

E{‖Xx(t)‖p} ≤ A exp(−αt) for every x ∈ Rd and every t ≥ 0.

Remark 3. There are numerous other stability concepts for the zero solution in
the literature, e.g. p-stability, asymptotic p-stability, and almost sure exponential
stability. Further, SiP is sometimes referred to as strongly stable in probability [12]
or stochastically stable [13, 12]. Similarly an ASiP zero solution is sometimes said
to be stochastically asymptotically stable [13], a GASiP zero solution is said to be
stochastically asymptotically stable in the large [13], or (asymptotically) stable in the
large [12]. 1-ES and 2-ES are often referred to as exponential stability in the mean
and exponential stability in mean square, respectively.

For the autonomous linear SDE with constant coefficients (1) the relation between
the stability concepts in Definition 2 is simpler than in the general case.

Proposition 1. For the zero solution of system (1) the following propositions hold
true :

i) ASiP is equivalent to GASiP.
ii) p-ES for some p > 0 implies GASiP.
iii) ASiP implies p-ES for all small enough p > 0.

Proof. Proposition iii) follows by [12, Theorem 6.5] and that ASiP follows from
GASiP is trivial. Propositions ii) and iii) together imply that GASiP follows from
ASiP. Proposition ii) is most conveniently proved by the use of so-called Lyapunov
functions, which we discuss in the next section. We will prove ii) in Remark 6 after
that discussion.

Remark 4. Although fractional moments are interesting in their own right, cf. e.g.
[17, 15], our sole interest in p-ES is to use it as a stepping stone to prove GASiP
for linear systems using Proposition 1.
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3. Lyapunov functions for SDE. Just as for deterministic systems defined by
ordinary differential equations (ODE), Lyapunov functions are an important tool
when studying stability in SDEs. A Lyapunov function for a globally asymptotically
stable (GAS) equilibrium of an ODE is a continuous function that has a local
minimum at the equilibrium and is strictly decreasing along solution trajectories
of the system. Indeed, an isolated equilibrium of an ODE is GAS, if there exists
a smooth, radially unbounded Lyapunov function for the system. A Lyapunov
function for a stochastic system is a continuous function that is a supermartingale
[4].

The condition

V (Xx(t)) < V (x) for all t > 0

for a deterministic system becomes

E{V (Xx(t))} < V (x) for all t > 0

for a stochastic system. A sufficient condition for a smooth Lyapunov function to
imply GAS of the origin of the ODE ẋ = f(x), f(0) = 0, is that there exist functions
α1, α2, β ∈ K∞ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) and
∑
i

fi(x)∂iV (x) ≤ −β(‖x‖),

cf. [14]. For an SDE the orbital derivative
∑
i fi(x)∂iVi(x) of V along solution

trajectories is replaced by the infinitesimal generator L of the solution X acting on
V . For the SDE (3) we have

LV (x) =
∑
i

fi(x)∂iV (x) +
1

2

∑
i,j

(
U∑
u=1

gui (x)guj (x)

)
∂2ijV (x), (5)

which becomes

LV (x) =
∑
i,j

Fijxj∂iV (x) +
1

2

∑
i,j

∑
k,l

xkxl

U∑
u=1

GuikG
u
jl

 ∂2ijV (x) (6)

for the linear system (1) with constant coefficients.

Remark 5. For deterministic systems there is no restriction in considering smooth
Lyapunov functions. For stochastic systems this is not the case and it is much too
restrictive to demand that a Lyapunov function for a stochastic system is smooth at
the origin. In fact, a smooth Lyapunov function often does not exist, cf. [12, Remark
5.5]. An appropriate function class for Lyapunov functions is given in [12, p. 146].
This important fact makes the discussion on stability in (the otherwise excellent
book) [13, Chapter 4] somewhat incomplete, since only C2 Lyapunov functions
are studied. For our system (1) it can be concluded from the discussion in [12,
p. 146] that the appropriate class for Lyapunov functions for system (1) is given by
C(Rd) ∩ C2(Rd \ {0}).

We conclude this section by giving three theorems connecting the stability con-
cepts from Definition 2 to the existence of Lyapunov functions.

Theorem 3.1. Consider the autonomous system (3) and let U ⊂ R
d be an open

neighbourhood of the origin. Assume there exists a function V ∈ C(Rd)∩C2(Rd\{0})
and functions α1, α2, β ∈ K∞ such that

i) α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) for all x ∈ U and
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ii) LV (x) ≤ −β(‖x‖) for all x ∈ U \ {0}.
Then the origin is ASiP. Further, if U = R

d, then the origin is GASiP.

Proof. That the origin is ASiP follows by [12, Corollary 5.1]. If U = R
d the propo-

sition follows by [12, Theorem 5.8].

