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Abstract A strict Lyapunov function for an equilibrium of a
dynamical system asserts its asymptotic stability and gives a
lower bound on its basin of attraction. For nonlinear systems
the explicit construction of a Lyapunov function taking the
nonlinear dynamics into account remains a difficult problem
and one often resorts to numerical methods. We improve and
analyze a method that is based on a converse theorem in the
Lyapunov stability theory and compare it to different meth-
ods in the literature. Our method is of low complexity and
its workload is perfectly parallel. Further, its free parameters
allow it to be adapted to the problem at hand and we show
that our method matches or gives a larger lower bound on the
equilibrium’s basin of attraction than other approaches in the
literature in most examples. Finally, we apply our method to
a model of a genetic toggle switch in Escherichia coli and we
demonstrate that our novel method delivers important infor-
mation on the model’s dynamics for different parameters.

Keywords Nonlinear system · Lyapunov function · Basin
of attraction · Numerical method

1 Introduction

We consider the autonomous dynamical system,

x′ = f(x), (1)

where f :Rn→Rn is locally Lipschitz. We denote the unique
solution to (1) with initial value ξ ∈ Rn at t = 0 with t 7→
φ(t,ξ ). If η ∈Rn is an equilibrium point for (1), i.e. φ(t,η)=
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η a constant solution, its stability properties are of much
practical interest. The equilibrium point η is said to be sta-
ble (in the sense of Lyapunov) if for every ε > 0 there exists
a δ > 0 such that ‖ξ −η‖< δ implies ‖φ(t,ξ )−η‖< ε for
all t ≥ 0. Here and elsewhere in the paper ‖ · ‖ denotes the
Euclidian norm. The equilibrium is said to be asymptotically
stable if it is stable and solutions started in a vicinity of the
equilibrium are attracted to it. Then the open set

Dη := {ξ ∈ Rn : lim
t→∞
‖φ(t,ξ )−η‖= 0}

is called the equilibrium’s basin of attraction. Without loss
of generality we may assume the equilibrium η of interest
is at the origin, i.e. η = 0, and we will do so in this paper
with the exception of our study of a genetic toggle switch in
Section 4.

Stability of equilibrium points and basins of attraction
are concepts of fundamental relevance in applications of dy-
namical systems and they are usually dealt with using the
Lyapunov stability theory. Some good references are [18,
22,24]. The centerpiece of the Lyapunov stability theory is
the so-called Lyapunov function, a scalar-valued function
from the state-space of the dynamical system that is de-
creasing along all solutions of the system in a neighbour-
hood of the equilibrium in question. Lyapunov functions
deliver lower bounds on basins of attraction through their
sublevel sets. For linear systems x′ = Ax they can be con-
structed explicitly by solving the so-called Lyapunov equa-
tion AT P+AP = −Q for P ∈ Rn×n, where Q ∈ Rn×n is a
given symmetric and positive definite matrix. The positive
definite function V (x) = xT Px is then a global Lyapunov
function for the system. For nonlinear systems there is no
general method, but one can resort to linearization around
the equilibrium in question and construct a Lyapunov func-
tion for the linearization. This Lyapunov function is also a
Lyapunov function for the nonlinear system in a neighbour-
hood of the equilibrium, but it is not a good Lyapunov func-
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tion in the sense that it does in general deliver very conser-
vative lower bounds on the equilibrium’s basin of attraction.
For exact formulas see, e.g. [14].

2 Lyapunov Function Computation

For the reasons discussed in the last section there have been
numerous methods proposed in the literature to generate Lya-
punov functions for nonlinear systems [12]. One approach
is to approximate numerically formulas for Lyapunov func-
tions [1,15,5,6] from classical converse theorems [20,26,
17] in the Lyapunov stability theory. These converse the-
orems assert the existence of Lyapunov functions for sys-
tems with asymptotically stable equilibria and give formu-
las, in terms of the systems’s solution, for these Lyapunov
functions. Because these formulas include the solutions to
the systems, that are in general not obtainable for nonlinear
systems, one resorts to approximate their values at a finite
number of points. The Lyapunov function must be decreas-
ing along solution trajectories in a whole neighbourhood of
the equilibrium in question. If this cannot be asserted the
constructed (Lyapunov) function is of little use, i.e. an ap-
proximation to a Lyapunov function is of little value. There-
fore the computed values must be interpolated such that the
resulting function is a Lyapunov function in a whole area.
This can be achieved by using the linear programming (LP)
problem from [10], but instead of using LP to compute the
values of the Lyapunov function at the vertices of a simpli-
cial complex, one uses a formula from a converse theorem
to assign values at the vertices and then verifies if the lin-
ear constraints of the LP problem are fulfilled using these
values. If the linear constraints are fulfilled for all vertices
of a certain simplex, then the affine interpolation of these
values over the simplex defines a function, whose orbital
derivative is negative along all solution trajectories passing
through this simplex. This was already shown in [1].

