
Numerical Analysis project in ODEs
for undergraduate students

Sigurdur Hafstein[0000−0003−0073−2765]

Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavı́k, Iceland
shafstein@hi.is

Abstract. Designing good projects involving programming in numerical analy-
sis for large groups of students with different backgrounds is a challenging task.
The assignment has to be manageable for the average student, but to additionally
inspire the better students it is preferable that it has some depth and leads to them
to think about the subject. We describe a project that was assigned to the students
of an introductory Numerical Analysis course at the University of Iceland. The
assignment is to numerically compute the length of solution trajectories of a sys-
tem of ordinary differential equations with a stable equilibrium point. While not
difficult to do, the results are somewhat surprising and got the better students to
get interested in what was happening. We describe the project, its solution us-
ing Matlab, and the underlying mathematics in some detail. Further, we discuss
the pedagogical aspects of the project and the results in terms of its success and
shortcomings.

Keywords: scientific computing project, ordinary differential equations, numer-
ical integration, Lyapunov functions

1 Background

The project we describe in this paper was assigned to the undergraduate students of
Numerical Analysis, a 6 ECTS unit course at the University of Iceland with approxi-
mately 150 students. The responsibility for this course is within the Faculty of Physical
Sciences in the School of Engineering and Natural Sciences and it is mandatory for
all BSc. students of Mechanical-, Industrial-, Chemical-, and Civil and Environmental
Engineering as well as for all students of Physics, Engineering Physics, Mathematics,
Applied Mathematics, and Mathematics and Mathematical Education. It is an elective
course for students of Geophysics, Computer Science, Software Engineering, Electrical
and Computer Engineering, and Chemistry.

As can be seen from this long lists the preparation and interests of the enrolled stu-
dents vary considerably. Usually, the students enroll in the course in the fourth semester
of six in total to complete a bachelors degree. Prerequisites for Numerical Analysis
are one course in Computer Science (programming in Matlab or Python), one course
in Linear Algebra, and two courses (three recommended) in Calculus. All of the stu-
dents are thus familiar with applying linear algebra and calculus, but the mathematics
students have also studied the theoretical aspects of these disciplines in some detail in

2 S. Hafstein

the framework of metric spaces, ring theory, etc. Students of Mathematics and Applied
Mathematics are required to enroll simultaneously in the course Theoretical Numeri-
cal Analysis (2 ECTS units), where rigid mathematical proofs of most of the material
covered in the Numerical Analysis course are studied.

The Course Description is:

Fundamental concepts on approximation and error estimates. Solutions of sys-
tems of linear and non-linear equations. PLU decomposition. Interpolating
polynomials, spline interpolation and regression. Numerical differentiation and
integration. Extrapolation. Numerical solutions of initial value problems of sys-
tems of ordinary differential equations. Multistep methods. Numerical solu-
tions to boundary value problems for ordinary differential equations.

and the Learning Outcomes are:

Knowledge and understanding: To complete this course the student should be
able to

1. define, explain and give examples of the main concepts of the course, such
as error, matrix factorization, interpolating polynomial, and finite differ-
ences,

2. state and explain the main results of the course, for example by stating
Newton’s Method and the Secant Method and estimate the errors, state
algorithms to solve boundary value problems using finite differences and
verify the degree of the approximation.

Skills: To complete this course the student should be able to

1. formulate a simple mathematical problem as a numerical problem, imple-
ment it on a computer, and compute an approximate solution,

2. estimate the error of numerical solutions,
3. use computer software, such as the Anaconda Python platform or Matlab,

for programming, computing, and performing numerical experiments,
4. validate the results of numerical computations,
5. use the concepts and the results of the course to develop and advance algo-

rithms for simple problems the student has not seen before.

In the course two larger group projects count for 30% of the final grade. The assignment
we describe here was the third and last part of the second project. The other two parts
were to

1. implement adaptive integration using the trapezoidal- and the Simpson’s rule and
test it for some integrals and

2. implement the shooting method and use it to solve a few boundary value problems.

Adaptive integration and the shooting method are discussed in sufficient detail in the
lectures and in the textbook used in the class [20] to make them rather easy to do.

