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Abstract

The CPA method uses linear programming to compute Continuous and Piecewise Affine
Lyapunov function for nonlinear systems with asymptotically stable equilibria. In [14] it
was shown that the method always succeeds in computing a CPA Lyapunov function for
such a system. The size of the domain of the computed CPA Lyapunov function is only
limited by the equilibrium’s basin of attraction. However, for some systems, an arbitrary
small neighborhood of the equilibrium had to be excluded from the domain a priori. This
is necessary, if the equilibrium is not exponentially stable, because the existence of a CPA
Lyapunov function in a neighborhood of the equilibrium is equivalent to its exponential
stability as shown in [11]. However, if the equilibrium is exponentially stable, then this was
an artifact of the method. In this paper we overcome this artifact by developing a revised
CPA method. We show that this revised method is always able to compute a CPA Lyapunov
function for a system with an exponentially stable equilibrium. The only conditions on the
system are that it is C? and autonomous. The domain of the CPA Lyapunov function can
be any apriori given compact neighborhood of the equilibrium which is contained in its
basin of attraction. Whereas in a previous paper [10] we have shown these results for planar
systems, in this paper we cover general n-dimensional systems.

Keywords: Lyapunov function, nonlinear system, exponential stability, basin of
attraction, CPA function, piecewise linear function, linear programming

1. Introduction

Lyapunov functions, first introduced in [23], are a fundamental tool to determine the
stability of equilibria and their regions of attraction. They can be used for very general sys-
tems, e.g. nonautonomous systems [22, 35, 16], arbitrary switched nonautonomous systems
[15], or differential inclusions [5], but in this paper we concentrate on autonomous systems.

Consider the autonomous system x = f(x), f € C?(R",R"), and assume that the origin
is an exponentially stable equilibrium of the system. Denote by A its region of attraction.
The standard method to verify the exponential stability of the origin is to solve the Lyapunov
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equation, i.e. to find a positive definite matrix QQ € R"*" that is a solution to J7Q + Q.J =
—P, where J := Df(0) is the Jacobian of f at the origin and P € R"*" is an arbitrary
positive definite matrix. Then the function x — x7@x is a local Lyapunov function for the
system x = f(x), i.e. it is a Lyapunov function for the system in some neighborhood of the
origin, cf. e.g. Theorem 4.7 in [22]. The size of this neighborhood is a priori not known and
is, except for linear f, in general a poor estimate of A, cf. [13]. This method to compute
local Lyapunov functions is constructive because there is an algorithm to solve the Lyapunov
equation that succeeds whenever it possesses a solution, cf. Bartels and Stewart [3].

The construction of Lyapunov functions for true nonlinear systems is a much harder prob-
lem than for linear systems. However, it has been studied intensively in the last decades and
there have been numerous proposals of how to construct Lyapunov functions numerically.
To name a few, Johansson and Rantzer proposed a construction method in [17] for piece-
wise quadratic Lyapunov functions for piecewise affine autonomous systems. In [7], Eghbal,
Pariz, and Karimpour formulate the computation of piecewise quadratic Lyapunov functions
for planar piecewise affine systems as linear matrix inequalities. In [32], Ratschan and She
give an interval based branch-and-relax algorithm to compute polynomial Lyapunov-like
functions for polynomial ODE. Another approach to numerically investigate the stability of
nonlinear systems is, for example, given by Oishi in [27], where he considers the probabilis-
tic computation of a stable control for systems that are parameter dependent, linear, and
discrete. He uses a parameter dependent Lyapunov function.

Julian, Guivant, and Desages [20] and Julian [19] present a linear programming problem
to construct piecewise affine Lyapunov functions for autonomous piecewise affine systems.
This method can be used for autonomous, nonlinear systems if some a posteriori analysis
of the generated Lyapunov function is done. In [18], Johansen uses linear programming
to parameterize Lyapunov functions for autonomous nonlinear systems, but does not give
error estimates. In [33], Rezaiee-Pajand and Moghaddasie proposed a different collocation
method using two classes of basis functions. Giesl [8] proposed a method to construct
Lyapunov functions for autonomous systems with an exponentially stable equilibrium by
numerically solving a generalized Zubov equation, cf. [36]. A solution to Zubov’s equation
is a Lyapunov function for the system. He uses radial basis functions to approximate the
solution and derives error estimates.

Parrilo [29] and Papachristodoulou and Prajna [28] consider the numerical construction
of Lyapunov functions that can be expressed as sum of squares (SOS) of polynomials for
autonomous polynomial systems. These ideas have been taken further by recent publications
of Peet [30] and Peet and Papachristodoulou [31], where the existence of a polynomial
Lyapunov function on bounded regions for exponentially stable systems is established. The
Lyapunov functions are computed by means of convex optimization and are true Lyapunov
functions and not approximations.