To construct the LP problem the set D ⊂ Rn that is to
serve as the domain of the Lyapunov function to be com-
puted is first subdivided into simplices. More exactly, the
set D must be the union of n-simplices

Sν = co{xν
0 ,x

ν
1 , . . . ,x

ν
n} , ν = 1 : N,

where we abbreviate 1,2, . . . ,N by 1 : N and co{·} stands for
the convex hull, i.e. x ∈ co

{
xν

0 ,x
ν
1 , . . . ,x

ν
n
}

if and only if

x =
n

∑
i=0

λixν
i for some λi ≥ 0 such that

n

∑
i=0

λi = 1.

The vectors xν
0 ,x

ν
1 , . . . ,x

ν
n are said to be the vertices of the

simplex Sν . That Sν is an n-simplex, i.e. has nonzero n-
dimensional volume, is equivalent to its vertices xν

0 ,x
ν
1 , . . . ,x

ν
n

being affinely independent, which in turn is equivalent to

the vectors xν
1 − xν

0 ,x
ν
2 − xν

0 , . . . ,x
ν
n − xν

0 being linearly in-
dependent. We write T for the collection of the simplices
Sν , ν = 1 : N, and refer to it as the triangulation. We de-
note the set of all vertices of simplices in T by VT . The
equilibrium of interest, i.e. the origin, should be in VT . The
triangulation T must be shape regular, i.e. it must be a
simplicial complex. This means that two different simplices
Sν ,Sµ ∈ T are either disjoint or intersect in a common
face, i.e. Sν ∩Sµ 6= /0 implies

Sν ∩Sµ = co{y0,y1 . . . ,yr},

where 0≤ r < n and the vectors y0,y1 . . . ,yr are vertices of
Sν and vertices of Sµ .

The variables of the LP problem for system (1) are V [x]∈
R for all x ∈ VT . The linear constraints of the LP problem
are constructed in such a way that the function V : D → R+

defined through

V (x) =
n

∑
i=0

λiV [xν
i ], where x =

n

∑
i=0

λixν
i ∈Sν , (2)

is a Lyapunov function for the system. The linear constraints

V [0] = 0 and V [x]> 0 for all x ∈ VT \{0},

imply that the function has a minimum at the equilibrium
at the origin. The second set of linear constraints in the LP
problem are: for every Sν ∈ T and every vertex xν

i of Sν

we demand

0 > ∇Vν · f(xν
i )+Eν‖∇Vν‖1. (3)

Here ∇Vν is the gradient of the function V on the interior
of Sν , which is linear in its values at the vertices V (xν

j ) =

V [xν
j ], i.e. the variables of the LP problem, ‖ ·‖1 is the norm

‖x‖1 := ∑
n
j=1 |x j|, and Eν is a system- and simplex depen-

dant positive constant chosen such that V is guarantied to be
decreasing along solution trajectories. If the LP problem has
a feasible solution, i.e. there exist values for the variables
V [x] such that all the constraints are fulfilled, then V defined
by (2) is indeed a Lyapunov function for the system. For a
detailed discussion on this LP problem cf. e.g. [10,11].

In a recent publication [16] the authors showed that for
certain regular triangulations the constraints (3) can be writ-
ten in a particularly efficient form for fast verification of the
constraints and with less conservative bounds on the con-
stants Eν than in [10,11]. The main idea of this more effi-
cient form is to use simplices whose sides are parallel to the
axis, which implies that the gradient of V can be computed
faster from the values of V at the vertices and that formula
(4) for Eν can be used, which gives lower values than the
formulas used in [10,11].

Let us describe the triangulation: Denote by Symn the set
of the permutations of {1 : n}, by P({1 : n}) the powerset of
{1 : n}, and set Z := Nn

0×P({1 : n}). Let PSi, i = 1 : n, be
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strictly increasing functions R→ R that vanish at zero and
define PS : Rn→ Rn, PS = (PS1,PS1, . . . ,PSn)

T . Define

RJ (x) =
n

∑
i=1

(−1)χJ (i)xiei

for every J ∈ P({1 : n}), where χJ is the characteristic
function of the set J , and

xzJ σ

i := RJ

(
z+

i

∑
j=1

eσ( j)

)
for every σ ∈ Symn, i = 0 : n, and J ∈ P({1 : n}). As-
sume that f in the system (1) is C2 and let B(z,J )

rs for every
(z,J ) ∈Z and r,s = 1 : n be a constant fulfilling

B(z,J )
rs ≥ max

x∈PS(RJ (z+[0,1]n))
k=1:n

∣∣∣∣∂ 2 fk(x)
∂xr∂xs

∣∣∣∣
For every (z,J ) ∈ Z , every k, i = 1 : n, and every σ ∈
Symn, define

AzJ σ

k,i := |ek · (x
zJ σ

i −xzJ σ

0 )|.

Then the constraints (3) can be written in the form

0 >
n

∑
j=1

V [xzJ σ

j ]−V [xzJ σ

j−1 ]

eσ( j) · (x
zJ σ

j −xzJ σ

j−1 )
fσ( j)(x

zJ σ

i )

+EzJ σ

n

∑
j=1

∣∣∣∣∣∣ V [xzJ σ

j ]−V [xzJ σ

j−1 ]

eσ( j) · (x
zJ σ

j −xzJ σ

j−1 )

∣∣∣∣∣∣ ,
where

EzJ σ =
1
2

n

∑
r,s=1

B(z,J )
rs AzJ σ

r,i (AzJ σ

s,i +AzJ σ

s,n ). (4)

Remark: Notionally it is often more convenient to suppress
the dependance on zJ σ and just refer to a simplex Sν

rather than SzJ σ . When using this simplified notation one

then refers to Bν
rs and not B(z,J )

rs for all simplices Sν such
that Sν ⊂ PS(RJ (z+[0,1]n)), and it is not difficult to see
that one can use different estimates Bν

rs for the different Sν ⊂
PS(RJ (z+[0,1]n)), although this hardly justifies the effort.