Theorem 3.2. Consider the autonomous system (3). Assume there exist constants
c1, c2, c3, p > 0 and a function V ∈ C(Rd) ∩ C2(Rd \ {0}) fulfilling :

i) c1‖x‖p ≤ V (x) ≤ c2‖x‖p for all x ∈ Rd and
ii) LV (x) ≤ −c3‖x‖p for all x ∈ Rd \ {0}.

Then the origin is p-ES.

Proof. Follows by [12, Theorem 5.11].

The last Lyapunov function theorem is a so-called converse theorem, i.e. it asserts
the existence of a Lyapunov function for the system (1) if the origin is ASiP.

Theorem 3.3. Assume the origin is ASiP for system (1). Then for all small
enough p > 0 there exist constants c1, c2, c3, c4, c5 > 0 and a function V ∈ C(Rd) ∩
C2(Rd \ {0}) such that

i) c1‖x‖p ≤ V (x) ≤ c2‖x‖p for all x ∈ Rd.
ii) LV (x) ≤ −c3‖x‖p for all x ∈ Rd \ {0}.
iii) V is positively homogenous of degree p.
iv) |∂sV (x)| ≤ c4‖x‖p−1 for all s ∈ [1, d]Z and all x ∈ Rd \ {0}.
v) |∂2rsV (x)| ≤ c5‖x‖p−2 for all r, s ∈ [1, d]Z and all x ∈ Rd \ {0}.

Proof. Since the origin is ASiP for system (1) it is p-ES for all small enough p > 0
by Proposition 1 iii). The proposition now follows from [12, Theorem 6.2].

Remark 6. The proof of Proposition 1 ii) is now simple. If the origin is ASiP, then
it is p-ES for some p > 0 by Proposition 1 iii) and there exists a Lyapunov function
V for the system as in Theorem 3.3 defined on Rd. Since V fulfills the properties of
the Lyapunov function in the assumptions of Theorem 3.1 the origin is GASiP.

Theorems 3.2 and 3.3 have an obvious corollary.

Corollary 1. The origin is GASiP for the system (1), if and only if there exist
constants p > 0, c1, c2, c3 > 0 and a function V ∈ C(Rd) ∩ C2(Rd \ {0}) fulfilling
the conditions i) and ii) in Theorem 3.2.

In the next section we discuss how the results above can be utilized to explicitly
compute and verify Lyapunov functions for the system (1).

4. Construction and verification of a Lyapunov function.

4.1. Ansatz for Lyapunov function. From the properties i)-v) in Theorem 3.3
it appears natural to search for Lyapunov functions of the form V (x) = ‖x‖pQ for

the system (1). The Lyapunov function candidate V (x) automatically fulfills the
conditions i), iii), iv), and v) of Theorem 3.3. Thus, V (x) is a Lyapunov function
for system (1) as in Theorem 3.2, if and only if there exists a constant C > 0 such

that (recall that
∑
i,j is

∑d
i,j=1)
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−C‖x‖p ≥ LV (x) :=
∑
i,j

Fijxj∂iV (x)+
1

2

∑
i,j

∑
k,l

xkxl

U∑
u=1

GuikG
u
jl

 ∂2ijV (x) (7)

for all x ∈ Rd \ {0}. The next lemma gives a useful formula for LV (x).

Lemma 4.1. With V (x) = ‖x‖pQ, p > 0, and Q ∈ Rd×d positive definite, we have

LV (x) = −1

2
p‖x‖p−4Q H(x) (8)

where

H(x) := −x>

(
F>Q+QF +

U∑
u=1

(Gu)>QGu

)
x‖x‖2Q (9)

+(2− p)
U∑
u=1

(
1

2
x>(QGu + (Gu)>Q)x

)2

for the linear system (1) with constant coefficients.

Proof. The lemma is shown by direct calculation. Assume first that p 6= 2. Since

V (x) = ‖x‖pQ =
(∑

i,j Qijxixj

) p
2

and Qij = Qji we get

∂sV (x) =

∑
j

Qsjxj +
∑
i

Qisxi

 p

2

∑
i,j

Qijxixj


p
2−1

= p
∑
i

xiQis‖x‖p−2Q (10)

∂2rsV (x) = pQrs‖x‖p−2Q

+p

(∑
i

xiQis

)(p
2
− 1
)

2

∑
j

xjQjr

∑
i,j

Qijxixj


p
2−2

= p‖x‖p−2Q Qrs + p(p− 2)
∑
i,j

xixjQisQjr‖x‖p−4Q

= p‖x‖p−4Q

Qrs‖x‖2Q + (p− 2)
∑
i,j

xixjQisQjr

 (11)

for r, s ∈ [1, d]Z. Putting this into the right-hand side expression in (7) gives the
following formula for LV (x):

LV (x) =
1

2
p‖x‖p−4Q

(
2
∑
r,s,i

FsrxrxiQis‖x‖2Q

+
∑
r,s,k,l

xkxl

U∑
u=1

GurkG
u
sl

(
Qrs‖x‖2Q + (p− 2)

∑
i,j

xixjQisQjr

))
.

