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Abstract: In this paper we discuss a computational method of numerically
searching for Lyapunov functions for nonlinear systems and demonstrate its
efficacy. The method is built upon applying various theoretical Lyapunov func-
tions, given by integrating some specific positive functions along solution trajec-
tories in the state space, to the vertices of a simplical complex. Then we assign
the remaining values by convex interpolation over the simplices. The benefits
of explicitly constructing the candidate functions in this manner are twofold.
Firstly it is computationally inexpensive, growing linearly with the number
of vertices we calculate a candidate function on, and secondly the freedom in
choosing a positive function allows us flexibility to not be overly constrained
by the shape of the attractor. Finally we will demonstrate the method on
two planar examples. Most notably we will see that the constructed Lyapunov
functions give us lower bounds on basins of attraction that are significantly
larger than those found by other methods in the literature.

1. Introduction

Consider the dynamical system, whose dynamics are given by the ODE

x′ = f(x), (1)

where f : D → Rn, D ⊂ Rn, is locally Lipschitz. We denote the (unique) solution to (1)

with initial value ξ ∈ D at t = 0 with t 7→ φ(t, ξ). If η ∈ D is an equilibrium point for (1),

i.e. f(η) = 0 and consequently φ(t,η) = η for all t ∈ R a constant solution, its stability

properties are of much practical interest. The equilibrium point η is said to be asymptotically

stable if it is stable (in the sense of Lyapunov) and attractive. The former means that for

all ε > 0 there exists δ > 0 such that ‖ξ − η‖ < δ implies ‖φ(t, ξ) − η‖ < ε for all t ≥ 0

and the latter denotes that there exists a neighbourhood Nη of η such that ξ ∈ Nη implies

limt→∞ ‖φ(t, ξ) − η‖ = 0. The set of all points that are attracted to the asymptotically

stable equilibrium η as t → ∞, i.e. the largest possible Nη, is called its basin of attraction

and its spatial extension is a measure of the robustness of the equilibrium’s stability.

Stability of equilibrium points and basins of attraction are concepts of fundamental rele-

vance in applications of dynamical systems. They are usually dealt with using the Lyapunov



stability theory. Some good references are [12,16,18]. The centerpiece of the Lyapunov sta-

bility theory is the so-called Lyapunov function, a scalar-valued function from the state-space

of the dynamical system that is decreasing along all solutions of the system in a neighbour-

hood of the equilibrium in question. Lyapunov functions deliver lower bounds on basins of

attraction through their sublevel sets and for linear systems x′ = Ax they can be constructed

explicitly using algebraic methods. For nonlinear systems there is no general method, but

one can resort to linearization around the equilibrium in question and construct a Lyapunov

function for the linearization. This Lyapunov function is also a Lyapunov function for the

nonlinear system in a neighbourhood of the equilibrium, but it is not a good Lyapunov

function in the sense that it does in general deliver very conservative lower bounds on the

equilibrium’s basin of attraction. For exact formulas see, e.g. [9].

2. Method to Compute Lyapunov Functions

For the reasons discussed in the last section there have been numerous methods proposed in

the literature to generate Lyapunov functions for nonlinear systems [8]. One approach is to

approximate numerically formulas for Lyapunov functions [1,4,5,10] from classical converse

theorems [11, 14, 19] in the Lyapunov stability theory. These converse theorems assert the

existence of Lyapunov functions for systems with asymptotically stable equilibria and give

formulas, in terms of the systems’s solution, for these Lyapunov functions. Because these

formulas include solutions to the systems, that are in general not obtainable for nonlinear

systems, one resorts to approximate their values at a finite number of points. The Lyapunov

function must be decreasing along solution trajectories in a whole neighbourhood of the

equilibrium in question. If this cannot be asserted the constructed (Lyapunov) function

is of little use, i.e. an approximation to a Lyapunov function is of little value. Therefore

the computed values must be interpolated such that the resulting function is a Lyapunov

function in a whole area. This can be achieved by using the linear programming (LP)

problem from [7], but instead of using LP to compute the values of the Lyapunov function

at the vertices of a simplicial complex, one uses a formula from a converse theorem to assign

values at the vertices and then verifies if the linear constraints of the LP problem are fulfilled

using these values. If the linear constraints are fulfilled for all vertices of a certain simplex,

then the affine interpolation of these values over the simplex defines a function, whose orbital

derivative is negative along all solution trajectories passing through this simplex. This was

already shown in [1].

