
SMOOTH COMPLETE LYAPUNOV FUNCTIONS FOR ODEs1

SIGURDUR HAFSTEIN AND STEFAN SUHR2

Abstract. We establish a link between complete Lyapunov functions in dy-
namical systems and time functions in general relativity. This result is the
�rst converse theorem for smooth complete Lyapunov functions for general
autonomous ODEs and a novel characterization of the chain recurrent set us-
ing cone �elds.

1. Introduction3

Lyapunov functions play an essential role in the stability theory of dynamical4

systems. However, a classical Lyapunov function is only de�ned for one attractor.5

Complete Lyapunov functions, introduced by Auslander [2] and Conley [4] for ODEs6

on compact state spaces, generalize the concept to characterize the qualitative7

behaviour of solutions on the entire state space; see also Franks [8] and Akin [1] for8

comparable results for mappings and relations, respectively. A classical Lyapunov9

function for a dynamical system, whose dynamics is given by an ODE γ̇(t) = Xγ(t),10

where Xγ(t) denotes the value of the vector �eld X : Rm ⊃ U → Rm at the point11

γ(t) ∈ U , is a continuous function de�ned on the neighbourhoodNA of one attractor12

A, decreasing along all solution trajectories t 7→ γ(t) in NA \ A. A complete13

Lyapunov function (see [4] and De�nition 4.5) is de�ned on the whole state space14

U and is decreasing along solution trajectories whenever possible. The state space15

is divided into two disjoint areas, where the �ow is fundamentally di�erent: on16

the chain recurrent set the motion is (almost) recurrent, e.g. stationary, periodic17

or almost periodic, and on this set no continuous function can be decreasing along18

solution trajectories. On the complement of the chain recurrent set the �ow is19

gradient-like, i.e. resembles γ̇(t) = −∇Sγ(t) for a scalar �eld S : Rm ⊃ U → R, and20

solutions �ow through. Whereas the chain recurrent set is sensitive to in�nitesimal21

perturbations, the gradient-like �ow is not. Hurley later proved the existence of22

complete Lyapunov functions for dynamical systems on noncompact spaces [11, 12,23

13], see also Patrão [15], and recently the existence of smooth complete Lyapunov24

functions on compact state spaces was proved by Fathi and Pageault [5]. Here and25

elsewhere in the paper smooth means C∞.26

Time functions in general relativity were introduced by Hawking [10], where27

he showed that stable causality is the necessary and su�cient condition for the28

existence of a cosmic time function which increases along every future directed29

timelike or null curve. Given stable causality there are no closed timelike curves in30
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any Lorentz metric that is su�ciently close to the spacetime metric. Time functions1

are closely related to Lyapunov functions as �rst noted by Fathi and Siconol� in2

[7]. One signi�cant di�erence, however, is that by de�nition time functions are3

concerned with causal evolutions in the given spacetime and therefore are always4

gradient-like, i.e. only exist in the absence of (almost) recurrent events. A notational5

di�erence is that time functions are increasing along solution trajectories, rather6

than decreasing like Lyapunov functions in dynamical systems.7

In [3] Lyapunov functions for ODEs and time functions for general relativity8

were joined into a single theory of Lyapunov functions for cone �elds, see De�nition9

3.7. Roughly speaking a cone �eld is the pointwise convex hull of the values of a10

family of vector �elds and a Lyapunov function for a cone �eld is the negative11

of a simultaneous Lyapunov function for all vector �elds de�ning the given cone12

�eld, see De�nition 4.3. Note that Lyapunov functions for cone �elds have the13

same sign convention as time functions, i.e. opposite to the sign convention of14

Lyapunov functions for ODEs. The main existence result for Lyapunov functions15

for cone �elds in [3] states that for a given cone �eld there exists a smooth Lyapunov16

function which is regular whenever possible.17

In this paper we establish a link between complete Lyapunov functions for dy-18

namical systems with dynamics de�ned by an ODE and Lyapunov functions for19

cone �elds. This link allows us to use results from Bernard and Suhr [3] to deliver a20

smooth converse theorem for complete Lyapunov functions for general autonomous21

ODEs. Apart from its theoretical importance, the existence of a smooth complete22

Lyapunov function is advantageous for applications and essential for proving that23

numerical methods for the computation of complete Lyapunov functions work as24

intended, cf. Giesl et al. [9].25

In more detail: Just as in the case of classical Lyapunov functions, the di�er-26

entiability of the Lyapunov function V : U → R allows for the characterization of27

the decrease condition of solution trajectories to the ODE γ̇(t) = Xγ(t) through28

the formula V ′(x) := 〈∇V (x), Xx〉 for the orbital derivative. This formula does29

not contain an explicit reference to the solution of the system and this is one of30

the key bene�ts of the Lyapunov stability theory: one can study the qualitative31

behaviour of a dynamical system through a Lyapunov function without knowing32

the solution to the associated ODE. Further, for a smooth Lyapunov function the33

orbital derivative inherits the smoothness properties from the vector �eld X, which34

is of great advantage when studying numerical methods and robustness.35

The paper is organized as follows: In Section 2 we set the stage and show that it36

is su�cient to consider ODEs, of which all solution trajectories are de�ned on the37

entire real line. Note that for our application it is more natural to refer to solutions38

trajectories of the ODE γ̇(t) = Xγ(t) as X-orbits because we study their properties39

in relation to the curves tangent to the cone �eld CX de�ned in (1). Further, by40

the results in �2 it seems more natural to de�ne complete Lyapunov functions for41

vector �elds X, cf. De�nition 4.5, rather than for the related ODEs γ̇(t) = Xγ(t).42

In Section 3 we de�ne the relevant concepts of chain recurrence for X-orbits in43

�3.1 and in �3.2 we recall de�nitions of cone �elds and stable recurrence from [3].44

Section 4 states the main results. In Theorem 4.1 we establish that the notions45

of chain recurrence for the X-orbits and stable recurrence of the associated cone46

�eld CX , cf. (1), are equivalent. We then show that a smooth Lyapunov function47
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τ for the cone �eld CX delivers a function V = −τ that is almost a complete Lya-1

punov function for the vector �eld X and we close the gap; recall that a Lyapunov2

function for CX is increasing, not decreasing, along X-orbits. In more detail, [3,3