Numerical Analysis project in ODEs for undergraduate students 3

2 The Project and its Solution

In the project the time-reversed van der Pol oscillator

x′ = f(x), where f(x,y) =
(

−y
−4(1− x2)y+ x

)
(1)

is considered. It has an exponentially stable equilibrium at the origin and an unstable
periodic orbit around it; see below for more details. The project has three objectives,
which we describe below together with its solution using Matlab.

2.1 Objective I

The first objective of the assignment was to analyze the system (1) by drawing solu-
tion trajectories, both forward and backwards in time. This is easily achieved by first
defining in f.m

1 function y=f(t,x)
2 mu=4.0;
3 y(1)=-x(2);
4 y(2)=-mu*(1-x(1)ˆ2)*x(2)+x(1);
5 y=y';
6 end

and then typing in the command window, here using the initial value (2,0)T for x′= f(x)
and (1,1)T for x′ =−f(x) and in both cases integrating over the time-interval [0,20].

1 >> [t,w]=ode45(@f,[0,20],[2,0]);
2 >> plot(w(:,1),w(:,2))
3 >> [t,w]=ode45(@(t,x) -f(t,x),[0,20],[1,1]);
4 >> plot(w(:,1),w(:,2))
5 >> xlabel('X');ylabel('Y');

The plots produced are drawn in Figure 1. A few comments are in order. Usually, one
defines the function f as a function of both time t and space x, even though the system
is autonomous, i.e. f does not depend explicitly on time. We follow this tradition here,
for otherwise we could not use the Matlab solver ode45 directly. The system x′ =
−f(x) is a time-reversion of the time-reversed van der Pol oscillator from (1), i.e. it is
the van der Pol oscillator. It is well known that the van der Pol oscillator has a stable
periodic orbit and it can be clearly seen in Fig. 1 (right). Since the periodic orbit is stable
all “normal” initial values, except the unstable equilibrium point (0,0)T , will converge
to the orbit. The system x′ = f(x) is the time-reversed van der Pol oscillator and the
stable periodic orbit of the van der Pol oscillator becomes an unstable orbit and the
unstable equilibrium point at the origin becomes stable. Thus, any initial value inside of
the periodic orbit will converge to the equilibrium and outside of the orbit will diverge.
Note that the Matlab solver ode45 (and others) reports problems, i.e. “Unable to meet

4 S. Hafstein

Fig. 1. Left: A solution trajectory of system x′ = f(x) with f from (1), starting at (2,0)T and
integrated numerically over the time-interval [0,20] using Matlab’s ode45. Right: A solution
trajectory of system x′ = −f(x) with f from (1), starting at (1,1)T and integrated numerically
over the time-interval [0,20] using Matlab’s ode45.

integration tolerances without reducing the step size below the smallest value allowed”
in the integration for various initial values and time-intervals. This can be overcome by
using a solver with fixed time-steps, to be delivered in the next objective.

2.2 Objective II

The second objective of the project was to program the standard Runge-Kutta method of
order 4, commonly abbreviated RK4. In more detail, an implementation for the function

1 function [t,w]=RK4(f,xi,a,b,n)

should be given, where f is the function f in x′ = f(t,x), xi is the initial value at time a,
and [a,b] is the time-interval over which the solution is computed, and n is the number
of time-steps used. The output [t,w] should be the transposes of the outputs of the
Matlab solver ode45 (column vector notation). This is an easy task whose solution
is given in the Appendix in Program I. Using RK4 to plot solution trajectories as in
Objective I now becomes, using 500 time-steps:

1 >> [t,w]=RK4(@f,[2,0]',0,20,500);
2 >> plot(w(1,:),w(2,:))
3 >> [t,w]=RK4(@(t,x) -f(t,x),[1,1],0,20,500);
4 >> plot(w(1,:),w(2,:))
5 >> xlabel('X');ylabel('Y');

This delivers trajectories comparable to the ones in Fig. 1. Note, that much fewer time-
steps, e.g. 100, results in much less accurate results, see Fig. 2. We now move to the
main objective of the problem.