We improve this method in two ways. First, we incorporate sharper error estimates in

the next section for the LP problem from [7], which leads to less conservative conditions in

its linear constraints. Second, we tune the positive definite function in an integral formula



from [14] to enlarge the lower bound on the basin of attraction, i.e. we approximate the

Lyapunov function

V (x) =

∫ T

0

‖φ(τ,x)‖2

δ + ‖φ(τ,x)‖p dτ (2)

for some appropriately chosen T, δ, p > 0 at the vertices, instead of using

V (x) =

∫ T

0

‖φ(τ,x)‖2dτ. (3)

3. Sharper Error Bounds

The error bounds in the LP problem form [7, Def. 6] that served as basis for the constructions

in [1,10] can be sharpened using more regular triangulations and results from [13]. Further,

the statement of the essential part of the LP problem can be considerably simplified.

To achieve this the linear constraints LC4 from [13] must first be rewritten in the notation

of [7]. Denote by Symn the set of the permutations of {1 : n} := {1, 2, . . . , n}, by P({1 : n})
the powerset of {1 : n}, and set Z := Nn0 × P({1 : n}). Let Γ and PSi, i = 1 : n,

be strictly increasing functions R → R that vanish at zero and define PS : Rn → Rn,

PS = (PS1,PS1, . . . ,PSn)>. Define RJ (x) =
∑n
i=1(−1)χ(i)xiei for every J ∈ P({1 : n}),

xσi :=

n∑
j=i

eσ(j) for every σ ∈ Symn and every i = 1 : n+ 1, and (4)

y
(z,J )
σ,i := PS(RJ (z + xσi )) for every (z,J ) ∈ Z, every σ ∈ Symn and every i = 1 : n+ 1.

Assume that the components of f in the system (1) are C2 and let B
(z,J )
rs for every (z,J ) ∈ Z

and r, s = 1 : n be a constant fulfilling

B(z,J )
rs ≥ max

x∈PS(RJ (z+[0,1]n))
k=1:n

∣∣∣∣∂2fk(x)

∂xr∂xs

∣∣∣∣ (5)

For every (z,J ) ∈ Z, every k, i = 1 : n, and every σ ∈ Symn, define

A
(z,J )
σ,k,i := |ek · (y(z,J )

σ,i − y
(z,J )
σ,n+1)|. (6)

The constraints LC4 from [13] can now be written as: For every (z,J ) ∈ Z, every

σ ∈ Symn, and every i = 1 : n+ 1:

−Γ[‖y(z,J )
σ,i ‖] ≥

n∑
j=1

V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fσ(j)(y
(z,J )
σ,i ) (7)

+
1

2

n∑
r,s=1

B(z,J )
rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i +A

(z,J )
σ,s,1 )

n∑
j=1

∣∣∣∣∣ V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

∣∣∣∣∣



In [13] the vectors

xzJσ
i := RJ

(
z +

i∑
j=1

eσ(j)

)
for i = 0 : n are used. (8)

The relationship between the (4) and (8) is with 1 := e1 + e2 + . . .+ en that

xzJσ
i−1 + y

(z,J )
σ,i = PS(RJ (z)) + PS(RJ (z + 1)) (9)

for every (z,J ) ∈ Z, every σ ∈ Symn, and every i = 1 : n+ 1. Thus with α ∈ Symn defined

through α(i) = σ(n+ 1− i) for i = 1 : n, we have σ(i) = α(n+ 1− i) and y
(z,J )
σ,i = xzJα

n+1−i.

Hence, from (6)

A
(z,J )
σ,k,i = |ek · (y(z,J )

σ,i − y
(z,J )
σ,n+1)| = |ek · (xzJα

n+1−i − xzJα
0 )| =: AzJα

k,n+1−i

and (7) can be rewritten as

− Γ[‖xzJα
n+1−i‖] ≥

n∑
j=1

V [xzJα
n+1−j ]− V [xzJα

n−j ]

eα(n+1−j) · (xzJα
n+1−j − xzJα

n−j )
fα(n+1−j)(x

zJα
n+1−i)

+
1

2

n∑
r,s=1

B(z,J )
rs AzJα

r,n+1−i(A
zJα
s,n+1−i +AzJα

s,n )

n∑
j=1

∣∣∣∣∣ V [xzJα
n+1−j ]− V [xzJα

n−j ]

eα(n+1−j) · (xzJα
n+1−j − xzJα

n−j )