Simplifying this formula term-by-term gives

2
∑
r,s,i

FsrxrxiQis = 2
∑
r,s,i

xiQisFsrxr = 2
(
x>QFx

)
= x>

(
F>Q+QF

)
x,
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∑
r,s,k,l

xkxl

U∑
u=1

GurkG
u
slQrs =

U∑
u=1

∑
k,l

xk

(∑
r,s

GurkQrsG
u
sl

)
︸ ︷︷ ︸

=Au
kl in Au:=(Gu)>QGu

xl

=

U∑
u=1

x>(Gu)>QGux,

and ∑
r,s,k,l

xkxl

U∑
u=1

GurkG
u
sl(p− 2)

∑
i,j

xixjQisQjr

= (p− 2)
U∑
u=1

∑
i,s,l

xiQisG
u
slxl

∑
j,r,k

xjQjrG
u
rkxk


= (p− 2)

U∑
u=1

(
x>QGux

)2
= (p− 2)

U∑
u=1

(
1

2
x>(QGu + (Gu)>Q)x

)2

.

Adding up the terms delivers (8). It is easy to verify that (8) still holds true when
p = 2.

Remark 7. Note that H(x) in Lemma 4.1 is a homogenous polynomial of degree
4 in d variables. Using multiindices the formula for H(x) can be written

H(x) =
∑
|α|=4

Hαxα, where Hα ∈ R.

If H(x) ≥ c‖x‖4, where c > 0 is a constant, then V (x) = ‖x‖pQ is a Lyapunov

function for the system (1), i.e. satisfies the assumptions of Theorem 3.2 and indeed
it also fulfils the properties of the function in Theorem 3.3. Note that we could
replace ‖x‖4 by, e.g., ‖x‖2Q‖x‖2 or ‖x‖4Q without violating these properties.

Before we discuss a general method to deal with the inequality H(x) ≥ c‖x‖4,
let us first consider some simple cases.

Example 8. Consider (1) with F = µId and Gu = σuId, µ, σu ∈ R. Set Q = Id
and σ2 :=

∑U
u=1 σ

2
u. Plugging this into (9) delivers H(x) = (−2µ− σ2)‖x‖4 + (2−

p)σ2‖x‖4 and then LV (x) = p(µ+(p−1)σ2/2)‖x‖p. We can find a p > 0 such that
p(µ+ (p− 1)σ2/2) < 0, if and only if 2µ < σ2. For every such p there is a constant
c > 0 such that LV (x) = −c‖x‖p. Hence, if 2µ < σ2 then the origin is p-ES by
Theorem 3.2 and thus GASiP by Proposition 1.

Example 9. In [12, Example 6.2] the following case is considered: F+F> = −2λId,

Q = Id, and
∑
k,l xkxl

∑U
u=1G

u
rkG

u
sl = δr,s‖x‖2G for some constants λ,G > 0. Here

δr,s is the Kronecker delta, equal to one if r = s and zero otherwise. It should then
be concluded1 that the system (1) is p-ES if G(d + p − 2) < 2λ. By plugging the
assumptions into the formulas for LV (x) in Lemma 4.1 or its proof, this result

1There is an error in [12, (6.18)] which leads to wrong results by a factor 2.
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is easily reproduced. In fact, the condition F + F> = −2λId can be mollified to
F + F> 4 −2λId.

Let us discuss the case p = 2.

Example 10. If we set p = 2 in formula (9) the Lyapunov function candidate
V (x) = ‖x‖2Q fulfills condition ii) Theorem 3.3, if and only if

F>Q+QF +

U∑
u=1

(Gu)>QGu ≺ 0. (12)

This is a linear matrix inequality (LMI) that can be solved for Q � 0 using semi-

definite programming. Note that since
∑U
u=1(Gu)>QGu < 0 the LMI (12) is stricter

than F>Q+QF ≺ 0.
For deterministic systems, i.e. when Gu = 0 for all u ∈ [1, U ]Z, (12) becomes

F>Q+QF ≺ 0. It is well known that for any given P � 0 the so-called continuous-
time Lyapunov equation F>Q + QF = −P has a unique solution Q if and only if
F is Hurwitz, i.e. all eigenvalues of F have a strictly negative real part. Solving
the above matrix equation is thus the standard procedure to compute a quadratic
Lyapunov function for the deterministic system. Thus, if white noise of small enough
magnitude is added to a deterministic system ẋ = Fx, of which the origin is GAS,
then the origin is GASiP for the resulting stochastic system.