We now discuss how to assign values to the variables
of the LP problem that can be expected to give a Lyapunov
function that gives a good lower bound on the basin of at-
traction. From the integral formula from the converse the-
orem in [20] the obvious candidate is to use the Lyapunov
function

W (x) =
∫ T

0
‖φ(τ,x)‖2dτ (5)

and assign V [x] =W (x) in the LP problem. This will in prin-
ciple work for large enough T > 0 if the equilibrium at the

origin is exponentially stable and this approach is followed
in [1]. The choice of the Lyapunov function in (5) is due to
it’s intuitive accessibility and as such we are easily able to
manipulate it without losing the Lyapunov properties. Now
consider the time-reversed van der Pol oscillator:

x′ = f(x) with f(x,y) =
(

y
−x− y(1− x2)

)
. (6)

It has an asymptotically stable equilibrium at the origin and
the boundary of its basin of attraction is an unstable peri-
odic orbit. In Figure 1 we see the maximum lower bound
on the basin of attraction we can derive from the Lyapunov
function from (5), when computing its values at grid points
and interpolating over the triangles. For details on how this
is done see Section 3. We note that there is a non-negligible
area in which the approximated function has a negative or-
bital derivative but where, however, the values of the cal-
culated Lyapunov function are higher than the values at the
periodic orbit. This means that the lower bound on the basin
of attraction we can derive from this Lyapunov function is
unnecessarily conservative. We would like to ascertain that
these points are within our lower bound on the basin of at-
traction and would therefore like a similar Lyapunov func-
tion to (5) that takes lower values at points significantly within
the basin of attraction while maintaining similar values at
points its boundary.

From the structure of (5) and after some experiment-
ing we were able to discern that the following function is
a promising candidate:

W (x) =
∫ T

0

‖φ(τ,x)‖2

δ +‖φ(τ,x)‖p dτ (7)

This is the specific Lyapunov function we will discuss in
this paper and we will use it to assign values to the vari-
ables of the LP problem and compare the results to different
approaches in the literature.

Let us discuss the formula (7) in more detail and the
heuristic of how to fix the parameters δ ,T , and p for a partic-
ular system. Although any continuous and positive definite
function of φ under the integral will in principle do the job,
cf. e.g. [2], the formula (7) has returned significantly larger
lower bounds on the basin of attraction than other functions
we have examined. The parameters are fixed as follows: we
start with a coarse grid where we compute the values of
W (x) using formula (5), or equivalently using formula (7)
with δ = p= 0. T > 0 must be chosen so large that solutions
starting in the area covered by the grid at t = 0 are close to
the equilibrium at t = T . If the level-sets of W run into the
boundary of the basin of attraction close to the equilibrium
we choose a positive δ and increase p by 0.2 and compute
the values of W (x) again using the new parameters. We then
repeatedly increase p by 0.2 until our lower bound on the
basin of attraction does not become larger. Note that by this
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Fig. 1 A level-set of the Lyapunov function computed for the system
(6) using formula (5) with T = 20. The area where the orbital derivative
is not negative is drawn in red. Since the level-set does not intersect the
area where the orbital derivative is nonnegative it is a lower bound on
the basin of attraction of the equilibrium at the origin.

Fig. 2 A level-set of the Lyapunov function computed for the system
(6) using formula (7) with T = 20, δ = 0.2, and p = 2. The area where
the orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at the
origin.

procedure we push down the values of the integrand in for-
mula (7) further away from the equilibrium. If the level-sets
of W run into the boundary of the basin of attraction far from
the equilibrium we similarly decrease the value of p in steps
of 0.2. In this case we can use δ = 0, because the integrand
in (7) is a convex function of ‖φ‖. For p > 0 it is concave
and not smooth at the equilibrium, and better results are ob-
tained with δ > 0.

3 Examples

We present four theoretical examples of our method and
compare its results with different approaches in the liter-
ature. We approximate the Lyapunov function from (7) at
the grid points with some appropriately chosen parameters
T,δ , p. Then we interpolate and verify the negativity of the
orbital derivative of the interpolation as in [1], but use the
sharper error estimate (4) from [16] in the LP program. Note

that the orbital derivative of the Lyapunov functions com-
puted by our method is not guaranteed to be negative very
close to the equilibrium. This is a known feature of the method
and can be easily accounted for by using a local Lyapunov
function for the linearized system at the equilibrium, which
can be computed by the standard method of solving the Lya-
punov equation. The points close to the equilibrium where
the orbital derivative is not negative should be contained in
a sublevel-set of a Lyapunov function for the linearized sys-
tem and where it is also a Lyapunov function for the non-
linear system, because this sublevel-set is guaranteed to be
in the basin of attraction. For explicit estimates of this area
cf. e.g. [14, §4]. In all the examples presented this is a not
an issue, because these points are very close to the equilib-
rium and can very easily be shown to be contained in such a
sublevel-set of the Lyapunov function V (x) = xT Px, where
P is the solution to the Lyapunov equation AT P+PA =−I,
A being the Jacobian of f at the equilibrium and I the identity
matrix.