Numerical Analysis project in ODEs for undergraduate students 5

Fig. 2. Left: A solution trajectory of system x′ = f(x) with f from (1), starting at (2,0)T and
integrated numerically over the time-interval [0,20] using RK4 and 100 time-steps (step-size
20/100=0.2). Right: A solution trajectory of system x′ =−f(x) with f from (1), starting at (1,1)T

and integrated numerically over the time-interval [0,20] again using RK4 and 100 time-steps
(step-size 20/100=0.2).

2.3 Objective III

On a uniform 101× 101 grid on [−3,3]× [−8,8], compute the length of the solution
trajectories to (1) integrated over a time-interval of length 4 and using RK4 with 100
time-steps. Note that 100 time-steps for a time-interval of length 4 corresponds to the
500 time-steps for a time-interval of length 20 used above, because both have step-size
0.04. The solution to system (1), starting at ξ ∈ R2 at time zero, is a function

t 7→ φ(t,ξ) fulfilling φ(0,ξ) = ξ and φ
′(t,ξ) =

d
dt

φ(t,ξ) = f(φ(t,ξ)) (2)

for all t in the definition domain of φ(·,ξ) (dependant of ξ either R or the maximum
domain before φ becomes infinite). The length of the trajectory t 7→ φ(t,ξ) on the time-
interval [0,T] is well known to be defined as

V (ξ) :=
∫ T

0
‖φ ′(τ,ξ)‖dτ,

where ‖·‖ denotes the Euclidian norm on R2. Because of (2) we can substitute f(φ(τ,ξ))
for φ ′(τ,ξ) and the formula for V (ξ) becomes

V (ξ) :=
∫ T

0
‖f(φ(τ,ξ))‖dτ. (3)

Since [t,w]=RK4(@f,xi,0,T,n) delivers φ(ti,ξ) in its ith column, where xi= ξ

and ti = (i−1)T/n for i = 1,2, . . . ,n+1, the integral in (3) can easily be approximated
using numerical integration. In the project it was suggested to use the composite Simp-
son’s Rule∫ T

0
g(τ)dτ ≈ h

3

(
g(t1)+g(tn+1)+4

n/2

∑
i=1

g(t2i)+2
n/2−1

∑
i=1

g(t2i+1)

)
,

6 S. Hafstein

where h = T/n is the length of the time-steps. Note that for this formula we need that
n is an even number. Since many of the trajectories will be very long, indeed so long
that the numerical solver will fail to deliver a numerical value, it is useful to substitute
e.g. V (ξ)←min{4T,V (ξ)} (Matlab’s min interprets NaN as larger than any number).
The implementation is now simple and is given in the Appendix in Program II. Typing

1 >> TraLengths(@f,-3,3,-8,8,4,100)

in the command window, where TraLengths is the program from the Appendix, f
is the function from f.m, [−3,3]× [−8,8] is the the area in the plane where a function
is computed and plotted, T=4 is the interval of integration in (3), and n=100 is the
number of time-steps used in the numerical integration, now delivers after a short time
(12.5 sec. on a computer with an i7-7700K CPU) Fig. 3. After having produced this

Fig. 3. The length of the trajectories of system (1) plotted as a function of starting position (x,y).

figure the less interested students have finished the project. The more interested ones,
however, now might start to ask themselves and the instructor why this function looks
like it does? Indeed, many of them did ask the instructor.

3 Study of the results

Let us discuss the results from Objective III and the function V computed in more detail.
Because the origin is a stable equilibrium, solutions t 7→ φ(t,ξ) slow down close to

it. Indeed, they become so slow that the limit φ(t,ξ)→ 0 when t→∞ is never reached.
The reason for this is that since f is continuous and f(0) = 0, f and then also x′ are small
close to the origin. Therefore trajectories that start close ξ ≈ 0 to the origin are short
and V (ξ)≈ 0.