Theorem 2] establishes the existence of a particular Lyapunov function τ for the4

cone �eld CX in the sense of De�nition 4.3, cf. Theorem 4.4 (a),(b),(c). The only5

property V = −τ is missing to be a complete Lyapunov function for X in the sense6

of De�nition 4.5 is that V (RchainX ) should additionally be nowhere dense in R. This7

is established by Theorem 4.4 (d) for τ and in Corollaries 4.7 and 4.8 we explicitly8

state analogous useful propositions about the complete Lyapunov function V = −τ9

for the vector �eld X. The di�erence between the di�erent kinds of (complete)10

Lyapunov functions in the literature is somewhat involved and we explain the dif-11

ferences with a simple example in Remark 4.6. To express it absolutely clear: V12

is a C∞ complete Lyapunov function for the ODE γ̇(t) = Xγ(t) that ful�lls all the13

criteria stated by Conley [4].14

In Section 5 we then prove the theorems. In �5.1 and �5.2 we prove the equiv-15

alence of the notions of recurrence for the vector �eld X and the cone �eld CX ,16

i.e. Theorem 4.1, and in �5.3 we prove Theorem 4.4 (d).17

2. The Setting18

Recurrence for dynamical systems is a ubiquitous phenomenon. We will therefore19

be as general as reasonably possible in our exposition while keeping an applicator-20

friendly point-of-view. We will always consider a connected and open set U ⊂ Rm21

and continuous X : U → Rm. Note that we explicitly do not assume X to be22

uniquely integrable, i.e. we do not exclude ODEs γ̇(t) = Xγ(t) where di�erent23

solutions trajectories can emerge from the same initial value.24

De�nition 2.1. A curve γ : I → U is an integral curve of X or an X-orbit, if25

γ is continuously di�erentiable with γ̇(t) = Xγ(t) for all t ∈ I.26

Note that it su�ces to assume that γ̇(t) exists for almost all t ∈ I and satis�es27

γ̇(t) = Xγ(t) whenever it exists. Since X is continuous a solution in the weaker28

sense is continuously di�erentiable and γ̇(t) = Xγ(t) holds everywhere.29

An X-orbit γ : (a, b) → U is inextensible if γ(t) for neither t ↓ a nor t ↑ b30

accumulates in U , cf. e.g. [18, �6,�7]. Then the vector �eldX : U → Rm is complete31

if all inextensible X-orbits are de�ned on the entire real line, i.e. γ : R→ U for all32

inextensible X-orbits.33

Remark 2.2. We will see below that assuming that X : U → Rm is complete poses34

no restriction on the scope of our results.35

For a more detailed treatment of the following we refer to [17] or e.g. [14, Chapter
1] or [16, �3.1] for a more accessible discussion. Given a continuous X : U → Rm
there exists a smooth function r : U → (0, 1) such that Y := rX is complete. Note
that Y has the same orbits as X. The essential idea is to choose r ful�lling, cf. [3,
Lemma 5.4],

rx ≤
1

1 + ‖Xx‖
dist(x, ∂U)

1 + dist(x, ∂U)
,

where ‖ · ‖ :=
√
〈·, ·〉 is the Euclidian norm and dist(x,M) := infy∈M ‖x − y‖ for

M 6= ∅ and := 1 if M = ∅. We claim that every inextensible Y -orbit is complete.
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Let γ : (a, b) → U be a Y -orbit. It su�ces to consider the case b < ∞. Fix
t0 ∈ (a, b). If b <∞ we have for the length of the trajectory

L(γ|[t0,b)) ≤ b− t0 <∞

since ‖γ̇(t)‖ = ‖Yγ(t)‖ ≤ 1. This implies that z := limt↑b γ(t) exists; either in U
or in ∂U . The former case is a contradiction to γ being inextensible in U . In the
latter case we have by the Cauchy-Schwarz inequality

− d

dt
‖z − γ(t)‖ = −〈z − γ(t), γ̇(t)〉

‖z − γ(t)‖
≤ ‖γ̇(t)‖

≤ dist(γ(t), ∂U) ≤ −(−‖z − γ(t)‖)

since z ∈ ∂U . Now Gronwall's Lemma implies for all t ∈ [t0, b) that

−‖z − γ(t)‖ ≤ e−(t−t0)(−‖z − γ(t0)‖),

i.e.

‖z − γ(t)‖ ≥ et0−t‖z − γ(t0)‖ ≥ et0−b‖z − γ(t0)‖ > 0,

which clearly contradicts the de�nition of z.1

Now, for a smooth function V : U → R we have for Y = rX and all p ∈ U that

〈∇V (p), Yp〉 = rp〈∇V (p), Xp〉.

In particular, with r : U → (0,∞) the orbital derivatives 〈∇V (p), Yp〉 and 〈∇V (p), Xp〉2

have the same sign and vanish on the same set.3

3. Two notions of recurrence4

We �rst put down the necessary de�nitions of chain recurrence in dynamical5

systems and stable recurrence for time functions, before we state our results in the6

next section.7

3.1. Chain recurrence and chain equivalence. The following de�nitions are8

inspired by [4, 12]. We assume that X : U → Rm is continuous and complete.9

De�nition 3.1. Let T > 0 and ε : U → (0,∞) be continuous. A �nite collection of
points p0, . . . , pn ∈ U (n ≥ 1) is an (ε, T )-chain if there exist ti ≥ T and X-orbits
γi : [0, ti]→ U with

γi(0) = pi and ‖γi(ti)− pi+1‖ ≤ ε(γi(ti))

for all 0 ≤ i ≤ n− 1.10

De�nition 3.2. A point p ∈ U is chain recurrent for X if for all T > 0 and11

ε : M → (0,∞) there exists an (ε, T )-chain p0 = p, p1, . . . , pn = p.12

Denote with

RchainX

the set of chain recurrent points for the complete vector �eld X. If X is not13

complete, choose r : U → (0,∞) such that rX is complete (see Section 2) and set14

RchainX := RchainrX .