Remark 11. For even p, namely p = 2, 4, . . ., one can decide p-ES. There is a
construction method for a p-homogenous Lyapunov function for the system (1),
cf. [12, p. 185-186]: using [12, Theorem 6.3], one studies a linear equation, the
solution of which delivers a p-homogenous Lyapunov function for the system (1). If
the linear equation does not possess a solution, then the system is not p-ES.

The existence of the Lyapunov function V (x) = ‖x‖pQ is a sufficient condition
for p-ES of the zero solution. However, if we are interested in showing GASiP, then
p-ES with any p > 0 is sufficient. Hence, rather than focussing on p ≥ 2, we will
cover more cases by trying to establish a Lyapunov function for small p > 0, see
the following remark.

Remark 12. From (9) it is obvious that if H(x) ≥ 0 for a particular p∗ > 0, then
it is nonnegative for every p, 0 < p < p∗. Since GASiP follows from p-ES for any
p > 0 there is no reason to go beyond p = 2 if one wants to assert GASiP.

4.2. Sum-of-squares. In light of Remark 7 we would like to verify that there exists
a c > 0 such that

Pc(x) := H(x)− c‖x‖4 ≥ 0.

Note that Pc(x) is a homogenous polynomial of degree 4. The study of the nonnega-
tivity of polynomials is a very mature field that has been extensively researched and
there are efficient algorithms. They use semi-definite programming in the frame-
work of sum-of-squares (SOS) polynomials to verify if polynomials are nonnegative,
cf. e.g. [1, 8] for an overview of SOS for computing Lyapunov functions for de-
terministic systems. For other approaches than SOS programming for polynomial
Lyapunov functions, cf. e.g. [11].

Definition 13. A (multivariable) polynomial P : Rd → R, P (x) =
∑
|α|≤n Pαxα,

is said to be a sum-of-squares polynomial, short SOS, if and only if there exist
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polynomials P1, P2, . . . , Pk : Rd → R such that

P (x) =

k∑
i=1

(Pi(x))
2
.

Remark 14. If P : Rd → R is SOS, then P is nonnegative, i.e. P (x) ≥ 0 for
all x ∈ Rd. The converse is in general not true, i.e. there are polynomials that are
nonnegative but cannot be written as the sum of squared polynomials. The Motzkin
polynomial x4y2+x2y4−3x2y2+1 is an example of a nonnegative polynomial which
is not a sum-of-squares polynomial [16].

The following theorem shows that the nonnegativity of the polynomial Pc implies
the existence of a Lyapunov function. Moreover, the nonnegativity of Pc(x) is
equivalent to ‖x‖2mPc(x) being SOS for sufficiently large m.

Theorem 4.2. Consider the system (1) and the Lyapunov function candidate

V (x) = ‖x‖pQ from Theorem 4.1 and let H be as in (9), i.e. LV (x) = −(p/2)‖x‖p−4Q

H(x). Define the polynomial Pc(x) := H(x)− c‖x‖4 for every c ∈ R. Then :

i) If there exists a c > 0 such that Pc(x) is nonnegative for all x ∈ Rd, then V is
a Lyapunov function, satisfying the conditions of Theorem 3.2 for the system
(1).

ii) Let d = 2 or d = 3. Then Pc(x) is nonnegative for all x ∈ Rd, if and only if
Pc(x) is SOS.

iii) Let d > 3. Then Pc(x) is nonnegative for all x ∈ R
d, if and only if x 7→

‖x‖2mPc(x) is SOS for all large enough m ∈ N.

Proof. To prove i) note that there are constants 0 < Cmin
Q ≤ Cmax

Q such that

Cmin
Q ‖x‖Q ≤ ‖x‖ ≤ Cmax

Q ‖x‖Q
and then

LV (x) = −p
2
‖x‖p−4Q H(x) ≤ −p

2
‖x‖p−4Q c‖x‖4

= −pc
2
‖x‖pQ

‖x‖4

‖x‖4Q
≤ −pc

2

(Cmin
Q )4

(Cmax
Q )p

‖x‖p.

Proposition ii) uses the fact that Pc(x) is a homogeneous polynomial of degree 4.
It follows from the famous paper [10], where David Hilbert showed that if d = 3 then
every nonnegative Pc(x) can be written as the sum of three squared polynomials.
For d = 2 every nonnegative Pc(x) can even be written as the sum of two squared
polynomials.

Proposition iii) follows directly by [20, 21]. Indeed, the proposition holds true
for all homogeneous polynomials Pc(x) of an even degree and ‖x‖mPc(x) can even
be written as the sum of squared monomials.

To establish that the polynomial Pc(x) is a sum of squares, we use SOS program-
ming to compute a matrix S < 0, such that Pc(x) = Z>SZ, where Z is a vector
of a basis of homogeneous polynomials of degree 2. That is, the elements of Z are
of the form xixj , i, j ∈ [1, d]Z. It is not difficult to see that the length m of Z is
d(d+ 1)/2.