Numerical Analysis project in ODEs for undergraduate students 7

The function V is a so-called Lyapunov function for the system. This means that it
has a local minimum at the stable equilibrium at the origin and that it is decreasing along
all solution trajectories in a neighbourhood of the equilibrium. The local minimum is
intuitively clear and the decrease can be seen from the following calculations:

d
dt

V (φ(t,ξ))
∣∣∣∣
t=0

= lim
h→0

V (φ(h,ξ))−V (ξ)

h
(4)

= lim
h→0

1
h

[∫ T

0
‖φ(τ,φ(h,ξ))‖dτ−V (ξ)

]
and because solution trajectories are unique, i.e. φ(τ,φ(h,ξ)) = φ(τ +h,ξ), we get∫ T

0
‖φ(τ,φ(h,ξ))‖dτ =

∫ T

0
‖φ(τ +h,ξ)‖dτ

=
∫ T+h

h
‖φ(s,ξ)‖ds

=
∫ T

0
‖φ(s,ξ)‖ds+

∫ T+h

T
‖φ(s,ξ)‖ds−

∫ h

0
‖φ(s,ξ)‖ds

=V (ξ)+
∫ T+h

T
‖φ(s,ξ)‖ds−

∫ h

0
‖φ(s,ξ)‖ds.

Thus, by (4) and the Fundamental Theorem of Calculus,

d
dt

V (φ(t,ξ))
∣∣∣∣
t=0

= lim
h→0

V (φ(h,ξ))−V (ξ)

h

= lim
h→0

1
h

[∫ T+h

T
‖φ(s,ξ)‖ds−

∫ h

0
‖φ(s,ξ)‖ds

]
= ‖φ(T,ξ)‖−‖φ(0,ξ)‖
= ‖φ(T,ξ)‖−‖ξ‖.

Since limt→∞ ‖φ(t,ξ)‖ = 0 for all ξ in a neighbourhood of the origin, we have for all
such ξ that ‖φ(T,ξ)‖< ‖ξ‖ for sufficiently large T > 0 and ξ 6= 0. Thus

V ′(ξ) :=
d
dt

V (φ(t,ξ))
∣∣∣∣
t=0

< 0

and V is decreasing along solution trajectories in a neighbourhood of the stable equilib-
rium at the origin, i.e. the mapping t 7→V (φ(t,ξ)) is decreasing.

The stability theory of Lyapunov and Lyapunov functions are covered in most text-
books on dynamical systems and/or control theory, e.g. [16, 19, 21], and the interested
student can be pointed to them for additional information. For an attractor, like our
stable equilibrium at the origin for the time-reversed van der Pol system, the sublevel
sets of a Lyapunov function serve as “traps”. Once inside the component of a sublevel
set, that includes the origin and does not extend to the boundary of the domain of the
Lyapunov function, the solution cannot escape. This comes because the solution is de-
creasing along solution trajectories and therefore cannot climb over the edge/boundary
of the sublevel set.

8 S. Hafstein

The theory of complete Lyapunov functions even tells us that every system given
by an ODE possesses a complete Lyapunov function that goes a long way in character-
izing the qualitative behaviour of the system. Indeed, this holds true for very general
dynamical systems. A complete Lyapunov function is a scalar-values function from the
whole state-space that is non-increasing along along all solution trajectories and strictly
decreasing where possible. Note that, e.g. for a periodic orbit, it cannot be strictly de-
creasing. In general it is strictly decreasing along all solution trajectories on the part of
the state-space where the flow is gradient-like and constant on every transitive compo-
nent of the chain-recurrent set. The theory of complete Lyapunov functions was devel-
oped by Auslander, Conley, and Hurley [1, 6, 13–15], see also [18].

Computing Lyapunov functions by using results from converse theorems in dy-
namical systems, i.e. theorems guarantying the existence of certain kinds of Lyapunov
functions for systems with particular stability properties, using integrals or sums over
solutions trajectories has been studied in numerous publications [2, 4, 3, 5, 17, 10–12,
7–9]. A central issue is the verification of the properties of a Lyapunov function for the
function computed. One way to do this is to interpolate the values computed over the
simplices of a triangulation. Essentially, one demands ∇V (x) · f(x)+Ex‖∇V (x)‖1 < 0
at all vertices of the triangulation, where the error Ex ≥ 0 assures that not only

d
dt

V (φ(t,x))
∣∣∣∣
t=0

= ∇V (x) · f(x)< 0

at the vertices, but for any x in the domain of the triangulation. Here ‖x‖1 = |x1|+ |x2|
and the function V is defined on the simplices by using convex interpolation of the
values at the vertices over the whole simplex. A detailed discussion of this method is
beyond the scope of this paper, but the interested reader can have a look at [11, 12].