A complete Lyapunov functions, first introduced by Conley in [6], is a generalization of
a Lyapunov function for compact invariant sets, as discussed here, to an object completely
characterizing the decomposition of a flow into a chain-recurrent and a gradient-like part.
Norton [26] even suggested that this characterization should be referred to as the Fundamen-
tal Theorem of Dynamical Systems. In [21], Kalies, Mischaikow and VanderVorst present
an algorithmic approach to construct approximations to complete Lyapunov functions for
discrete dynamical systems. By considering the time-7" map of a continuous system, this
method can be used to find an approximation to a complete Lyapunov function for a con-



tinuous dynamical system as well. In [2], Ban and Kalies implement this algorithm and give
examples of computed Lyapunov functions.

In [25], Hafstein (alias Marinosson) presents a method to compute piecewise affine Lya-
punov functions. In this method one first triangulates a compact neighborhood C C A
of the origin and then constructs a linear programming problem with the property that a
continuous Lyapunov function V, affine on each n-simplex of the triangulation, i.e. a CPA
Lyapunov function, can be constructed from any feasible solution to it. In [13] it was proved
that for exponentially stable equilibria this method is always capable of generating a Lya-
punov function V : C\ N' — R, where AN/ C C is an arbitrary small, apriori determined
neighborhood of the origin. In [14], these results were generalized to asymptotically stable
systems, in [15] to asymptotically stable, arbitrary switched, nonautonomous systems, and
in [1] to asymptotically stable differential inclusions.

In [9], the authors showed that the triangulation scheme used in [25, 13, 14, 15] does
in general generate suboptimal triangles at the equilibrium. However, in the same paper
they proposed a new, fan-like triangulation around the equilibrium, and proved that a
piecewise linear Lyapunov function with respect to this new triangulation always exists for
planar systems. In [10], the authors showed how to compute a CPA Lyapunov function
algorithmically for planar systems by using linear optimization. The modification to the
algorithm in [15] is to use a fine, fan-like triangulation around the equilibrium, as suggested
in [9]. The general n-dimensional case was treated in [11], where the authors proved, using
different methods than in [9], that a piecewise linear Lyapunov function with respect to a
modified, fan-like triangulation around the equilibrium always exists. However, the proof
was non-constructive and it was not shown how to explicitly compute such a function. In
this paper, the authors finish the work from [9, 10, 11] and deliver an algorithm to compute
a CPA Lyapunov functions in n-dimensions and prove that the algorithm always succeeds in
a finite number of steps whenever the system possesses an exponentially stable equilibrium.

The numerical discretization method presented in this paper is somewhat unusual since it
is exact, i.e. it computes a true Lyapunov function and not an approximation. This is possible
since a Lyapunov function is characterized through inequalities rather than equalities. Some
other methods to construct Lyapunov functions, for example, the SOS method in [30, 31],
also share this property. It should, however, be noted that the interplay between continuous
systems and their discretization is very well understood. In particular, many important
dynamical properties like attractors and basins of attraction are inherited by discretization,
even for control systems. For a detailed discussion of this see the important work of Griine
[12].

Let us give an overview over the contents: In Section 2 we define a linear programming
problem in Definition 6 and show that a solution of this problem parameterizes a CPA
Lyapunov function in Theorem 1. In Section 3, we explain in Definition 17 how to algo-
rithmically find a suitable triangulation for the linear programming problem from Definition
6. The main result is Theorem 5, showing that the algorithm from Definition 17 always
succeeds in computing a CPA Lyapunov function for a system with an exponentially stable
equilibrium. In Section 5 we give examples of CPA Lyapunov functions computed by our
method. The paper ends with some concluding remarks in Section 6.



Notations

For a vector x € R™ and p > 1 we define the norm ||x||, = (3, |xi|p)l/p. We also define
[Xlloo = max;eqr,... .y [7:]. We will repeatedly use the Holder inequality |x - y| < [|x[[,[|y |l
where p~! + ¢~! = 1, and the norm equivalence relations

-1 -1
Ixllp < [Ix[lg <n® =7 Ix[l, forp>g.

The induced matriz norm || - ||, is defined by [|All, = max)x -1 [|Ax][,. Clearly ||Ax][, <
Al .