We compare our results with three other methods: the
Massera construction from [1], i.e. where the Lyapunov func-
tion is approximated using (5) at the vertices; the approach
from [23] as implemented and optimized in [21], where a ra-
tional Lyapunov function is computed, and the method pre-
sented in [4], where Lyapunov functions that are sums of
squared polynomials (SOS) are computed with the program
SMRSOFT [4]. Our method and the method from [1] were
implemented in C++ and run on a PC with an i9-7900X pro-
cessor. We used the Adams-Bashforth four-step method to
numerically integrate the initial-value problems, taking the
first three initial steps with the Runge-Kutta method of order
four (RK4), and the numerical integrals were approximated
using Simpson’s rule. In all cases we used 1,000 steps, inde-
pendent of T .

There are other methods to compute Lyapunov functions,
see [12] for an overview, but we specifically choose the ones
from [23,21,4] because they are computationally similarly
demanding in our examples and are supposed to compute
true Lyapunov functions and not approximations thereof.
One should however note that in most of the examples SMR-
SOFT reported (SMRSOFT message) SDP solving: SeDuMi
numerical problems warning (numerr=1)”, and we are not
sure if the computed functions are true Lyapunov functions
in all cases.

3.1 Example 1

The first example is a planar system from [9, Ex. 6],

x′ = f(x) with f(x,y) =
(

−x+ y
0.1x−2y− x2−0.1x3

)
. (8)
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We assign in the LP problem (notation from the Remark in
the last section)

Bν
1,1 = 2+0.6 max

(x,y)∈Sν

|x| and Bν
1,2 = Bν

2,1 = Bν
2,2 = 0.

We set T = 20 for formulas (5) and (7) and for the latter
we set δ = 0.6, and p = 1.2. The grid used for the vertices
of the simplices was 2001×2001 with 4,004,001 points and
8,000,000 simplices/triangles. This corresponds to using the
simplices SzJ σ for z∈{0 : 999}2, J ∈{ /0,{1},{2},{1,2}},
and σ ∈ {(1,2),(2,1)} in the notation of Section 2. The
computation of the Lyapunov function using formula (5)
was done on the rectangle [−20,20]2, i.e. the mapping PS
from Section 2 is given by PS(x) = 0.02x (because 0.02 ·
1000 = 20). The computation took 43.6 s and the verifica-
tion of the negativity of the orbital derivative took 0.45 s. In
11.96% of the simplices/triangles the orbital derivative was
not negative. For the computation using formula (7) on the
rectangle [−20,20]×[−40,40], i.e. PS(x,y)= (0.02x,0.04y)T ,
the corresponding run times were 51.8 s and 0.45 s. In 10.05%
of the simplices/tirangles the orbital derivative was not neg-
ative. In figures 3 and 4 the Lyapunov functions using for-
mulas (5) and (7) respectively are plotted. In figures 5 and 6
the level sets {x∈R2 : V (x)≤ 33} and {x∈R2 : V (x)≤ 9}
for these functions are plotted. These level sets are chosen,
using trial and error, such that they do not intersect with the
areas where the orbital derivative is nonnegative and thus
give lower bounds on the basin of attraction.

Fig. 3 The Lyapunov function computed for system (8) using formula
(5).

In Figure 7 we compare our results with the approaches
from [23,21] and [4]. For the case using [4] we computed the
4th, 6th, and 8th order polynomial Lyapunov functions, but
only draw the level-set for the 4th order one, because it de-
livered the least conservative estimate. It is notable, that even
though this method delivers a significantly smaller lower

Fig. 4 The Lyapunov function computed for system (8) using formula
(7) with δ = 0.6 and p = 1.2.

Fig. 5 A level-set of the Lyapunov function computed for the system
(8) using formula (5). The area where the orbital derivative is not nega-
tive is drawn in red. Since the level-set does not intersect the area where
the orbital derivative is nonnegative it is a lower bound on the basin of
attraction of the equilibrium at the origin.

bound on the basin of attraction than our method, it is not
a proper subset of our bounds. Since the union of lower
bounds on the basin of attraction is also a lower bound, it
can be beneficial to use different method to obtain a supe-
rior lower bound.

3.2 Example 2

The second example is a planar system from [25],

x′ = f(x) with f(x,y) =
(
−0.84x−1.44y−0.3xy
0.54x+0.34y+0.3xy

)
. (9)
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Fig. 6 A level-set of the Lyapunov function computed for the system
(8) using formula (7) with δ = 0.6 and p = 1.2. The area where the
orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at the
origin. Note that the lower bound on the basin of attraction is much
larger than given by the Lyapunov function computed using formula
(5).

Fig. 7 Level-sets of the Lyapunov functions computed for the system
(8) using formula (7) (outermost, black), formula (5) (red), the method
from [23,21] (blue), and using the software SMRSOFT [4] (green).

We assign

Bν
1,2 = Bν

2,1 = 0.3 and Bν
1,1 = Bν

2,2 = 0.