We will see a posteriori (Remark 4.2) that the de�nition of chain recurrence does15

not depend on the chosen function r.16
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De�nition 3.3. The point q is chain reachable from p, denoted p→X q, if1

there exists T > 0 such that for all continuous ε : U → (0,∞) there exists an2

(ε, T )-chain p = p0, p1, . . . , pn = q.3

Note that for every p ∈ RchainX we have p→X p, i.e.

RchainX ⊂ {p ∈ U | p→X p}.
The equality of these sets will be a consequence of the results below. The equality4

is analogue to the equivalence of the chain recurrent set of a semi�ow and its time5

one map in [12, Theorem 5].6

The set of chain reachable points from p together with the point p itself is denoted
with

FchainX (p) := {q ∈ U | q = p or p→X q}.
If X is not complete choose r : U → (0,∞) such that rX is complete. Set7

FchainX (p) := FchainrX (p)

and �→X :=→rX �. We will see a posteriori (Remark 4.2) that the de�nition of chain8

reachability does not depend on the chosen function r.9

Note that if p→X q and T > 0 is chosen according to De�nition 3.3 then for all10

0 < T ′ ≤ T there exists a (ε, T ′)-chain from p to q for all continuous ε : U → (0,∞).11

Example 3.4. Let U = Rm and X ≡ e1. Then X is uniquely integrable (i.e. exactly
one solution trajectory through each point) and complete. Its �ow is given for
(x, y) ∈ R× Rm−1 by ϕt(x, y) = (x+ t, y), a horizontal translation. We claim that
(z, w) is chain reachable from (x, y), i� w = y and z ≥ x. It is obvious that under
these conditions (z, w) is chain reachable from (x, y), since it lies on the forward
orbit through (x, y). Conversely assume that (z, w) is chain reachable from (x, y).
Then for some T ∈ (0, 1/2) we have for every ε ≡ ε0 ≤ T 2 that there exists an
(ε, T )-chain (x0, y0) = (x, y), (x1, y1), . . . , (xn, yn) = (z, w). Since ε0 ≤ T 2 ≤ T/2
and xi − xi−1 ≥ T − ε0 we have xi ≥ xi−1 + T/2, i.e. z ≥ x. Further we have
‖yi − yi−1‖ ≤ ε0. Since in the interval [x, z] there can occur no more than 2 z−xT -
many jumps we have

‖w − y‖ ≤
n∑
i=1

‖yi − yi−1‖ ≤ 2
z − x
T

ε0 = 2(z − x)
√
ε0.

For ε0 ↓ 0 the claim follows.12

De�nition 3.5. Two points p, q ∈ Rchain

X are chain transitive if p →X q and13

q →X p, i.e. there exists T > 0 such that for all ε : U → (0,∞) there exists an14

(ε, T )-chain p = p0, p1, . . . , pn = p containing q.15

It is easy to see that the property to be chain transitive is an equivalence rela-16

tion on the chain recurrent set. For p ∈ RchainX denote with RchainX (p) the chain17

transitive components of p, cf. e.g. [13, �2.3].18

3.2. Stable recurrence. The de�nitions in this section are taken from [3]. A19

convex cone in the vector space E is a convex subset C ⊂ E such that tx ∈ C for20

each t > 0 and x ∈ C. The convex cone C is called regular if it is not empty and21

it is contained in an open half-space, or equivalently, if there exists a linear form τ22

on E such that τ · v > 0 for each v ∈ C. The full cone C = E will be called the23

singular cone.24
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De�nition 3.6. We say that Ω ⊂ E is an open cone if it is a convex cone which1

is open as a subset of E.2

We say that C ⊂ E is a closed cone if it is a convex cone which is regular and3

C ∪ {0} is a closed subset of E, or if it is singular.4

A cone �eld C on the open set U is a subset of U × Rm such that C(p) :=5

({p} × Rm) ∩ C is a convex cone for each p.6

De�nition 3.7. We say that E ⊂ U × Rm is an open cone �eld if it is a cone7

�eld which is open as a subset of U × Rm.8

We say the C ⊂ U × Rm is a closed cone �eld if it is a cone �eld such that9

C ∪ (U × {0}) is a closed subset of U × Rm and such that C(p) is a closed cone for10

each p.11

For an open cone �eld E the cones E(p) are open cones in {p} × Rm.12

Given a closed cone �eld C, each point p ∈ U is of one and only one of the13

following types:14

- Regular, which means that C(p) is a regular cone, or15

- singular, which means that C(p) = {p} × Rm, or16

- degenerate, which means that C(p) is empty.17

For a subset A of a vector space de�ne pos(A) := {λv| v ∈ A, λ > 0}. Then we18

associate with every continuous vector �eld X the cone �eld CX ⊂ U × Rm by19

(1) CX(p) :=

{
{p} × pos(Xp), if Xp 6= 0

{p} × Rm, if Xp = 0.

Following [3] CX is an example of a closed cone �eld.20

We say that the cone �eld C′ is wider than the cone �eld C if C ⊂ C′. We say
that C′ is an enlargement of C, written C ≺ C′, if there exists an open cone �eld
E and a closed cone �eld D such that C ⊂ D ⊂ E ⊂ C′. An open enlargement
of a closed cone �eld C is just an open cone �eld wider than C. For a vector �eld
X : U → Rm and continuous ε : U → (0,∞) the cone �eld EX,ε ⊂ U × Rm de�ned
by

EX,ε(p) := {p} × pos(Bε(p)(Xp))

is an open enlargement of CX , where Bδ(x) denotes an open ball centered at x and21

with radius δ > 0.22

Given an open cone �eld E , we say that the curve γ : I → U is E-timelike (or23

just timelike) if it is piecewise smooth and if γ̇(t) ∈ E(γ(t)) for all t in I where24