The conver combination of vectors xg,X1,...,X, € R™ is defined by
cof{X0,X1,...,Xm} = {XoAxi:0< N <1y N =1} A set of vectors
X0,X1,...,Xm € R™ is called affinely independent if Y " Xi(x; — x9) = 0 implies
Ai = 0 for all ¢ = 1,...,m. This definition does not depend on the choice of xy. If
X0,X1,.-.,Xm € R™ are affinely independent, then the set co{xg,x1,...,X;} is called
an m-simplex. The set of r-times continuously differentiable functions from an open set
O C R™ to a set P C R" is denoted by C"(O,P), i.e. all partial derivatives of order
less than or equal to r of all components f; of f € C"(O,P) exist and are continuous.
The preimage of a function f with respect to a subset P of its codomain is defined by
f~YP) = {x : f(x) € P}. We denote the closure of a set A" by N and the interior
of N by N°. Finally, Bs is defined as the open || - ||2-ball with center 0 and radius 4,
ie. Bs={xeR":|x]2 < d}.

2. The linear programming problem

Consider
x = f(x), (1)

where f € C?(R",R"), n > 2, and f(0) = 0. It is well known that the asymptotic stability
of the equilibrium at the origin is equivalent to the existence of a positive definite functional
of the state space that is decreasing along the solution trajectories of the system, i.e. a
continuously differentiable functional V' : O — R, where O is a connected open neighborhood
of the origin, fulfilling V(0) = 0 and V(x) > 0 for all x # 0 as well as

VV(x)-f(x) <0 for all x € O\ {0}. (2)

Such a functional V is called a (strict) Lyapunov function. It is also well known that the
condition “continuously differentiable” can be mollified to “locally Lipschitz continuous” if
the inequality (2) is replaced with

D1V (x) := limsup Vix+ h(x)) - V()

<0 3
h—0+ h ( )

cf. e.g. Theorems 1.16 and 1.17 in [24].

In this paper we are interested in exponentially stable equilibria, i.e. the real parts of
the eigenvalues of the Jacobian of f from (1) at the equilibrium at the origin are all strictly
negative. We will show that if the origin is an exponentially stable equilibrium of (1), then
a CPA Lyapunov function can be computed algorithmically by using linear programming.
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Because we are only interested in an exponentially stable equilibrium at the origin, we
only need to consider a specific type of Lyapunov functions that characterizes this kind of
stability. Further, it is advantageous to define the set A/ of certain neighborhoods of the
origin that we will repeatedly use in this paper. This is done in the next two definitions.

Definition 1. Denote by A the set of all subsets D C R™ that fulfill:

i) D is compact.
ii) The interior D° of D is a connected open neighborhood of the origin.
iii) D = De.

Definition 2. Consider the system (1). A Lipschitz continuous function V : D — R,
D € N, is called a Lyapunov function for the system if V(0) = 0 and there are constants
a,b,c > 0 such that

aljx|l2 £ V(x) < b||x|]z forallx € D and DTV (x) < —c|x||2 for all x € D°.

Here, DV denotes the Dini derivative of V as defined in (3).

Remark 3. We will always refer to such a Lyapunov function as a “Lyapunov function in
the sense of Definition 2”. Because D is compact, the concepts “Lipschitz continuous” and
“locally Lipschitz continuous” coincide. Note that DTV (x) is not necessarily well defined
for an x at the boundary of D.

Remark 4. If V is a Lyapunov function in the sense of Definition 2, then the Lyapunov
function V; = sV with s = max{a~!,c7!} satisfies ||x||2 < Vi(x) for all x € D and
DTVi(x) < —|]x||2 for all x € D°.

Remark 5. The origin is an exponentially stable equilibrium of the system (1), if and only
if it possesses a Lyapunov functions in the sense of Definition 2. In this case every connected
component of a sublevel set V=1([0,7]), 7 > 0, that is compact in D°, is a subset of the
equilibrium’s basin of attraction.

The “if” part follows e.g. from the Lyapunov function constructed in the proof of The-
orem 4.7 in [22] and the fact that if V' is a Lyapunov function, then so is Vz. The “only
if” part follows e.g. from the proof of Theorem 4.10 in [22] for @ = 1. Note that the
theorem is not stated properly, because “V continuously differentiable” is contradictory to
krllz||* < V(t,x) < koflz||* if 0 < a < 1. If, however, “V continuously differentiable” is
replaced with “V locally Lipschitz in 27, then the proof is valid, even with DTV (x) defined
as in (3).