We set T = 20 in formulas (5) and (7) and for the latter
we set δ = 0.3 and p = 1.4. The grid used for the vertices
of the simplices was 2001×2001 with 4,004,001 points and
8,000,000 simplices/triangles. The computation of the Lya-
punov function using formula (5) was done on the rectan-
gle [−8,8]× [−2,8] and took 37 s and the verification of the
negativity of the orbital derivative took 0.47 s. In 24.69% of
the simplices/triangles the orbital derivative was not nega-
tive. In most of the area where the orbital derivative was not
negative the Lyapunov function was not defined because the
initial-value problems diverge too fast on the interval [0,T ]
for the numerical solver.

For the computation using formula (7) on the same rect-
angle and with the same grid the corresponding run time
numbers were 49.5 s and 0.49 s. In 24.71% of the simplices/triangles
the orbital derivative was not negative. Again, mostly due to
the numerical solver being unable to assign values to the
Lyapunov function at the grid points.

In figures 8 and 9 the Lyapunov functions using formulas
(5) and (7) respectively are plotted. In figures 10 and 11 the
level sets {x∈R2 : V (x)≤ 10} and {x∈R2 : V (x)≤ 9} for
these functions are plotted. These level sets are chosen such
that they do not intersect with the areas where the orbital
derivative is nonnegative and thus give lower bounds on the
basin of attraction.

Fig. 8 The Lyapunov function computed for system (9) using formula
(5).

In Figure 12 we compare our results with the approach
from [23,21]. We omit the method from [4] since when sys-
tem (9) is entered into SMRSOFT the program returns an
error and is not able to solve the semidefinite optimization
problem.
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Fig. 9 The Lyapunov function computed for system (9) using formula
(7) with δ = 0.3 and p = 1.4.

Fig. 10 A level-set of the Lyapunov function computed for the sys-
tem (9) using formula (5). The area where the orbital derivative is not
negative is drawn in red. Since the level-set does not intersect the area
where the orbital derivative is nonnegative it is a lower bound on the
basin of attraction of the equilibrium at the origin.

3.3 Example 3

The third example is a nonpolynomial planar system from
[3, Ex. 1],

x′ = f(x) with f(x,y) =
(
−x+ y+ 1

2 (e
x−1)

−x− y+ xy+ xcos(x)

)
. (10)

We assign

Bν
1,1 = max

(x,y)∈Sν

max(ex/2,2|sin(x)|+ |xcos(x)|),

Bν
1,2 = Bν

2,1 = 1, and Bν
2,2 = 0.

Further, we set T = 20 for formulas (5) and (7) and for latter
we set δ = 0.4, and p = 0.6. As in examples 1 and 2 the
grid was 2001× 2001 with 4,004,001 points and 8,000,000
simplices/triangles. The computation of the Lyapunov func-
tion using formula (5) was done on the rectangle [−8,4]×

Fig. 11 A level-set of the Lyapunov function computed for the system
(9) using formula (7) with δ = 0.3 and p = 1.4. The area where the
orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at the
origin. Note that the lower bound on the basin of attraction is much
larger than given by the Lyapunov function computed using formula
(5).

Fig. 12 Level-sets of the Lyapunov functions computed for the system
(9) using formula (7) (outermost, black), formula (5) (red), and the
method from [23,21] (blue).

[−8,8] and took 35.6 s and the verification of the negativ-
ity of the orbital derivative took 0.4 s. In 27.9% of the sim-
plices/triangles the orbital derivative was not negative. In
most of the area where the orbital derivative was not nega-
tive the Lyapunov function was not even defined because the
initial-value problems diverge too fast on the interval [0,T ]
for the numerical solver. Note that if the Lyapunov function
is not defined at one or more vertices of a simplex, then it
is not properly defined on that simplex neither is its orbital
derivative. In particular, its orbital derivative cannot be neg-
ative.

For the computation using formula (7) on the rectangle
[−8,3]× [−10,10] the corresponding numbers were 45.2 s
and 0.4 s. In 23.4% of the simplices/triangles the orbital deriva-
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tive was not negative, also mostly because the numerical
solver was not able to assign values to the Lyapunov func-
tion at the grid points.

In figures 13 and 14 the Lyapunov functions using for-
mulas (5) and (7) respectively are plotted. In figures 15 and
16 the level sets {x ∈R2 : V (x)≤ 8} and {x ∈R2 : V (x)≤
5.9} for these functions are plotted. These level sets are cho-
sen such that they do not intersect with the ares where the
orbital derivative is nonnegative and thus give lower bounds
on the basin of attraction.

Fig. 13 The Lyapunov function computed for system (10) using for-
mula (5).

Fig. 14 The Lyapunov function computed for system (10) using for-
mula (7) with δ = 0.4 and p = 0.6.

In Figure 17 we compare our results with the approach
from [23] as implemented in [21], where a rational Lya-
punov function is computed for the same system. We also
compared it with the method from [3], but the level sets ob-
tained are very close to the ones from [21] and we therefore
omit drawing them.

Fig. 15 Level-sets of the Lyapunov function computed for the system
(10) using formula (5). The area where the orbital derivative is not
negative is drawn in red. Since the level-set does not intersect the area
where the orbital derivative is nonnegative it is a lower bounds on the
basin of attraction of the equilibrium at the origin.