γ is smooth. At non smooth points, the inclusion is required to hold for left and25

right di�erentials. The last condition insures that tangents to timelike curves do26

not accumulate on the boundary of E . This intuition is inspired by Lorentzian27

geometry. The chronological future I+E (p) of p ∈ U relative to E is the set of28

points q such that there exists an E-timelike curve from p to q.29

De�nition 3.8. The stable future of p (with respect to C) is the set

F+
C (p) := {p} ∪

⋂
C≺E
I+E (p),

where the intersection is taken over all open enlargements E of C.30
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De�nition 3.9. A point p ∈ U is said to be stably recurrent (for C) if p ∈1 ⋂
C≺E I

+
E (p), i.e. for each open enlargement E of C, there exists an E-timelike2

curve γ : I → U and s < t ∈ I with p = γ(s) = γ(t).3

We denote with
RC

the set of stably recurrent points of the cone �eld C. Note that if C = CX then4

RCX = RCY for Y := rX, r : U → (0,∞) continuous.5

De�nition 3.10. Two points p, q ∈ RC are stably equivalent if for every open6

enlargement E of C both points lie on a common E-timelike loop.7

The sets of stably equivalent points are called stable classes. The stable class8

of p ∈ RC is denoted with RC(p).9

4. Main Results10

With all de�nitions in place we can state our main results. Theorem 4.1 estab-11

lishes the connection between the notions of recurrence and chain transitivity for12

vector �elds and cone �elds. Together with [3, Theorem 2] (here Theorem 4.4(a)-13

(c)) and the new Theorem 4.4(d), we obtain useful consequences on the existence14

of smooth complete Lyapunov functions for vector �elds; stated in Corollary 4.715

and 4.8.16

Theorem 4.1. Let U ⊂ Rm be open and X : U → Rm be a continuous complete
vector �eld. Then both notions of recurrence coincide, i.e.

Rchain

X = RCX ,
and the chain transitive components and the stable classes coincide, i.e.

Rchain

X (p) = RCX (p)

for every p ∈ Rchain

X .17

Further,
Fchain

X (p) = F+
CX (p)

for all p ∈ U .18

Remark 4.2. An immediate corollary of the theorem is the equivalence:

Rchain

X = {p ∈ U | p→X p}
The theorem further shows that the de�nition of the chain recurrent set and of19

chain reachability for an incomplete vector �eld X is independent of the �rescaling�20

function r : U → (0,∞) for which rX is complete.21

For a function τ : U → R we call a point p ∈ U critical if the di�erential of τ22

vanishes at p, i.e. dτp = 0 and refer to y = τ(p) as a critical value of τ . A point23

p ∈ U that is not critical is called regular and a value y of τ that is not critical,24

i.e. there exists no critical p ∈ U such that y = τ(p), is said to be a regular value.25

The next de�nition uni�es time functions and Lyapunov functions for cone �elds.26

Note however, that this de�nition of a Lyapunov function τ for a cone �eld only27

forces τ to be increasing along curves tangent to CX and critical at (almost) re-28

curring points, e.g. equilibria or the points on a periodic orbits or almost periodic29

orbits, etc. As explained in Remark 4.6 it corresponds to the Lyapunov functions30

studied by Auslander for ODEs [2] and not the more sophisticated complete Lya-31

punov functions introduced later by Conley in [4].32
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De�nition 4.3. [3, De�nition 1.4] Let C be a cone �eld on U . The function τ :1

U → R is a Lyapunov function for the cone �eld C if it is smooth, dτp(v) ≥ 02

for each p ∈ U and v ∈ C(p), and if, at each regular point p of τ (i.e. dτp 6= 0), we3

have dτp(v) > 0 for each v ∈ C(p).4

We have the following existence result for Lyapunov functions.5

Theorem 4.4. Let X : U → Rm be a continuous vector �eld. Then there exists a6

Lyapunov function τ : U → R for the cone �eld CX with the following properties:7

(a) The function τ is regular at each point of U \RCX and critical at each point8

of RCX .9

(b) Two points p and p′ of RCX belong to the same stable class i� τ(p′) = τ(p).10

(c) If p and p′ are two points of U such that p′ ∈ F+
CX (p) and p 6∈ F+

CX (p′),11

then τ(p′) > τ(p).12

(d) The set τ(RCX ) of critical values of τ is nowhere dense in R.13

The assertion is [3, Theorem 2] for the present special case C = CX , except for14

point (d) which is proved in Section 5.3. Properties (a) and (b) imply that RCX15

is a closed set, as well as the stable classes. Together with Theorem 4.1 we obtain16

that RchainX as well as the chain transitive components are closed.17

The following de�nition is adapted from [4, �6.4].18

De�nition 4.5. A complete Lyapunov function for the continuous vector19

�eld X is a continuous function V : U → R, which is strictly decreasing along orbits20

outside of the chain recurrent set and such that (1) V (Rchain

X ) is nowhere dense and21

(2) for t ∈ V (Rchain

X ) the set V −1(t) ∩Rchain

X is a chain transitive component.22

Remark 4.6. Consider the vector �eld X(x,y) = (−y, x) in the plane U = R2.23

The solution trajectories of γ̇(t) = Xγ(t) are circles centered at the origin. It is24

not di�cult to see that Rchain

X (p) = Rchain

X = U for all p ∈ U . Note that the25

function V (p) = ‖p‖2, although nonincreasing along all solution trajectories and26

strictly decreasing on U \Rchain

X = ∅, is not a complete Lyapunov function for X in27

the sense of De�nition 4.5 (nor Conley [4, �6.4]) because it neither ful�lls (1) nor28

(2). Additionally, it is not di�cult to see that τ = −V does not ful�ll the properties29

(a), (b), (d) of the Lyapunov function from Theorem 4.4. However, τ = −V is a30

Lyapunov function for the cone �eld CX according to De�nition 4.3 and V ful�lls31

the conditions of Theorem 2 in [2] by Auslander, where prototypes of a complete32

Lyapunov functions were �rst introduced.33

A more sophisticated complete Lyapunov function as introduced by Conley in [4],34

cf. De�nition 4.5, also has to separate the di�erent chain transitive components.35

The only functions ful�lling all properties of a complete Lyapunov functions in36