We seek to find a matrix S < 0 such that Pc(x) = Z>SZ (note that S in the
previous equation is not unique). Indeed, then Pc(x) is SOS as S = O>DO, where
D ∈ Rm×m is a diagonal matrix with entries D11, D22, . . . , Dmm ≥ 0 on the diagonal
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and O ∈ Rm×m is orthogonal, the entries Yi of the vector Y = OZ are polynomials
in x1, x2, . . . , xd and

Pc(x) = Z>SZ = Z>O>DOZ = (OZ)>DOZ = Y >DY =

m∑
i=1

DiiY
2
i .

The SOS method is available in the Matlab toolbox SOSTOOLS and returns D
and O; it also allows us to optimize parameters which appear linearly. We use SOS
programming to write

Pc(x) = −x>

(
F>Q+QF +

U∑
u=1

(Gu)>QGu

)
x‖x‖2Q (13)

+
2− p

4

U∑
u=1

(
x>(QGu + (Gu)>Q)x

)2 − c‖x‖4
as SOS.

Ideally we would like to find all parameters, in particular Q, such that Pc(x) is
SOS. Unfortunately, if p 6= 2 the formula for Pc(x) is nonlinear in Q and we can
thus not use the SOS program to compute an “optimal” Q. Thus, we have to fix Q
and use SOS to verify whether Pc(x) is SOS and, thus, V (x) = ‖x‖pQ is a Lyapunov
function and the zero solution is p-ES. This limitation is discussed in more detail
in Section 6.

We can, however, let e.g. p or c be variables and let the SOS program minimize
an arbitrary linear function of them. Given Q, we can, e.g., compute the largest
p, such that the zero solution is p-ES. Further, if our problem has more structure,
e.g. U = 1 and G1 = σ1Id, then the formula is linear in σ2

1 and we can use the SOS
program to minimize σ2

1 , i.e., compute the least amount of noise needed to stabilize
the zero solution. We will give examples of these computations in the next section.

5. Examples. We used Matlab R2014a with the Matlab toolbox SOSTOOLS
v. 3.00 [19] with SeDuMi v. 1.3 [22] to formulate and solve the SOS optimization
problems. In Subsection 5.1 we study a harmonic oscillator with noisy damping
and can show GASiP for a range of parameter values. In Subsection 5.2 we discuss
stabilization by noise and show GASiP as well as p-ES.

5.1. Harmonic oscillator with noisy damping. We consider a damped har-
monic oscillator ẍ+ kẋ+ ω2x = 0. Setting x1 = ωx and x2 = ẋ we get

ẋ = Fx, with x =

(
x1
x2

)
and F =

(
0 ω
−ω −k

)
.

The eigenvalues of F are λ± = (−k±
√
k2 − 4ω2)/2 and the origin is GAS for k > 0.

Now let us add white noise to the damping and consider the SDE

dX(t) = FX(t)dt+G1X(t)dW1(t), with X =

(
X1

X2

)
and G1 =

(
0 0
0 −σ

)
. (14)

This example is similar to [12, Example 6.6], but we consider the solution in the Itô-
and not the Stratonovich sense, hence, we give all details below and obtain slightly
different results.

Khasminskii [12, Example 6.6] states that

“It is extremely interesting to study ‘bifurcation’ values of the noise
intensity, i.e., values for which the system first becomes unstable.”
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Following his suggestions, we are interested in studying large σ for which the zero
solution of (14) is still GASiP.

First, we follow the standard approach by setting p = 2 and making the ansatz
LV (x) = −‖x‖2. Equations (8) and (9) then give

−‖x‖2 = x>

(
F>Q+QF +

U∑
u=1

(Gu)>QGu

)
x = x>

(
F>Q+QF + (G1)>QG1

)
x,

and by setting Q11 = A, Q12 = Q21 = B, and Q22 = C and comparing coefficients

−
(

1 0
0 1

)
= F>Q+QF + (G1)>QG1 =

(
−2ωB ω(A− C)− kB

ω(A− C)− kB 2ωB + (σ2 − 2k)C

)
,

i.e.

A =
1

k − σ2/2
+

k

2ω2
, B =

1

2ω
, and C =

1

k − σ2/2
.

By Sylvester’s criterion Q is positive definite, if and only if

C =
1

k − σ2/2
> 0 and AC −B2 =

1

(k − σ2/2)2
+

k

2ω2(k − σ2/2)
− 1

4ω2
> 0.

Note that k > σ2/2 implies

AC −B2 ≥ 1

2ω2(1− σ2/(2k))
− 1

4ω2
> 0

Thus, Q is positive definite, if and only if k > σ2/2. It follows that V (x) = ‖x‖2Q
is a Lyapunov function for system (14) asserting 2-ES stability (exponential mean
square stability). From Remark 11 it follows that (14) is 2-ES, if and only if k >
σ2/2. Hence, we easily verify GASiP for parameters where the system is 2-ES.