Fig. 16 Level-sets of the Lyapunov function computed for the system
(10) using formula (7) with δ = 0.4 and p = 0.6. The area where the
orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at the
origin.

3.4 Example 4

The fourth example is a three-dimensional system from [13],
also studied in [21]:

x′ = f(x) with f(x,y,z) =

−x+ y+ z2

−y+ xy
−z

 . (11)

We assign

Bν
1,2 = Bν

2,1 = 1, Bν
3,3 = 2, and Bν

r,s = 0 in all other cases.

Further, we set T = 10 in formulas (5) and (7) and for lat-
ter we set δ = 1 and p = 2. The grid was 201× 201× 101
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Fig. 17 Level-sets of the Lyapunov functions computed for the system
(10) using formula (7) (outermost, black), (5) (middle, red), and by
using the method from [23,21] (innermost, blue). In [3] results very
close to the ones from [23,21] are obtained using SOS programming.

with 4,080,501 points and 24,000,000 simplices/tetrahedra.
The computation of the Lyapunov function using formula
(5) was done on the cube [−8,3]× [−3,8]× [−2,2] and took
40.7 s and the verification of the negativity of the orbital
derivative took 1.5 s. In 32.4% of the simplices/tetrahedra
the orbital derivative was not negative. In most of the area
where the orbital derivative was not negative the Lyapunov
function was not defined because the initial-value problems
diverge too fast on the interval [0,T ] for the numerical solver.

For the computation using formula (7) on the same cube
and using the same grid the corresponding run times were
40.6 s and 1.85 s. In 36.1% of the simplices/tetrahedra the
orbital derivative was not negative, also mostly because the
numerical solver was not able to assign values to the Lya-
punov function at the grid points.

In figures 18 and 19 the level-sets {x∈R3 : V (x)≤ 2.2}
and {x ∈ R3 : V (x) ≤ 0.85} for the Lyapunov functions
using formulas (5) and (7) respectively are plotted. These
level sets are chosen such that they do not intersect with the
ares where the orbital derivative is nonnegative and thus give
lower bounds on the basin of attraction.

Note that the level-sets for the Lyapunov functions in fig-
ures 18 and 19 are very different. For the Lyapunov function
constructed using formula (5) it is thicker and the level-set
of the Lyapunov function constructed using formula (7) is
thinner and extends along the separatrix.

We did another experiment using formula (7), still with
T = 10, but now with δ = 0.5 and p = 1 and using the grid
151× 151× 151 and the cube [−8,3]× [−3,8]× [−3,3].
This corresponds to 3,442,951 grid points and 20,250,000
simplices/tetrahedra. The run time for the computation of
the Lyapunov function was 43.8 s and the verification of the
negativity of the orbital derivative took 1.2 s. In 38.1% of
the simplices/tetrahedra the orbital derivative was not nega-

Fig. 18 Level-set of the Lyapunov function computed for the system
(11) using formula (5). The area where the orbital derivative is not
negative is drawn in blue. Since the level-set does not intersect the area
where the orbital derivative is nonnegative it is a lower bound on the
basin of attraction of the equilibrium at the origin.

Fig. 19 Level-set of the Lyapunov function computed for the system
(11) using formula (7) with δ = 1 and p = 2. The area where the or-
bital derivative is not negative is drawn in blue. Since the level-set does
not intersect the area where the orbital derivative is nonnegative it is a
lower bound on the basin of attraction of the equilibrium at the origin.

tive. In most of the area where the orbital derivative was not
negative the Lyapunov function was not defined because the
initial-value problems diverge too fast on the interval [0,T ]
for the numerical solver.

In Figure 20 the level-set {x ∈R3 : V (x)≤ 1.3} is plot-
ted for this Lyapunov function, chosen such that it does not
intersect with the area where the orbital derivative fails to
be negative. This level-set resembles the one for the Lya-
punov function computed using formula (5), cf. Figure 18,
more than the one computed using formula (7) with δ = 1
and p = 2, cf. Figure 19. However, it extends further in the
z-direction.

We compared our approach with results from [23,21],
where a rational Lyapunov function is computed for the same
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Fig. 20 Level-set of the Lyapunov functions computed for the system
(11) using formula (7) with δ = 0.5 and p = 1. The area where the
orbital derivative is not negative is drawn in blue. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at the
origin.

system, and [3] where SOS programming is used. In Fig-
ure 21 the sublevel-set {x ∈ R3 : V (x)≤ 1.32} for the Lya-
punov function computed in [21, E5] is plotted. The ranges
of the axes is the same as in figures 18 and 19. Note that
the sublevel-set is not connected, but the connected compo-
nent containing the origin is a lower bound on the basin of
attraction of the equilibrium at the origin.

Fig. 21 Level-set of the Lyapunov function computed for the system
(11) using the approach from [21]. The formula for the function is
given in Table 2 E5 in that paper. The connected component of the
sublevel-set containing the origin is a lower bound on the basin of at-
traction of the equilibrium at the origin.

In Figure 22 the level-set {x ∈ R3 : V (x) = 1} for the
quadratic Lyapunov function computed for system (11) us-
ing SMRSOFT [3] is plotted. The ranges of the axes is the
same as in figures 18, 19, and 21.