De�nition 4.5 are V = −τ ≡ const.37

Combining the previous theorems and setting V = −τ we obtain the following38

corollary.39

Corollary 4.7. Let X : U → Rm be a continuous vector �eld. Then there exists a40

smooth complete Lyapunov function V : U → R such that41

(a) two points p, q ∈ Rchain

X are chain transitive i� V (p) = V (q) and42

(b) if p′ ∈ Fchain

X (p) and p 6∈ Fchain

X (p′), then V (p′) < V (p).43

The novel results in the last corollary is the smoothness of V , from which we44

obtain an obvious corollary useful for applications.45
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Corollary 4.8. Let X : U → Rm be a Ck vector �eld, k ∈ N0∪{∞}. For V : U → R1

from Corollary 4.7 the orbital derivative V ′(x) := 〈∇V (x), Xx〉 is Ck and nonposi-2

tive on U and {x ∈ U | V ′(x) = 0} = Rchain

X .3

5. Proof of the Main Results4

In the �rst two sections we prove Theorem 4.1. For readability we split the proof5

into several assertions. Then we prove part (d) of Theorem 4.4 in Section 5.3.6

5.1. Proof of Theorem 4.1 : ⊂. We show that RchainX ⊂ RCX , RchainX (p) ⊂7

RCX (p) for all p ∈ RchainX , and that for every p ∈ U we have FchainX (p) ⊂ F+
CX (p).8

9

Let E be an arbitrary, but �xed, open enlargement of CX till the end of this10

section.11

Lemma 5.1. For all T > 0 there exists a locally �nite cover {Vk}k∈N of U and a12

sequence εk > 0 such that Bεk(z) ⊂ I+E (γ(0)) for all z ∈ Vk, where γ : [0, t]→ U is13

an X-orbit ending at z and t ≥ T .14

Proof: Since E is an open enlargement of CX the set

SE := {z ∈ U | E(z) = Rm}
is an open neighborhood of SX := {z ∈ U | Xz = 0}. Therefore we can choose
for every y ∈ SX an 0 < εy ≤ 1 such that B2εy (y) ⊂ SE . Since SX is paracom-
pact, cf. [?, Thm. 1.15], there exists a locally �nite re�nement of nonempty sets
{V ∗l |V ∗l ⊂ Bεyl (yl)}l∈N of the cover {Bεy (y)}y∈SX . Since εy ≤ 1 it follows that

{V Sl := Bεyl (yl)}l∈N, where V
∗
l ⊂ V Sl , is a locally �nite subcover of SX . Set

εSl := εyl . For z ∈ V Sl we have

BεSl (z) ⊂ I+E (z) ⊂ I+E (η(0))

for every X-orbit γ : [0, t]→ U ending at z.15

Set UR := U \
⋃
l∈N V

S
l . For y ∈ UR choose ry > 0 such that B3ry (y) ⊂ U \ SX .

For
0 < λy ≤

ry
2‖X|B2ry (y)

‖∞
every X-orbit η : [0, λy]→ U ending at z ∈ Bry (y) is contained in B2ry (y). Indeed
let η(ε) be the last entry point of η into B2ry (y). Then we have

‖η(ε)− y‖ ≤ ‖η(ε)− η(λy)‖+ ‖z − y‖
≤ ‖η(ε)− η(λy)‖+ ry

≤ ‖X|B2ry (y)
‖∞

ry
2‖X|B2ry (y)

‖∞
+ ry

=
3ry
2
,

which implies η ⊂ B2ry (y).16

Note that X is bounded away from 0 on B2ry (y). After diminishing ry we17

can choose, by the continuity of X, a δy > 0 such that Bδy (Xz) ⊂ E(z′) for all18

z, z′ ∈ B2ry (y). After diminishing λy, if necessary, we can assume that λy ≤ T .19

We claim that
Bλyδy (z) ⊂ I+E (γ(0))

for all X-orbits γ : [0, t]→ U with endpoint z ∈ Bry (y) and t ≥ T .20
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Indeed let w ∈ Bλyδy (0) and η : [0, t] → U be an X-orbit with endpoint z ∈
Bry (y) and t ≥ T . Consider the curve ηw : [0, t] → U with ηw(s) = η(s) for
s ≤ t− λy and

ηw(s) = η(s) +
s+ λy − t

λy
w

for s ≥ t− λy. Since η|[t−λy,t] ⊂ B2ry (y) and

‖η̇w(s)−Xη(s)‖ = ‖η̇w(s)− η̇(s)‖ ≤ ‖w‖
λy
≤ δy

we conclude that η̇w ∈ E everywhere. Thus the curve is E-timelike, i.e. z + w ∈1

I+E (η(0)).2

Next choose a locally �nite subcover {V Rl } := {Bryl (yl)}l∈N of UR and set εl :=
λylδyl . We have that

Bεl(z) ⊂ I
+
E (γ(0))

for all X-orbits γ : [0, t]→ U with endpoint z ∈ V Rl and t ≥ T .3

De�ne the family {Vk}k∈N by Vk := V Sk/2 for k even and Vk := V R(k+1)/2 for k4

odd. It forms a locally �nite cover of U . Further de�ne the sequence {εk}k∈N by5

εk := εSk/2 for k even and εk := εS(k+1)/2 for k odd. The sequence has the property6

that Bεk(z) ⊂ I+E (γ(0)) where γ : [0, t] → U is an X-orbit ending at z ∈ Vk and7

t ≥ T .8

9

�10

Lemma 5.2. If q is chain reachable from p, then q is in chronological future of p
relative to all open enlargements E ′ of CX . That is

p→X q ⇒ q ∈
⋂
CX≺E′

I+E′(p),

in particular Fchain

X (p) ⊂ F+
CX (p) for every p ∈ U .11

Proof. Let p, q ∈ U and T > 0 such that for all continuous ε : U → (0,∞) there12

exits an (ε, T )-chain p0 = p, p1, . . . , pn = q. Choose ε : U → (0,∞) continuous with13

ε|Vk ≤ εk for all k ∈ N. By construction there exist ti ≥ T and an E-timelike path14

ηi : [0, ti]→M from pi to pi+1 for all 0 ≤ i ≤ n−1. A concatenation of these paths15

gives an E-timelike path from p to q. Since E is an arbitrary open enlargement of16