∣∣∣∣∣ .
Thus by renaming i← n+ 1− i and σ ← α, the linear constraints LC4 from [13] in (7) are

fulfilled, if and only if for every (z,J ) ∈ Z, every σ ∈ Symn, and every i = 0 : n, we have

−Γ[‖xzJσ
i ‖] ≥

n∑
j=1

V [xzJσ
j ]− V [xzJσ

j−1 ]

eσ(j) · (xzJσ
j − xzJσ

j−1 )
fσ(j)(x

zJσ
i ) (10)

+
1

2

n∑
r,s=1

B(z,J )
rs AzJσ

r,i (AzJσ
s,i +AzJσ

s,n )

n∑
j=1

∣∣∣∣∣ V [xzJσ
j ]− V [xzJσ

j−1 ]

eσ(j) · (xzJσ
j − xzJσ

j−1 )

∣∣∣∣∣ .
We now show the connection between (10) and the statement of the constraints using

the gradient of the Lyapunov function ∇V as in [7, Def. 6]. The so-called shape-matrix

XzJσ of the simplex SzJσ := co
(
xzJσ
0 ,xzJσ

1 , . . . ,xzJσ
n

)
is defined by writing the vectors

xzJσ
1 −xzJσ

0 , xzJσ
2 −xzJσ

0 , . . . ,xzJσ
n −xzJσ

0 consecutively in its rows. For the affine function

VzJσ : SzJσ → R defined through

VzJσ

(
n∑
j=0

λjx
zJσ
j

)
=

n∑
j=0

λjV [xzJσ
j ] (11)

for all convex combinations of the vertices of SzJσ, it is not difficult to see that with

vzJσ :=
(
V [xzJσ

1 ]− V [xzJσ
0 ], V [xzJσ

2 ]− V [xzJσ
0 ], . . . , V [xzJσ

n ]− V [xzJσ
0 ]

)>



we have

VzJσ(x) = (X−1
zJσvzJσ) • (x−xzJσ

0 ) +V [xzJσ
0 ] = v>zJσX

−T
zJσ(x−xzJσ

0 ) +V [xzJσ
0 ] (12)

for all x ∈ SzJσ. This is a simple consequence of the fact that (11) and (12) are affine

functions with identical values at the vertices of SzJσ. Thus the gradient of VzJσ is given by

(the column vector)∇VzJσ := X−1
zJσvzJσ. The linear constraints in [7, Def. 6] corresponding

to (10), but for more general triangulations than discussed here, can be formulated as

−Γ[‖xzJσ
i ‖] ≥ ∇VzJσ • f(xzJσ

i ) + EzJσ‖∇VzJσ‖1, (13)

where EzJσ is a simplex-dependent error bound.

To shorten formulas in the following computations we fix the simplex SzJσ and thus

z, J , and σ and set X := XzJσ. It is not difficult to see that X = LSP , where S :=

diag(s1, s2, . . . , sn) is a diagonal matrix with si = PS(RJ (z + ei))−PS(RJ (z)),

L =


1 0 · · · 0

1 1 · · · 0

...
...

. . .
...

1 1 · · · 1

 with L−1 =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1


, (14)

is a lower-triangular matrix Lij = 1 if i ≥ j, and P is a permutation matrix, e>i P = e>σ(i)

for i = 1 : n. Especially P−1 = P>. Now set xi := xzJσ
i , Vi := V [xi], ∇V := ∇VzJσ, and

v := (V1 − V0, V2 − V0, . . . , Vn − V0)> = vzJσ and note that

∇V • f(xi) = v>X−T f(xi) =
(
v>X−>f(xi)

)>
= f(xi)

>X−1v = f(xi)
>P>S−1L−1v

= f(xi)
>P>S−1L−1


V1 − V0

V2 − V0

...

Vn − V0

 = f(xi)
>P>S−1


V1 − V0

V2 − V1

...

Vn − Vn−1


=

n∑
j=1

Vj − Vj−1

sj
f(xi)

>P>ej =

n∑
j=1

Vj − Vj−1

sj

(
e>j P f(xi)

)
=

n∑
j=1

Vj − Vj−1

sj
e>σ(j)f(xi) =

n∑
j=1

Vj − Vj−1

sj
fσ(j)(xi).