Now we seek to verify GASiP for various parameters where the system is not
2-ES, namely for k < σ2/2. This is obtained by proving that the origin is p-ES for
some 0 < p < 2. We choose the matrix

Q =

(
3 1/3

1/3 3

)
, with eigenvalues λ = 3± 1/3 > 0,

and we compute S ∈ R3×3, S < 0, such that Pc(x) = Z>SZ with Z =
(
x21, x1x2,

x22
)>

as explained above. This is remarkably easy to achieve with SOSTOOLS,
after initializing the matrices F,G, and Q and the constants c and p the commands

syms x1 x2

x=[x1,x2].’

Pc=-x.’*Q*x*(F’*Q+Q*F+G1’*Q*G1)-(p-2)*(x.’*Q*G1*x)^2-c*(x.’*x)^2)

[S,Z]=findsos(Pc)

do the job.
The data in Table 1 can be interpreted in the following way: For example, the

information from experiment #1 in the table is that for k = 1.5, σ = 2, ω = 3,
p = 0.5, and c = 1.6875, we can write

Pc(x) = 40.570 · (−0.2380x21 + 0.1543x1x2 + 0.9590x22)2

+ 0.0131 · (−0.8442x21 + 0.4555x1x2 − 0.2827x22)2

+ 8.6917 · (0.4804x21 + 0.8768x1x2 − 0.0218x22)2.

Note that in experiment number 4, where p = 1.2, even for c = 0 SOSTOOLS was
not able to write the polynomial P0(x) as sum-of-squares. This means that we were
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# ω p c D11 D22 D33 O

1 3.0 0.5 1.6875 40.569 0.0131 8.6916

−0.2380 0.1543 0.9590
−0.8442 0.4555 −0.2827
0.4804 0.8768 −0.0218


2 3.0 1.0 0.6250 24.016 0.0655 7.8514

−0.3602 0.1540 0.9200
−0.7665 0.5134 −0.3860
0.5318 0.8442 0.0669


3 3.0 1.1 0.2500 20.913 0.1488 7.6978

−0.4043 0.1477 0.9026
−0.7377 0.5308 −0.4173
0.5407 0.8346 0.1057


4 3.0 1.2 — — — — no solution

5 4.0 0.1 1.0000 0.0296 8.463 45.200

−0.8104 0.4716 −0.3476
0.4819 0.8740 0.0621
−0.3331 0.1172 0.9356


6 3.5 0.1 0.6600 45.967 0.0093 7.8397

−0.3094 0.1190 0.9435
−0.8109 0.4852 −0.3271
0.4967 0.8663 0.0536


7 3.0 0.1 0.25 47.020 0.0193 7.7424

−0.2913 0.1212 0.9489
−0.8304 0.4605 −0.3137
0.4750 0.8793 0.0335


8 2.75 0.1 0.05 47.486 0.0159 7.5072

−0.2806 0.1218 0.9521
−0.8335 0.4609 −0.3046
0.4759 0.8791 0.0278


9 2.5 0.1 — — — — no solution

Table 1. Results of checking whether Pc(x) for system (14) can be
written as SOS. No solution means that even for c = 0 SOSTOOLS
was not able to write Pc(x) as SOS. In all the experiments we
set σ = 2.0. In experiments #1 to #4 we set k = 1.5 and in
experiments #5 to #9 we set k = 0.9.

not able to show p-ES for this set of parameters with our ansatz for V and Q, but
it might be possible to show it with a different matrix Q. Also, for experiment 9,
we have decreased ω to 2.5, and we were not able to write the polynomial P0(x) as
sum-of-squares with these parameters.

Summarizing, our method enables us to show GASiP for parameters with k <
σ2/2, where the zero solution is not 2-ES.

5.2. Stabilization by noise. It is well known that the unstable zero solution of
a deterministic system can be stabilized by white noise. In particular, for any
matrix F in (1) the system can be stabilized by a large enough white noise. For
example, with λ as the largest eigenvalue of the symmetric matrix F + F>, one
can take u = 1 and G1 = σId with σ2 > λ. Plugging this into (9) with Q = Id
we get H(x) ≥ ((1 − p)σ2 − λ)‖x‖4 and with c = pσ2 = (σ2 − λ)/3 we see that
Pc(x) ≥ c‖x‖4 ≥ 0.

For our further discussion the following lemma is useful. Recall that the condition
number (with respect to the Euclidian norm) of a positive definite matrix G is
defined as cond(G) := λmax/λmin, where λmax, λmin denote the largest, smallest
eigenvalue of G, respectively.
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Lemma 5.1. Assume that G ∈ Rd×d is a positive definite matrix such that cond(G)
< 2. Then for any 0 < p < 2− cond(G) and

γ := ‖G‖22
2− cond(G)− p

(cond(G))2
> 0

we have

(2− p)
(
x>Gx

)2 − ‖x‖2 (x>G>Gx
)
≥ γ‖x‖4 (15)

for all x ∈ Rd.