C the lemma follows. �17

Lemma 5.3. Rchain

X ⊂ RCX and Rchain

X (p) ⊂ RCX (p) for all p ∈ Rchain

X .18

Proof. First note that every chain recurrent point is chain reachable from itself, i.e.
p→X p. This implies by Lemma 5.2 that

p ∈
⋂
CX≺E′

I+E′(p),

i.e. p ∈ RCX .19

20

Now let p, q ∈ RchainX be chain transitive, i.e. q ∈ RchainX (p). Since q ∈
⋂
C≺E′ I

+
E′(p)21

and p ∈
⋂
C≺E′ I

+
E′(q) by Lemma 5.2, we can for an arbitrary open enlargement22

E ′ of C concatenate E ′-timelike paths from p to q and from q to p to obtain an23

E ′-timelike loop around p containing q. Hence, p and q are stably equivalent,24

i.e. q ∈ RCX (p). �25
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5.2. Proof of Theorem 4.1 : ⊃. We complete the proof of Theorem 4.1 by show-1

ing that RchainX ⊃ RCX , RchainX (p) ⊃ RCX (p) for all p ∈ RchainX , and that for every2

p ∈ U we have FchainX (p) ⊃ F+
CX (p).3

Fix a compact exhaustion {Kl}l∈N of U with Kl−1 ⊂ K◦l , i.e. every Kl is com-4

pact, Kl−1 is contained in the interior K◦l of Kl, and
⋃
l∈NKl = U .5

Proposition 5.4. For every S > 0 and every continuous function ε : U → (0,∞)
there exists a continuous function δ : U → (0,∞), such that for all η : [0, s] → U ,
s ≤ S, with

‖η̇(σ)−Xη(σ)‖ < δ(η(σ))

for all σ ∈ [0, s], there exists an X-orbit γ : [0, s]→ U with γ(0) = η(0) and

‖γ(s)− η(s)‖ < ε(γ(s)).

Proof: Fix l, λ ∈ N, l < λ. Consider a sequence {sλn}n, sλn ∈ [0, S], and a sequence
of curves

{ηλn : [0, sλn]→ Kλ}n∈N
with ηn(0) ∈ Kl and ‖η̇n(σ)−Xηn(σ)‖ < 1/n for all σ ∈ [0, sλn].6

By the Theorem of Arzela-Ascoli the sequence {ηλn}n includes a subsequence7

converging uniformly to a Lipschitz curve ηλ : [0, sλ] → Kλ, where s
λ is the limes8

inferior over the sλn's in the converging subsequence. If sλ = 0 there is nothing9

to prove. Therefore we can assume sλ > 0. By Rademacher's Theorem ηλ is10

di�erentiable almost everywhere. For all t ∈ [0, sλ] such that η̇λ(t) exists we have11

η̇λ(t) = Xηλ(t). Since X is continuous we conclude that η̇λ(t) = Xηλ(t) for all12

t ∈ [0, sλ], i.e. ηλ is an X-orbit.13

The argument shows as a special case: For every l ∈ N there exist n(l), λ(l) ∈ N14

such that for all s ≤ S and all curves η : [0, s] → U with η(0) ∈ Kl and ‖η̇(σ) −15

Xη(σ)‖ < 1/n(l) for all σ ∈ [0, s] we have η([0, s]) ⊂ Kλ(l).16

Hence, we conclude by the same argument that for a given εl > 0 there exists
an N(l) ∈ N, i.g. larger than n(l), such that for all curves η : [0, s] → U , s ≤ S,
with η(0) ∈ Kl and ‖η̇(σ)−Xη(σ)‖ < 1/N(l) for all σ ∈ [0, s] there exits an X-orbit
γ : [0, s]→ U with

‖γ(σ)− η(σ)‖ < εl

for all σ ∈ [0, s].17

By passing to a sub-exhaustion we can assume that λ(l) = l+1. Then choose εl <18

min ε|Kl+1
. For a continuous function δ : U → (0,∞) with δ|Kl+1\Kl−1

< 1/N(l)19

we have: If s ≤ S and η : [0, s] → U is a curve with ‖η̇(σ) − Xη(σ)‖ < δ(η(σ))20

for all σ ∈ [0, s] then there exists an X-orbit γ : [0, s] → U with γ(0) = η(0) and21

‖γ(s)− η(s)‖ < ε(γ(s)).22

23

�24

Lemma 5.5. If q is in chronological future of p relative to all open enlargements
E ′ of CX ,. then q is chain reachable from p. That is

q ∈
⋂
CX≺E′

I+E′(p)⇒ p→X q,

in particular Fchain

X (p) ⊃ F+
CX (p) for every p ∈ U .25

Proof: Let a continuous function ε : U → (0,∞) be given. Following Proposition26

5.4 we can choose for ε and S = 2 a continuous function δ : U → (0,∞).27
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Set

E :=
⋃
z∈U
{z} × pos(Bδ(z)(Xz)).

Note that the cone �eld E is an open enlargement of CX . By assumption there exists1

an E-timelike curve η : I → U from p to q. We can assume without loss of generality2

that η is smooth. By the construction of E we have ‖η̇(σ) −Xη(σ)‖ < δ(η(σ)) for3

all σ ∈ I. Let T0 ∈ (0, 1) be a lower bound on the length |I| of the interval I.4

Now construct an (ε, T0)-chain from p to q as follows: By construction there exists5

for all r ∈ I and s ≤ min{r+1,max I} anX-orbit γ : [r, s]→ U with γ(r) = η(r) and6

‖η(s) − γ(s)‖ < ε(γ(s)). Divide I into subintervals [a0, a1], [a1, a2], . . . , [ak−1, ak]7

with T0 ≤ ai+1 − ai ≤ 2. Then the points η(a0) = p, η(a1), . . . , η(ak) = q form an8

(ε, T0)-chain from p to q.9

10
�11

Lemma 5.6.

RCX ⊂ Rchain

X

Proof: Let T > 0 and a continuous function ε : U → (0,∞) be given. Choose a
continuous function δ : U → (0,∞) according to Proposition 5.4 for ε and S = 2T .
Set

E :=
⋃
z∈U
{z} × pos(Bδ(z)(Xz)).