By adding to the code for the function TraLengths as described in Program III in
the Appendix, a verification of the interpolation of the values as described in [11, 12] is
carried out. If one want to implement this for a different two-dimensional system than
(1), only the function f in f.m and the function B in Program III have to be modified
accordingly. The modification of f is obvious because it is the right-hand side of(1),
and the return value for B(r,s,xm,ym) should be an upper bound, preferably close,
on

max
i=1,2

|x1 |≤xm,|x2 |≤ym

∣∣∣∣ ∂ 2 fi

∂xr∂xs
(x1,x2)

∣∣∣∣ .
The results of this verification for our system (1) with the same parameters as in Ob-
jective III is plotted in Fig.4 (left) and with a higher spatial resolution, i.e. xres=301;
yres=301;, on the right. By using larger values for the parameters xres,yres,T,n,
the area within the periodic orbit where the orbital derivative fails to be negative is ef-
fectively reduced to an arbitrary small neighbourhood of the equilibrium at the origin,
cf. [12, Figs. 1,2]. Using a compiled programming language like C++ also makes these
computations very fast.

Numerical Analysis project in ODEs for undergraduate students 9

Fig. 4. Verification of the negativity of the orbital derivative of the function V computed in Objec-
tive III (left). Areas where it is not negative are plotted in red. Not only is it not negative outside
of the periodic orbit, but also in a strip within it. By increasing the spatial resolution the area
where the orbital derivative fails to be negative inside of the orbit becomes smaller (right).

4 Conclusion

We presented a new project for undergraduate students in Numerical Analysis. It is
not difficult to solve the problem and thus the average student should be able to do
so without too much difficulties. The solution, i.e. the function plotted, is somewhat
surprising and intended to awaken the interest of the better students. The solution to the
project is given and the results and the underlying theory are discussed in some detail.
Matlab code is given for all objectives of the project together with code for a more
sophisticated verification of the results. Further, numerous references to the underlying
theory are given.

Let us compare the presented project, in terms of pedagogical value, to the larger
projects from the textbook [20] of the course. The textbook contains, apart from nu-
merous Exercises and Computer Problems, eleven so-called Reality Checks, which
are larger project of comparable scale and complexity to the project presented. These
Reality-Checks are very well designed and include topics such as the kinematics of the
Steward Platform frequently used in flight-simulators, positioning using GPS, motion
control in computer-aided modeling, and a simple audio codec. These Reality Checks
have been used as assignments for the larger projects in the course discussed in the pa-
per with a great success. The difference, however, between those Reality Checks and the
project described, is that the Reality Checks inspire the better students to become inter-
ested in the technology behind the project, e.g. flight simulators, GPS, audio codecs, but
not in mathematics. The teacher of the course has had lively discussion with students
about these technological topics during and after the Reality Checks projects, but rarely
about mathematics. A possible drawback of the proposed project is that the theory be-
hind the project has little direct connection to technology. While a project on, say the
Stewart Platform, might invoke the interest of an engineering student in numerical root-
finding of nonlinear equations because she/he finds the steering of a flight simulator

10 S. Hafstein

fascinating, she/he will just routinely solve the project proposed in this paper without
gaining any interest in numerical analysis at all.

The advantage of the proposed project is that it inspires some of the mathematics
students to get interested in the theory of dynamical systems, a topic that they had only
known indirectly from studying differential equations. Further, as Lyapunov functions
are a mathematical extension of the concept of dissipative energy from physics, some
of the physics students were particularly interested as well. This allowed to the teacher
to discuss attractors, repellers, chaos, and complete Lyapunov functions with interested
students.