Fig. 22 Level-set of the quadratic Lyapunov function computed for the
system (11) using SMRSOFT [3]. The area where the orbital derivative
is not negative is drawn in red. The sublevel-set is a lower bound on the
basin of attraction of the equilibrium at the origin.

In Figure 23 the level-set {x ∈ R3 : V (x) = 1} for the
fourth-order polynomial Lyapunov function computed for
system (11) using SMRSOFT [3] is plotted. The ranges of
the axes is the same as in Figure 20 (not the same as in
figures 18, 19, and 21). The results are considerably bet-
ter than from the quadratic Lyapunov function in Figure 22,
but since the SeDuMi solver used for in the SOS program-
ming reported a numerical error warning, we are not sure if
the sublevel-set really is a rigid lower bound on the basin of
attraction.

Fig. 23 Level-set of the fourth-order polynomial Lyapunov function
computed for the system (11) using SMRSOFT [3]. The area where
the orbital derivative is not negative is drawn in red. The sublevel-set
is a lower bound on the basin of attraction of the equilibrium at the
origin.

We also used SMRSOFT to compute a sixth-order poly-
nomial Lyapunov function for system (11), but the results
were not better that from the fourth-order one and SeDuMi
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reported a numerical error warning and therefore we do not
plot the results.

For system (11) our results are not as clearly superior to
the ones from [23,21] and [3] as in the other examples, at
least if the fourth-order polynomial

V (x,y,z) = 0.1771x2 +0.2337xy+0.0556xz+0.2104y2

+0.02298yz+0.04633z2−0.001249x3

+0.06255x2y−0.008129x2z+0.1787xy2

−0.01053xyz+0.1238xz2 +0.07677y3

−0.006475y2z+0.1222yz2 +0.01657z3

+0.001223x4 +0.002323x3y−0.001498x3z

+0.01586x2y2−0.004996x2yz+0.005309x2z2

+0.02875xy3−0.01361xy2z+0.03808xyz2

−0.005758xz3 +0.0225y4−0.01202y3z

+0.05405y2z2−0.01403yz3 +0.03193z4

computed by SMRSOFT really is a Lyapunov function for
the system (11). Note, however, that neither are the bounds
we get subsets of the bounds from SMRSOFT nor vice-
versa.

4 Case study: Genetic toggle switch

To demonstrate the applicability of our method we use it to
study the dynamics of a model of a genetic toggle switch,
i.e. a synthetic, bistable gene-regulatory network, presented
in [8] and derived from a biochemical rate equation formu-
lation of gene expression:

X ′ =
αX

1+Y β
−X , Y ′ =

αY

1+X γ
−Y (12)

In this dimensionless model X and Y are variables and αX ,αY ,β ,

and γ are constants with the following interpretation:

X is the concentration of repressor A,

Y is the concentration of repressor B,

αX is the effective rate of synthesis of repressor A,

αY is the effective rate of synthesis of repressor B,

β is the cooperativity of repression of promoter B, and

γ is the cooperativity of repression of promoter A.

If β ,γ > 1 the system (12) is bistable, i.e. has two stable
equilibria. This model has been previously studied by nu-
merical methods in [5,7] and recently the feedback control
of such a system, keeping the system state for extended pe-
riods of time in the vicinity of a third unstable equilibrium,
was studied both in the model and experimentally in [19].
The dynamics of this model has thus been demonstrated to
be of importance in the field of cybergenetics, i.e. the novel

field of remotely piloting cellular processes to leverage the
biotechnical potential of synthetic biology.

First we analysed the model using the same parameters
as in [5,7]: αX = 1.3, αY = 1, β = 3, and γ = 10. We concen-
trate on the equilibrium point z=(0.66679013,0.98292302)T ,
because it is more difficult to give a lower bound on its es-
timation of the basin of attraction than for the other stable
equilibrium at (1.29959444,0.06782925)T . For an equilib-
rium at z 6= 0 the formulas (5) and (7) must be modified to

W (x) =
∫ T

0
‖φ(τ,x)− z‖2dτ (13)

and

W (x) =
∫ T

0

‖φ(τ,x)− z‖2

δ +‖φ(τ,x)− z‖p dτ (14)

respectively. In all the computations in this section we set
δ = 0, T = 20, and used the same 2001× 2001 grid and
1,000 steps for the numerical integration as for the planar
systems in Section 3. The running times of the computations
for each example were all well below 1 minute and upper
bounds for the parameters Bν

i, j can be obtained in a straight-
forward way. Therefore we omit discussing these in detail.

In figures 24 and 25 the level-sets {x ∈ R2 : V (x) ≤
0.37} and {x ∈ R2 : V (x) ≤ 1.16} for the Lyapunov func-
tions using formulas (13) and (14) with p = 0.8 respectively
are plotted. The lower bound on the basin of attraction us-

Fig. 24 Level-set of the Lyapunov function computed for the genetic
toggle switch (12) with parameters αX = 1.3, αY = 1, β = 3, and
γ = 10 and using formula (13). The area where the orbital deriva-
tive is not negative is drawn in red. Since the level-set does not in-
tersect the area where the orbital derivative is nonnegative it is a
lower bound on the basin of attraction of the equilibrium at z =
(0.66679013,0.98292302)T .

ing formula (13) is comparable to the results obtained in [5,
7] but the lower bounds gained from formula (14) are con-
siderably larger, which demonstrates the power of our novel
approach.
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Fig. 25 Level-set of the Lyapunov function computed for the genetic
toggle switch (12) with parameters αX = 1.3, αY = 1, β = 3, and γ = 10
and using formula (14) with δ = 0 and p = 0.8. The area where the
orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at z =
(0.66679013,0.98292302).