As before the cone E is an open enlargement of CX .12

Assume p ∈ RCX and choose an E-timelike loop η : I → U around p with

‖η̇(s)−Xη(s)‖ < δ(η(s))

for all s ∈ I. By iterating the loop η we can assume that T ≤ |I|. Divide I13

into subintervals [a0, a1], . . . , [ak−1, ak] with T ≤ ai+1 − ai ≤ 2T . Then the points14

p = η(a0), η(a1), . . . , η(ak) = p form an (ε, T )-chain.15

Since T > 0 and ε : U → (0,∞) were arbitrary it follows that p ∈ RchainX .16
�17

Remark 5.7. The inclusion RCX (p) ⊂ Rchain

X (p) for all p ∈ RCX is now obvious18

from the two preceding lemmas.19

5.3. Proof of Theorem 4.4. As mentioned above the following theorem is [3,20

Theorem 2] for the special case C = CX .21

Theorem 5.8. Let X : U → Rm be a continuous vector �eld. Then there exists a22

Lyapunov function ρ : U → R for the cone �eld CX with the following properties :23

(a) The function ρ is regular at each point of U \RCX and critical at each point24

of RCX .25

(b) Two points p and p′ of RCX belong to the same stable class i� ρ(p′) = ρ(p).26

(c) If p and p′ are two points of U such that p′ ∈ F+
CX (p) and p 6∈ F+

CX (p′),27

then ρ(p′) > ρ(p).28

Lemma 5.9. Let X : U → Rm be a continuous vector �eld. Then there exists a29

Lyapunov function τ : U → R for the cone �eld CX satisfying the conclusion of30

Theorem 5.8 as well as31

(d′) For all r1, r2 ∈ τ(RCX ), r1 < r2, there exist r1 ≤ s1 < s2 ≤ r2 such that32

every value t ∈ (s1, s2) is regular for τ .33
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Proof of Theorem 4.4. It only remains to prove (d) of Theorem 4.4. Assume the
contrary, i.e. (

τ(RCX )
)◦
6= ∅.

Choose a nonempty open interval I ⊂ τ(RCX ). Then there exist r1, r2 ∈ I∩τ(RCX ),1

r1 < r2. Choose r1 ≤ s1 < s2 ≤ r2 according to Lemma 5.9(d'). Then we have2

(s1, s2) ∩ τ(RCX ) = ∅, which clearly represents a contradiction to Lemma 5.9. �3

Proof of Lemma 5.9. By Theorem 5.8 we can �x a Lyapunov function ρ : U → R4

satisfying properties (a)-(c) in Theorem 4.4. Keep in mind throughout the con-5

struction that RCX is the set of critical points of ρ. If the set ρ(RCX ) is �nite there6

is nothing to prove.7

If σ : U → R is a second Lyapunov function such that8

(2) sgn[σ(p′)− σ(p)] = sgn[ρ(p′)− ρ(p)] ∈ {0,±1}
for all p, p′ ∈ RCX , then the Lyapunov function τ := ρ+ σ satis�es (a)-(c) as well.9

This can be seen as follows: First note that τ is regular at a point p i� ρ or σ10

are regular at p. Second, if p, p′ ∈ RCX belong to the same stable component then11

τ(p) = τ(p′). Conversely if τ(p) = τ(p′) then12

(3) ρ(p)− ρ(p′) = σ(p′)− σ(p),

which by our assumption implies ρ(p) = ρ(p′), i.e. p and p′ belong to the same
stable component. Third p′ ∈ F+

CX (p) implies σ(p′) ≥ σ(p). If p /∈ F+
CX (p′) we have

τ(p′) = ρ(p′) + σ(p′) > ρ(p) + σ(p) = τ(p).

The remainder of the proof is the construction of a Lyapunov function σ : U → R13

satisfying (2) and such that ρ+ σ has property (d').14

We �rst establish the existence of a countable set Z ⊂ R of regular values of ρ
such that for all r1, r2 ∈ ρ(RCX ), r1 < r2, there exists z ∈ Z with r1 < z < r2.
Note that {ρ = z} 6= ∅ for such z by the Intermediate Value Theorem because U is
connected.
We construct Z as follows: De�ne

ρ(RCX )4 := {(r1, r2)| ri ∈ ρ(RCX ), r1 < r2}
and

Q4 := {(s1, s2)| si ∈ Q, s1 < s2}
and choose a map

ϕ : ρ(RCX )4 → Q4

such that if ϕ(r1, r2) = (s1, s2) we have r1 ≤ s1 < s2 ≤ r2. Further choose a map

ψ : Q4 → R \ ρ(RCX )

such that s1 < ψ(s1, s2) < s2. Now de�ne

Z := ψ(ϕ(ρ(RCX )4))

and note that since ϕ(ρ(RCX )4) ⊂ Q4 is countable so is Z. Choose an injective15

enumeration i 7→ zi of Z, i.e. Z = {zi}i∈N.16

Now we construct a Lyapunov function σ : U → R as described. Since every17

zi ∈ Z is a regular value of ρ we can choose ε : {ρ = zi} → (0,∞) continuous such18

that the gradient �ow Φ(p, t) of ρ, i.e. Φ̇(t, p) = ∇ρ(Φ(t, p)) and Φ(0, p) = p, is19

well de�ned for |t| ≤ εi(p). Since ρ is smooth it is locally Lipschitz and it follows20
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by the Theorem of Picard-Lindelö� that solution trajectories of the gradient �ow1

do not intersect and thus every Φ-orbit starting at a regular point stays in the2

regular set, i.e. cannot enter the stably recurrent set where solution trajectories3

are stationary. It follows that all points Φ(p, t), |t| ≤ εi(p), are regular points of4

ρ. Set Vi := {Φ(p, t)| ρ(p) = zi, |t| < εi(p)}. Since ρ is a Lyapunov function5

the set {ρ > zi} is a trapping domain in the sense of [3, De�nition 3.1]. Set6

Ii := (U \ Vi) ∩ {ρ > zi} and Oi := (U \ Vi) ∩ {ρ < zi}. Then according to [3,7

Corollary 5.2] there exists a smooth Lyapunov function σi : U → [0, 2] such that8