References

1. Auslander, J.: Generalized recurrence in dynamical systems. Contr. to Diff. Equ. 3, 65–74
(1964)

2. Björnsson, J., Giesl, P., Hafstein, S.: Algorithmic verification of approximations to complete
Lyapunov functions. In: Proceedings of the 21st International Symposium on Mathematical
Theory of Networks and Systems. pp. 1181–1188 (no. 0180). Groningen, The Netherlands
(2014)

3. Björnsson, J., Giesl, P., Hafstein, S., Kellett, C., Li, H.: Computation of continuous and piece-
wise affine Lyapunov functions by numerical approximations of the Massera construction.
In: Proceedings of the CDC, 53rd IEEE Conference on Decision and Control. Los Angeles
(CA), USA (2014)

4. Björnsson, J., Giesl, P., Hafstein, S., Kellett, C., Li, H.: Computation of Lyapunov functions
for systems with multiple attractors. Discrete Contin. Dyn. Syst. Ser. A 35(9), 4019–4039
(2015)

5. Björnsson, J., Hafstein, S.: Efficient Lyapunov function computation for systems with mul-
tiple exponentially stable equilibria. Procedia Computer Science 108, 655–664 (2017), pro-
ceedings of the International Conference on Computational Science (ICCS), Zurich, Switzer-
land, 2017.

6. Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series
no. 38, American Mathematical Society (1978)

7. Doban, A.: Stability domains computation and stabilization of nonlinear systems: implica-
tions for biological systems. PhD thesis: Eindhoven University of Technology (2016)

8. Doban, A., Lazar, M.: Computation of Lyapunov functions for nonlinear differential equa-
tions via a Yoshizawa-type construction. IFAC-PapersOnLine 49(18), 29 – 34 (2016)

9. Doban, A., Lazar, M.: Computation of Lyapunov functions fornonlinear differential equa-
tions via a Massera-type construction. IEEE Trans. Automat. Control 63(5), 1259–1272
(2018)

10. Hafstein, S., Kellett, C., Li, H.: Computing continuous and piecewise affine Lyapunov func-
tions for nonlinear systems. Journal of Computational Dynamics 2(2), 227 – 246 (2015)

11. Hafstein, S., Valfells, A.: Study of dynamical systems by fast numerical computation of
Lyapunov functions. In: Proceedings of the 14th International Conference on Dynamical
Systems: Theory and Applications (DSTA). vol. Mathematical and Numerical Aspects of
Dynamical System Analysis, pp. 220–240 (2017)

12. Hafstein, S., Valfells, A.: Efficient computation of Lyapunov functions for nonlinear systems
by integrating numerical solutions. Nonlinear Dynamics (To be published 2019)

13. Hurley, M.: Chain recurrence and attraction in non-compact spaces. Ergod. Th. & Dynam.
Sys 11, 709–729 (1991)

Numerical Analysis project in ODEs for undergraduate students 11

14. Hurley, M.: Chain recurrence, semiflows, and gradients. J Dyn Diff Equat 7(3), 437–456
(1995)

15. Hurley, M.: Lyapunov functions and attractors in arbitrary metric spaces. Proc. Amer. Math.
Soc. 126, 245–256 (1998)

16. Khalil, H.: Nonlinear systems. Pear, 3. edn. (2002)
17. Li, H., Hafstein, S., Kellett, C.: Computation of continuous and piecewise affine Lyapunov

functions for discrete-time systems. J. Difference Equ. Appl. 21(6), 486–511 (2015)
18. Patrão, M.: Existence of complete Lyapunov functions for semiflows on separable metric

spaces. Far East Journal of Dynamical Systems 17(1), 49–54 (2011)
19. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer (1999)
20. Sauer, T.: Numerical Analysis. Pearson, 2nd edn. (2012)
21. Vidyasagar, M.: Nonlinear System Analysis. Classics in applied mathematics, SIAM, 2. edn.

(2002)

Appendix

Below is an implementation in Matlab to a solution of the project.
Program I:

1 function [t,w]=RK4(f,xi,a,b,n)
2 h=(b-a)/n;
3 t=a:h:b;
4 w=zeros(length(xi),n+1);
5 w(:,1)=xi;
6 for i=1:n
7 wi=w(:,i);
8 s1=f(t(i),wi);
9 s2=f(t(i)+h/2,wi+h/2*s1);

10 s3=f(t(i)+h/2,wi+h/2*s2);
11 s4=f(t(i)+h,wi+h*s3);
12 w(:,i+1)=wi+h/6*(s1+2*s2+2*s3+s4);
13 end
14 end