Proof. Write G as G = OΛO>, where O = (o1,o2, . . . ,od) ∈ Rd×d is orthogonal and
Λ = diag(λ1, λ2, . . . , λd) ∈ Rd×d with λ1 ≥ λ2 ≥ . . . ≥ λd > 0. Then ‖G‖2 = λ1,
‖G−1‖2 = λ−1d , and cond(G) = λ1/λd.

Note that

λ2d

(
2− p− λ1

λd

)
= λ21

(
λd
λ1

)2(
2− p− λ1

λd

)
= ‖G‖22

2− p− cond(G)

(cond(G))2
= γ. (16)

Write an arbitrary x ∈ Rd as x =
∑
i x̃ioi and set x̃ = (x̃1, x̃2, . . . , x̃d)

>
= O>x.

Then(
x>G x

)2
=

(
x>OΛO>x

)2
=
(
x̃>Λx̃

)2
=

(∑
i

λix̃
2
i

)2

=
∑
i,j

λiλj x̃
2
i x̃

2
j

and

‖x‖2
(
x>G>G x

)
= ‖x̃‖2

(
x̃>ΛO>OΛx̃

)
= ‖x̃‖2

(
x̃>Λ2x̃

)
=
∑
i,j

λ2i x̃
2
i x̃

2
j .

Putting this together yields, noting that (2− p)λd − λ1 > 0 by (16):

(2− p)
(
x>Gx

)2 − ‖x‖2 (x>G>Gx
)

=
∑
i,j

x̃2i x̃
2
jλi ((2− p)λj − λi)

≥
∑
i,j

x̃2i x̃
2
jλi ((2− p)λd − λ1)

≥ λd ((2− p)λd − λ1)
∑
i,j

x̃2i x̃
2
j

= λ2d

(
2− p− λ1

λd

)
‖x̃‖4 = γ‖x‖4,

using again (16).

The following proposition considers the case of a deterministic system ẋ = Fx
to which noise is added. In particular we can always stabilize the system by ap-
plying sufficiently large white noise. This is of course particularly interesting if the
deterministic system is unstable. Statement a) in the proposition is well known,
cf. e.g. [13, Example 4.2.5], and statements b) and c) are extensions of a) using
Lemma 5.1.

Proposition 2. Let λ be the largest eigenvalue of the symmetric matrix F + F>

and consider the system (1).

a) Let Gu = σuId for all u ∈ [1, U ]Z and denote σ2 :=
∑U
u=1 σ

2
u.

Then the origin is p-ES for 0 < p < 1 if λ < (1− p)σ2 and it is GASiP if
λ < σ2.
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b) Let Gu � 0 be such that cond(Gu) < 2 for all u ∈ [1, U ]Z and let 0 < p <
2−maxu∈[1,U ]Z cond(Gu).

Then the origin is p-ES if λ < γp :=
∑U
u=1 γp,u with γp,u :=

‖Gu‖22
2−cond(Gu)−p
(cond(Gu))2 .

The origin is GASiP if λ < γ0.

c) Let Gu = σuG̃
u for all u ∈ [1, U ]Z, where G̃u � 0 such that cond(G̃u) < 2.

Let 0 < p < 2−maxu∈[1,U ]Z cond(Gu).
Then the origin is p-ES if

λ <

U∑
u=1

σ2
u‖G̃u‖22

2− cond(G̃u)− p
(cond(G̃u))2

. (17)

The origin is GASiP if λ <
∑U
u=1 σ

2
u‖G̃u‖22

2−cond(G̃u)

(cond(G̃u))2
.

Proof. Let Q = Id and consider the Lyapunov function candidate V (x) = ‖x‖pQ =

‖x‖p.
Using (8) and (9), we have

LV (x) =
1

2
p‖x‖p−4

(
‖x‖2

[
x>(F> + F )x

]
−

U∑
u=1

[
(2− p)

(
x>Gux

)2 − ‖x‖2 (x>(Gu)>Gux
)])

.

a) We get for every 0 < p < 1 that

LV (x) ≤ 1

2
p‖x‖p−4

(
λ‖x‖4 −

U∑
u=1

σ2
u(1− p)‖x‖4

)
=

1

2
p[λ− (1− p)σ2]‖x‖p.

Since the origin is GASiP if it is p-ES for some p > 0, we see that it is GASiP
if λ < σ2.

b) We have, using Lemma 5.1

LV (x) ≤ 1

2
p‖x‖p (λ− γp) .

It follows that the origin is p-ES if λ < γp and GASiP if λ < γ0.

c) We have ‖Gu‖2 = σu‖G̃u‖2 and cond(Gu) = cond(G̃u) and the statement
follows from b).