This implies that in our setting (10) is equivalent to (13) and we can replace the error bound

EzJσ in [7, Def. 6] with the sharper estimate from (10):

1

2

n∑
r,s=1

B(z,J )
rs AzJσ

r,i (AzJσ
s,i +AzJσ

s,n ), which is always ≤ EzJσ. (15)



Remark 1: Notionally it is often more convenient to suppress the dependance on zJ σ
and just refer to a simplex Sν rather than SzJσ. When using this simplified notation one

then refers to Bνrs and not B
(z,J )
rs for all simplices Sν such that Sν ⊂ PS(RJ (z + [0, 1]n)),

and it is not difficult to see that one can use different estimates Bνrs for the different Sν ⊂
PS(RJ (z + [0, 1]n)), although this hardly justifies the effort.

Remark 2: From the decomposition X = LSP one can easily derive concrete upper

bounds on some matrix norms of X−1 = X−1 = PTS−1L−1. For any matrix norm induced

by a vector norm we have ‖X−1‖ ≤ ‖PT ‖ ‖S−1‖ ‖ L−1‖ . For ‖ · ‖ = ‖ · ‖1 and ‖ · ‖ = ‖ · ‖∞
one can easily see from (14) that for n ≥ 2 we have

‖L−1‖1 = ‖L−1‖∞ = 2, ‖S−1‖1 = ‖S−1‖∞ = max
i=1,2,...,n

|si|−1, and ‖PT ‖1 = ‖PT ‖∞ = 1.

It follows that ‖X−1‖1 ≤ 2s∗ and ‖X−1‖∞ ≤ 2s∗ with s∗ := maxi=1:n |si|−1 and from the

well known ‖X−1‖22 ≤ ‖X−1‖1‖X−1
ν ‖∞ it additionally follows that ‖X−1‖2 ≤ 2s∗.

4. Examples

We present two examples for our method, where we approximate the Lyapunov function

from (2) at the grid points with some appropriately chosen T, δ, p > 0. Then we interpolate

and verify the negativity of the orbital derivative of the interpolation as in [1], but use

the sharper error estimate (15) in the LP program. Note that the orbital derivative of

the Lyapunov functions computed by our method is not guarantied to be negative very

close to the equilibrium. This is a known feature of the method, that can, however, be easily

accounted for by using a local Lyapunov function for the linearized system at the equilibirum

to assert its local stability.

We compare our results with the Massera construction from [1], i.e. where the Lyapunov

function is approximated using (3) at the vertices, and to two other approaches suggested

in the literature. The computations were programmed in C++ and run on a PC with an

i9-7900X processor.

4.1. Example 1

The first example is a planar system from [6, Ex. 6],

x′ = f(x) with f(x, y) =

 −x+ y

0.1x− 2y − x2 − 0.1x3

 . (16)

We assign in the LP problem (notation from Remark 1 in Section 3)

Bν1,1 = 2 + 0.6 max
(x,y)∈Sν

|x| and Bν1,2 = Bν2,1 = Bν2,2 = 0.



We set T = 20 for (3) and (2) and for the latter we set δ = 0.6, and p = 0.6. The grid

used for the vertices of the simplices was 2001 × 2001 with 4,004,001 points and 8,000,000

simplices/triangles. This corresponds to using the simplices SzJσ for z ∈ {0 : 999}2, J ∈
{∅, {1}, {2}, {1, 2}}, and σ ∈ {(1, 2), (2, 1)} in the notation of Section 3. The computation of

the Lyapunov function using (3) was done on the rectangle [−20, 20]2, i.e. the mapping PS

from Section 3 is given by PS(x) = 0.02x (because 0.02 · 1000 = 20). The computation took

43.6 s and the verification of the negativity of the orbital derivative took 0.45s. In 11.96% of

the triangles/simplices the orbital derivative was not negative. For the computation using

(2) on the rectangle [−20, 20]× [−40, 40], i.e. PS(x, y) = (0.02x, 0.04y)>, the corresponding

runtimes were 51.8 s and 0.45 s. In 10.05% of the triangles/simplices the orbital derivative

was not negative. In Figure 1 the Lyapunov functions using formulas (3) and (2) respectively

are plotted. In Figure 2 the level sets {x ∈ R2 : V (x) ≤ 33} and {x ∈ R2 : V (x) ≤ 9}
for these functions respectively are plotted. These level sets are chosen such that they do

not intersect with the areas where the orbital derivative is nonnegative and thus give lower

bounds on the basin of attraction.

Figure 1. The Lyapunov functions computed for system (16) using formula (3) [left] and

formula (2) [right].