We describe the idea of how to compute a Lyapunov function for the system (1), given
a neighborhood C € N of the origin: we start by choosing a set D € A/, D D C, that can be
triangulated, i.e. we can subdivide D into a set T :={&, : v =1,2,..., N} of n-simplices
&, such that any two simplices in 7 intersect in a common face or are disjoint. Note that
a face of an n-simplex is a k-simplex, 0 < k < n, so this means that the intersection of
two simplices &; and Gy in T is either empty or &1 N Gy = co{x,, Xiy, . - -, X, }, Where
Xi, Xiy s - - -, X4, are the common vertices of &; and Gs.

{neig}

{def_lyap}

{sv}



Then we construct a linear programming problem, of which every feasible solution pa-
rameterizes a CPA function V', i.e. a continuous function that is affine on each simplex in
T. Clearly such a function is Lipschitz continuous and for every &, € 7T the restriction of
V to 6, is given by Ve, (x) = w, - x + a,, with w,, € R™ and a, € R. The linear pro-
gramming problem imposes linear constraints that force V' (0) = 0 as well as the inequalities
V(x) > |Ix||2 for all x € D and w,,-f(x) < —||x]||2 for every v =1,2,..., N and every x € G,,.
Since we cannot use a linear programming problem to check the conditions V(x) > ||x||2
and w, - f(x) < —||x]||2 for more than finitely many x, the essence of the linear programming
problem is how to ensure the inequalities by only using a finite number of points in D. Note
that the condition w, - f(x) < —||x||2 is equivalent to (3) for our specific choice of V' as
shown later.

First, one verifies that if &, = co{xg,X1,...,X,}, then it is enough to force V(x;) >
Ix:ll2, ¢ =0,1,...,n, to ensure that V(x) > ||x||2 for all x € &,,.

Second, for every &, = co{xg,X1,...,X,} one picks one vertex, say Xo, and introduces
positive constants I, ;, i = 1,2,...,n, dependent on the vector field f and the n-simplex
S,, and then uses the linear programming problem to force w, - f(x¢) < —|xgl|2 and

w, - £(x;) + Eyi|lwolli < —|xill2 for i = 1,2,...,n. For practical reasons, it is convenient

to introduce the constants F, o := 0 for v =1,2,..., N. Then the last two inequalities can
be combined to

w, - f(x;) + Eyi|lwoli < —||xi]l2 for i=0,1,...,n.

These last inequalities can be made linear in the components of w,, and with a proper

choice of the E, ; they ensure that w, - f(x) < —||x||2 for all x € &,,. Since this holds true
for every &, € T, one can show that DTV (x) < —||x||2 for all x € D°. Hence, e.g. by
Theorem 2.16 in [15], the function V : D — R is a Lyapunov function for the system (1) in
the sense of Definition 2 and so is V restricted to C.
We now state our linear programming problem for the system (1) and prove that any fea-
sible solution parameterizes a Lyapunov function for the system. The linear programming
problem is defined in the next definition. It is followed by several explanatory and clarifying
remarks.

Definition 6 (The linear programming problem). The variables of the linear pro-
gramming problem for the system (1) are Vi for all vertices x of the n-simplices of the
triangulation 7 defined in Step 1 and C,;, i = 1,2,...,n, for every &, € 7. The con-
straints of the linear programming problem are given by (4), (5), and (6). The construction
of the linear programming problem is as follows:

1. We triangulate D € N into a finite number of n-simplices T = {&, : v =1,2,...,N}.

That is D := U &, and any two different simplices from 7 intersect in a common

S, eT
face or not at all. Further, we demand from our triangulation that whenever 0 € G, €

T, then 0 is a vertex of &,,.
We define V' : D — R uniquely by:

e VV:D — R is continuous.

{LPprob}



e For every n-simplex &, = co{xo,X1,...,Xp} € T we have V(x;) = Vi,, i =
0,1,...,n, and the restriction of V to any n-simplex &, € T is affine, i.e. there
is a w, € R" and an a, € R such that V(x) =w, -x+ a, for every x € &,,.

For such a function we define VV,, :=w, for v = 1,2,..., N. The components of the
vector VV,, are linear in Vi, V,, ..., Vx,, where &, = co{x¢, X1, ...,Xp}, cf. Remark
9

2. We set Vo = 0. For every &, = co{xq,X1,...,X,} € T and every vertex x; # 0
Vi = [Ixill2 (4)

is a linear constraint of the problem.
3. Forevery 6, ¢ T andi=1,2,...,n

|VVV,i| S CV,i) (5)

where VV, ; is the i-th component of the vector VV,, is a linear constraint of the
problem, cf. Remark 10.
4. For every &, = co{xg,X1,...,Xn} € T and every vertex x; € S, i =0,1,...,n,

—lxill2 = YV, - £(xi) + Eui ) Cuy, (6)

j=1

is a linear constraint of the problem. In this inequality

nB
Eyi = 2V l[xi — %ol ( max |[x; — Xoll2 + [[x; — X0|2) ; (7)
j=1,2,....n
where B, is a constant fulfilling
9 fm
B, > .
V2 e )

See Remark 11 on these constants.
If 0 ¢ &, then we can choose the vertex xg arbitrarily. If 0 € &, then 0 is necessarily
a vertex of &, and in this case we set xg = 0.