Program II:

1 function TraLengths(f,ax,bx,ay,by,T,n)
2 xres=101; yres=101;
3 V=zeros(xres,yres);
4 vx=zeros(n+1,1);
5 x=linspace(ax,bx,xres);
6 y=linspace(ay,by,yres);
7 for ix=1:xres
8 for jy=1:yres
9 xi=[x(ix),y(jy)]';

10 [t,w]=RK4(f,xi,0,T,n);
11 for ivx=1:n+1

12 S. Hafstein

12 vx(ivx)=norm(f(t,w(:,ivx)));
13 end
14 V(ix,jy)=T/(3*n)*(vx(1)+vx(n+1)+4*sum(vx(2:2:n))...
15 +2*sum(vx(3:2:n-1)));
16 end
17 end
18 V=min(V,4*T*ones(size(V)));
19 mesh(x,y,V')
20 xlabel('X');ylabel('Y');zlabel('V(X,Y)');
21 end

Program III: Modification of TraLengths to additionally verify the validity of the
conditions for a Lyapunov function (decrease of the orbital derivative).

Add the following code to the function TraLengths between lines 19 and 20.

1 % verify decrease of orbital derivative
2 hx=(bx-ax)/(xres-1);
3 hy=(by-ay)/(yres-1);
4 As1(1,1)=hx; As1(1,2)=hx; As1(2,1)=0; As1(2,2)=hy;
5 As2(1,1)=0; As2(1,2)=hx; As2(2,1)=hy; As2(2,2)=hy;
6 k=1;
7 for ix=1:xres-1
8 for jy=1:yres-1
9 xm=max(abs(x(ix)),abs(x(ix+1)));

10 ym=max(abs(y(jy)),abs(y(jy+1)));
11 % sigma = ()
12 gV=[(V(ix+1,jy)-V(ix,jy))/hx, ...
13 (V(ix+1,jy+1)-V(ix+1,jy))/hy];
14 gVn=norm(gV,1);
15 err1=0;
16 c1=~(dot(gV,f(0,[x(ix),y(jy)]))+err1*gVn < 0);
17 err2=E(1,xm,ym,As1);
18 c2=~(dot(gV,f(0,[x(ix+1),y(jy)]))+err2*gVn < 0);
19 err3=E(2,xm,ym,As1);
20 c3=~(dot(gV,f(0,[x(ix+1),y(jy+1)]))+err3*gVn < 0);
21 % sigma = (1 2)
22 gV=[(V(ix+1,jy+1)-V(ix,jy+1))/hx, ...
23 (V(ix,jy+1)-V(ix,jy))/hy];
24 gVn=norm(gV,1);
25 err4=0;
26 c4=~(dot(gV,f(0,[x(ix),y(jy)]))+err4*gVn < 0);
27 err5=E(1,xm,ym,As2);
28 c5=~(dot(gV,f(0,[x(ix),y(jy+1)]))+err5*gVn < 0);
29 err6=E(2,xm,ym,As2);
30 c6=~(dot(gV,f(0,[x(ix+1),y(jy+1)]))+err6*gVn < 0);
31 % check if ~(orbital deririvative < 0)

Numerical Analysis project in ODEs for undergraduate students 13

32 if c1 || c2 || c3 || c4 || c5 || c6
33 NotNegx(k)=x(ix)+hx/2;
34 NotNegy(k)=y(jy)+hy/2;
35 k=k+1;
36 continue
37 end
38 end
39 end
40 hold on
41 plot3(NotNegx,NotNegy,zeros(k-1,1),'ro')

Further, add the following functions after the code for the function TraLengths

1 function Bval=B(r,s,xm,ym)
2 if r==1 && s==1
3 Bval=8*ym;
4 elseif r==2 && s==2
5 Bval=0;
6 else
7 Bval=8*xm;
8 end
9 end

10

11 function Eval=E(i,x,y,A)
12 Eval=0;
13 for r=1:2
14 for s=1:2
15 Eval=Eval+B(r,s,x,y)*A(r,i)*(A(s,i)+A(s,2));
16 end
17 end
18 Eval=0.5*Eval;
19 end