In Figure 3 we compare our results with the approach from [17] as implemented in [15],

where a rational Lyapunov function is computed for the same system, and to the method

presented in [3], where Lyapunov functions that are sums of squared polynomials (SOS) are

computed. The software SMRSOFT from [3] was downloaded and used for the computations.

We computed 4th, 6th, and 8th order polynomial Lyapunov functions, but only draw the

level set for the 4th order one, because it delivered the least conservative estimate. It is

notable, that even though this method delivers a much smaller estimate of the basin of



Figure 2. Level-sets of the Lyapunov functions computed for the system (16) using formula

(3) [left] and (2) [right]. The area where the orbital derivative is not negative is drawn in

red. Since the level-sets do not intersect the area where the orbital derivative is nonnegative

they are lower bounds on the basin of attraction of the equilibrium at the origin.

attraction, it is not a proper subset of our estimates.

4.2. Example 2

The second example is a planar system from [2, Ex. 1],

x′ = f(x) with f(x, y) =

 −x+ y + 1
2
(ex − 1)

−x− y + xy + x cos(x)

 . (17)

We assign

Bν1,1 = max
(x,y)∈Sν

max(ex/2, 2| sin(x)|+ |x cos(x)|), Bν1,2 = Bν2,1 = 1, and Bν2,2 = 0.

Further, we set T = 20 for (3) and (2) and for latter we set δ = 0.4, and p = 0.3. As in

Example 1 the grid was 2001×2001 with 4,004,001 points and 8,000,000 simplices/triangles.

The computation of the Lyapunov function using (3) was done on the rectangle [−8, 4] ×



Figure 3. Level-sets of the Lyapunov functions computed for the system (16) using formula

(2) (outermost, black), (3) (red), the method from [15, 17] (blue), and using the software

SMRSOFT [3] (green).

[−8, 8] and took 35.6 s and the verification of the negativity of the orbital derivative took

0.4 s. In 27.9% of the triangles/simplices the orbital derivative was not negative. In most of

the area where the orbital derivative was not negative the Lyapunov function was not defined

because the initial-value problems diverge too fast on the interval [0, T ] for the numerical

solver.

For the computation using (2) on the rectangle [−8, 3] × [−10, 10] the corresponding

numbers were 45.2 s and 0.4 s. In 23.4% of the triangles/simplices the orbital derivative was

not negative, also mostly because the numerical solver was not able to assign values to the

Lyapunov function at the grid points.

In Figure 4 the Lyapunov functions using formulas (3) and (2) respectively are plotted.

In Figure 5 the level sets {x ∈ R2 : V (x) ≤ 8} and {x ∈ R2 : V (x) ≤ 5.9} for these functions

are plotted. These level sets are chosen such that they do not intersect with the ares where

the orbital derivative is nonnegative and thus give lower bounds on the basin of attraction.

In Figure 6 we compare our results with the approach from [17] as implemented in [15],

where a rational Lyapunov function is computed for the same system. We also compared it

with the method from [2], but the level sets obtained are very close to the ones from [15]

and we omit drawing them.



Figure 4. The Lyapunov functions computed for system (17) using formula (3) [left] and

formula (2) [right].

Figure 5. Level-sets of the Lyapunov functions computed for the system (17) using formula

(3) [left] and (2) [right]. The area where the orbital derivative is not negative is drawn in

red. Since the level-sets do not intersect the area where the orbital derivative is nonnegative

they are lower bounds on the basin of attraction of the equilibrium at the origin.

5. Conclusions

We presented an improved method to estimate the basin of attraction for equilibria of dy-

namical systems. The method is based on approximating the values of Lyapunov functions

from converse theorems and assign these values to the variables of a linear programming

problem. The linear constraints of the problem are then verified and in simplices, of which

they are fulfilled at all vertices, the function defined by interpolating these values over the

simplex has a negative orbital derivative along the solutions of the system. Our method is an

advancement of the method presented in [1], but with sharper error estimates and thus less



Figure 6. Level-sets of the Lyapunov functions computed for the system (17) using formula

(2) (outermost, black), (3) (middle, red), and by using the method from [15,17] (innermost,

blue). In [2] results very close to the ones from [15,17] are obtained using SOS programming.

conservative linear constraints and a more general positive definite function of the solution

under the integral in the Massera construction. We compared our novel method for two

systems with the method from [1] and two other approaches from the literature; one using

rational Lyapunov functions [15,17] and another using sum-of-squares programming [2,3]. In

all cases our method delivered considerably larger inner estimates of the basins of attraction.
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