{σi = 1} = {ρ = zi}, σi is regular on {0 < σi < 2}, and σi|Ii ≡ 2 as well as9

σi|Oi ≡ 0. Next we choose a positive sequence {ai} (see [6]) such that σ :=
∑
i aiσi10

is smooth.11

First, we verify that σ satis�es (2). Let p, p′ ∈ RCX . If p and p′ are in the same12

stable component we have σ′(p) = σ′(p′) for every Lyapunov function σ′ : U → R.13

If p and p′ are not in the same stable component we can assume ρ(p′) > ρ(p).14

By construction we have σi(p
′) ≥ σi(p) for all i ∈ N and there exists j ∈ N with15

σj(p
′) > σj(p). It thus follows that σ(p′) > σ(p). We conclude that (2) holds for16

all p, p′ ∈ RCX .17

Second, we verify that τ = ρ + σ satis�es (d'). Recall that RCX is the set of
critical points of τ and τ(RCX ) is the set of its critical values. Let r1, r2 ∈ τ(RCX ),
r1 < r2, be given. Choose p1 ∈ {τ = r1} ∩ RCX and p2 ∈ {τ = r2} ∩ RCX . By
(2) we conclude that ρ(p1) < ρ(p2). Choose zi ∈ Z with ρ(p1) < zi < ρ(p2) and
set Ai := {j ∈ N| zj < zi}. Let q, q′ ∈ RCX be given. We can assume that
ρ(q) < zi < ρ(q′). Then we have

τ(q) ≤ ρ(q) +
∑
j∈Ai

2aj < zi +
∑
j∈Ai

2aj

and
τ(q′) ≥ ρ(q′) + 2ai +

∑
j∈Ai

2aj > zi + 2ai +
∑
j∈Ai

2aj .

Therefore the interval [zi +
∑
j∈Ai 2aj , zi + 2ai +

∑
j∈Ai 2aj ] contains only regular18

values of τ . By setting s1 := zi +
∑
j∈Ai 2aj and s2 := zi + 2ai +

∑
j∈Ai 2aj the19

claim follows. �20

6. Conclusions21

By establishing a link between complete Lyapunov functions in dynamical sys-22

tems and time functions in general relativity we are able to apply results from23

Bernard and Suhr [3] to dynamical systems. This delivers a novel characterization24

of the chain recurrent set using cone �elds and a �rst smooth converse theorem25

on complete Lyapunov functions for general ODEs on noncompact state spaces.26

In addition to the theoretical signi�cance, these results have direct applications27

in computational methods for complete Lyapunov functions as shown in Giesl et28

al. [9].29

References30

[1] E. Akin. The General Topology of Dynamical Systems. American Mathematical Society, 2010.31

[2] J. Auslander. Generalized recurrence in dynamical systems. Contr. to Di�. Equ., 3:65�74,32

1964.33

[3] P. Bernhard and S. Suhr. Lyapounov functions of closed cone �elds: From Conley theory to34

time functions. Commun. Math. Phys., 359:467�498, 2018.35



SMOOTH COMPLETE LYAPUNOV FUNCTIONS FOR ODEs 15

[4] C. Conley. Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series1

no. 38. American Mathematical Society, 1978.2

[5] A. Fathi and P. Pageault. Smoothing Lyapunov functions. Trans. Amer. Math. Soc., 371:1677�3

1700, 2019.4

[6] Albert Fathi. Partitions of unity for countable covers. Amer. Math. Monthly, 104(8):720�723,5

1997.6

[7] Albert Fathi and Antonio Siconol�. On smooth time functions. Math. Proc. Cambridge Philos.7

Soc., 152(2):303�339, 2012.8

[8] J. Franks. Generalizations of the Poincaré-Birkho� theorem. Ann. of Math., (128):139�151,9

1998. Erratum: arXiv:math/0410316.10

[9] P. Giesl, C. Argáez, S. Hafstein, and H. Wendland. Minimization with di�erential inequality11

constraints applied to complete Lyapunov functions. to appear in Comput. Appl. Math., 2021.12

[10] S.W. Hawking. The existence of cosmic time functions. Proc. Roy. Soc. London, Series A,13

308:433�435, 1969.14

[11] M. Hurley. Chain recurrence and attraction in non-compact spaces. Ergod. Th. & Dynam.15

Sys, 11:709�729, 1991.16

[12] M. Hurley. Chain recurrence, semi�ows, and gradients. J. Dyn. Di�. Equat., 7(3):437�456,17

1995.18

[13] M. Hurley. Lyapunov functions and attractors in arbitrary metric spaces. Proc. Amer. Math.19

Soc., 126:245�256, 1998.20

[14] V. Nemytskii and V. Stepanov. Qualitative Theory of Di�erential Equations. Princeton Uni-21

versity Press, 1960.22

[15] M. Patrão. Existence of complete Lyapunov functions for semi�ows on separable metric23

spaces. Far East Journal of Dynamical Systems, 17(1):49�54, 2011.24

[16] L. Perko. Di�erential Equations and Dynamical Systems, volume 7 of Texts in Applied25

Mathematics. Springer, 3rd edition, 2001.26

[17] R. Vinograd. On the limiting behavior of an in�nite integral curve. Ucenye Zapiski27

Moskovskogo Universiteta (Russian), 1949.28

[18] W. Walter. Ordinary Di�erential Equation. Springer, 1998.29

Faculty of Physical Sciences, Dunhagi 5, 107 Reykjavik, Iceland30

Email address: shafstein@hi.is31

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraÿe 150, 4478032

Bochum, Germany33

Email address: Stefan.Suhr@ruhr-uni-bochum.de34


	1. Introduction
	2. The Setting
	3. Two notions of recurrence
	3.1. Chain recurrence and chain equivalence
	3.2. Stable recurrence

	4. Main Results
	5. Proof of the Main Results
	5.1. Proof of Theorem 4.1: 
	5.2. Proof of Theorem 4.1: 
	5.3. Proof of Theorem 4.4

	6. Conclusions
	References