Let us now discuss how our SOS program can improve these results: In the
simplest case a) our SOS approach does not add anything. The conditions in b),
however, are much too restrictive, which is explored in the following three examples.
In all the examples we set Q = Id.

Example 15. With p = 0.1, F = Id, and G1 = diag(2, 3, 2) we have λ = 2 and

2 = λ > ‖G1‖22
2− cond(G1)− p

(cond(G1))2
= 1.6 = γp.

Hence, the conditions in Proposition 2 b) are not satisfied. However, our SOS
program (see Section 4.2) has a solution with Z = (x1x2, x

2
2, x2x3)>, c = 1.6,

D = diag(4.5, 2.6, 2.6), O = Id, which shows that the origin is p-ES.
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Example 16. Let

F =

 0.2759 0.0831 −0.9603
0.8794 −0.8281 0.2348
−0.3879 −1.8186 −0.1508

 and G1 =

 3.3849 −0.3554 0.1794
−0.3554 2.2541 0.3234
0.1794 0.3234 2.8609

 .

Then cond(G1) = 1.75 < 2 but

2.3062 = λ > 0.9999329 = ‖G1‖22
2− cond(G1)

(cond(G1))2
> ‖G1‖22

2− cond(G1)− p
(cond(G1))2

for p > 0.

Hence, λ > γp for any p > 0 and the conditions in Proposition 2 b) are not satisfied
for any p > 0.

However, e.g. with p = 0.3, our SOS program has a solution with Z =
(
x21, x1x2,

x22, x1x3, x2x3, x
2
3

)>
, c = 1.054, D = diag(13.3512, 0.1487, 9.5501, 8.3670, 3.566,

3.8781), and

O =


0.5051 −0.3954 0.2850 0.2708 0.5142 0.4119
−0.3459 −0.3919 −0.4570 0.3783 0.4365 −0.4293
−0.0782 −0.4806 0.0798 −0.8382 0.1997 −0.1188
0.3242 −0.6011 −0.0841 0.1676 −0.6848 −0.1715
0.5632 0.2733 0.1672 −0.0457 0.1800 −0.7387
0.4436 0.1520 −0.8176 −0.2255 0.0620 0.2386


and we can conclude that the origin is 0.3-ES and GASiP.

We can use our method to maximize p, while fixing the other parameters. By
fixing c = 0.1 and maximizing p we get the solution p = 0.5095. From this we can
conclude that the origin is 0.5095-ES.

In the case c) of the previous proposition, we can use SOS to find a small amount
of noise such that the origin is stabilized. This is achieved by minimizing σ2

1 .

Example 17. We set c = p = 0.1 and F as in Example 16, and set G1 = σ1G̃
1 with

G̃1 equal to the G1 in Example 16. In particular, we have cond(G̃1) = 1.75 < 2.
We are interested in the minimal σ2

1 such that we can show p-ES.
From (17) we get the sufficient bound σ2

1 = 3.8441 for 0.1-ES of the origin.
The SOS program is linear in σ2

1 and by minimizing it we get σ2
1 = 0.5164. This

shows that the origin is 0.1-ES for σ2
1 = 0.5164, a significantly smaller value than

obtained by Proposition 2.
Note that

2.3062 = λ > 0.309812 = ‖G1‖22
2− cond(G1)− 0.1

(cond(G1))2

= 0.51642 · ‖G̃1‖22
2− cond(G̃1)− p

(cond(G̃1))2
,

which again underlines that condition (17) is too strict.

6. Conclusions and further research. In this paper, we have studied global
asymptotic stability (GASiP) and pth moment exponential stability (p-ES) for au-
tonomous linear SDEs using a Lyapunov function. We have used an ansatz for the
Lyapunov function, so that its verification can be achieved by studying the non-
negativity of a polynomial. We have developed an SOS programming problem to
verify the nonnegativity; the program can also be used to optimize certain param-
eters, such as maximizing p or minimizing a noise parameter. We have applied the
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method to several examples and have shown that it can show stability in previously
undecided cases.

Further work will include studying the stability of nonlinear autonomous SDEs,
for which the Lyapunov function of the linearized system at the origin can serve
as a local Lyapunov function. Furthermore, it would be desirable to compute a
suitable matrix Q such that V (x) = ‖x‖pQ is a Lyapunov function. As Q does not
appear linearly, our proposed method cannot achieve this, but one could consider
the use of bilinear matrix inequality (BMI) optimization for solving (13) for Q and
thus finding a Lyapunov function. Another possibility is to try to reformulate our
approach using Schur complements and design an LMI that is also able to search
for a suitable Q. For references to such methods see [2, 25].

Acknowledgments. The authors are indebted to the anonymous referee that sug-
gested using Schur complements to improve our method. This indeed seems to be
the most promising setup and is the matter of ongoing research.
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