We did numerical experiments with two other sets of pa-
rameters not reported in the literature. For the first experi-
ment we set αX = 1, αY = 1.4, β = 9, and γ = 2. With these
parameters the toggle switch (12) has has stable equilibria at
z=(0.04705013,1.39690765)T and (0.92903424,0.75143392)T .
We consider the more difficult one z. In figures 26 and 27
the level-sets {x ∈ R2 : V (x)≤ 6.3} and {x ∈ R2 : V (x)≤
6.16} for the Lyapunov functions using formulas (13) and
(14) with p= 1.4 respectively are plotted. The lower bounds

Fig. 26 Level-set of the Lyapunov function computed for the genetic
toggle switch (12) with parameters αX = 1, αY = 1.4, β = 9, and
γ = 2 and using formula (13). The area where the orbital deriva-
tive is not negative is drawn in red. Since the level-set does not in-
tersect the area where the orbital derivative is nonnegative it is a
lower bound on the basin of attraction of the equilibrium at z =
(0.04705013,1.39690765)T .

Fig. 27 Level-set of the Lyapunov function computed for the genetic
toggle switch (12) with parameters αX = 1, αY = 1.4, β = 9, and γ = 2
and using formula (14) with δ = 0 and p = 1.4. The area where the
orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at z =
(0.04705013,1.39690765)T .

using formula (14) are much larger (note the different scales
on the axes) than those obtained using formula (13), which
again demonstrates the power of our method.

For the final experiment we set αX = 2, αY = 4, β = 3,
and γ = 5. With these parameters the toggle switch (12)
has has stable equilibria at z = (0.99634897,0.12229057)T

and (0.03076923,3.99999989)T . As before we consider the
more difficult one z. In figures 28 and 29 the level-sets {x ∈
R2 : V (x)≤ 0.56} and {x ∈R2 : V (x)≤ 0.47} for the Lya-
punov functions using formulas (13) and (14) with p=−0.8
respectively are plotted. The lower bounds using formula
(14) are somewhat larger than those obtained using formula
(13), but does not entirely contain it. In this case a superior
estimate is obtained by noting that the union of two rigid
lower bounds on the basin of attraction is also a rigid lower
bound on the basin of attraction, see Figure 30.

5 Conclusions

We presented a novel method to estimate the basin of at-
traction for asymptotically stable equilibria of dynamical
systems. The method is based on approximating the values
of Lyapunov functions from converse theorems and assign
these values to the variables of a linear programming prob-
lem. The linear constraints of the problem are then verified
and in simplices, of which they are fulfilled at all vertices,
the function defined by interpolating these values over the
simplex has a negative orbital derivative along the solutions
of the system. Our method is an advancement of the method
presented in [1], but with the sharper error estimates from
[16] and thus less conservative linear constraints and a more
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Fig. 28 Level-set of the Lyapunov function computed for the ge-
netic toggle switch (12) with parameters αX = 2, αY = 4, β = 3,
and γ = 5 and using formula (13). The area where the orbital deriva-
tive is not negative is drawn in red. Since the level-set does not in-
tersect the area where the orbital derivative is nonnegative it is a
lower bound on the basin of attraction of the equilibrium at z =
(0.99634897,0.12229057)T .

Fig. 29 Level-set of the Lyapunov function computed for the genetic
toggle switch (12) with parameters αX = 2, αY = 4, β = 3, and γ = 5
and using formula (14) with δ = 0 and p = −0.8. The area where the
orbital derivative is not negative is drawn in red. Since the level-set
does not intersect the area where the orbital derivative is nonnegative
it is a lower bound on the basin of attraction of the equilibrium at z =
(0.99634897,0.12229057)T .

general positive definite function of the solution under the
integral than in [1]. We compared our method for four sys-
tems with the method from [1], the method from [23,21]
using rational Lyapunov functions, and the method from [3,
4] using sum-of-squares programming. In three of the four
cases our method delivered considerably larger inner esti-
mates of the basins of attraction and in the forth there was
a tie between our method and [3,4]. We further did a case
study for a model of a genetic toggle switch and demon-
strated that by using our method one can gain valuable in-

Fig. 30 Comparison of the level-sets of the Lyapunov functions
computed for the genetic toggle switch (12) with parameters
αX = 2, αY = 4, β = 3, and γ = 5 for the equilibrium at z =
(0.99634897,0.12229057)T and using formulas (13) and (14) with
δ = 0 and p = −0.8. Note that the union of two rigid lower bounds
on the basin of attraction is a rigid lower bound on the basin of attrac-
tion basin of attraction, and of the equilibrium at .

sight into the dynamics of this important model with appli-
cations is cybergenetics in a fast and mechanical way.
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