Remark 7. An explicit triangulation as in Step 1 is constructed in Definition 13.

Remark 8. It is not necessary to force V(x) < b||x||2 for all x € D explicitly with linear
constraints because this inequality is automatically fulfilled with b := maxg,c7 [|[VV, 2.

Remark 9. The components of the vector VV, are linear in V4, Vx,, ..., Vx,,, where &, =
co{Xg,X1,...,Xn}. To see this, define the matrix X, by writing the components of the
vector x; — X in its i-th row, ¢ = 1,2,...,n. Since xg,X1,...,X, are affinely independent,

the matrix X, is invertible. Define the column vector v} by setting Vi, — Vi, as its i-
th component for ¢ = 1,2,...,n. Now V(x) = VV, - x + a, for every x € &, where
VV, = X, 'vi. Indeed,

X7 (% —x0) = (% —x0)T X ve =elvi = V(x;) — Vi(xo) = VV, - (x; — Xo)

*
v

fori=1,2,...,n.

{Lc1}

{LC3}
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Remark 10. By Remark 9, the components of the vector VV,, are linear in Vi, Vi, ..., Vx,
and, e.g. by [4, p. 17], this implies that the constraints (5) are linear in the variables
Vios Vxis -+ Vi, toO.

Remark 11. The constants B, in Step 4 are the only parameters of the linear programming
problem that are not computed algorithmically. However, one only needs to obtain some
upper bounds on the second-order partial derivatives of f and because these bounds do
not have to be close, this is usually a very simple task.

Remark 12. We explain the choice of the vertex x¢ in Step 4: If 0 € &, then O is
necessarily a vertex of &, and in this case we must set xo = 0, for otherwise the constraint
(6) could not be fulfilled if B, > 0. To verify this, observe that if e.g. x; = 0 and then
xo 7# 0 we have

0= 7||X1H2 >VV, - f(Xl) +Ey71 ZCVJ' = Eu,l ZCVJ'.
el =1 =1
=0
But we have by (7)

nB
B = "5 1 = ol (g s = xoll + [t = xolls ) >0
J=1,2,..., n

so (6) cannot be fulfilled unless 2?21 Cy,; =0, which is impossible because by (5), V would
be constant on &, and (6) could not be fulfilled for all vertices of &,,.
However, as we set xg = 0, we have

nB
E, o= T”on — Xol|2 ( max [|x; — Xofl2 + [[x0 — X0||2> =0
Jj=1,2,...,n

and (6) is trivially fulfilled. Obviously there is no loss of generality.

If 0 ¢ &,, then we can choose x¢ arbitrarily. Different choices will obviously lead to
different linear programming problems, but they are all equivalent in the sense that a CPA
Lyapunov function can be parameterized from a feasible solution to any of them, cf. Theorem
1.

If a linear programming problem from Definition 6 possesses a feasible solution, i.e. the
variables Vi, and C,,; have values such that the constraints (4), (5), and (6) are all fulfilled,
then it is always possible to algorithmically find a feasible solution, e.g. by the simplex
algorithm. In this case, the function V : D — R defined in Definition 6 is a CPA Lyapunov
function in the sense of Definition 2 for the system (1) by the next theorem.

Theorem 1. Assume that a linear programming problem from Definition 6 has a feasible
solution and let V : D — R be the CPA function parameterized by it. Then V is a Lyapunov
function in the sense of Definition 2 for the system (1) used in the construction of the linear
programmaing problem.

PrOOF: This result was proved for n = 2 in Theorem 4.6 in [10] with a similar notation.
The proof for a general n > 2 is identical, just replace 2 by n, where appropriate. O
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3. The Algorithm

We define a parameterized set of triangulations ’T[%b in Definition 13 of a superset of any
C € N. A superset is necessary because not all C € N can be triangulated. We explain the
choice of the superset in Definition 13 below and define our algorithm in Definition 17.

3.1. Triangulation

For the algorithm to construct a piecewise affine Lyapunov function we need to fix our
triangulation. That is a subdivision of R™ into n-simplices, such that the intersection of any
two different simplices is either empty or a k-simplex, 0 < k < n, and then its vertices are
the common vertices of the two different n-simplices. Such a structure is often referred to
as a simplicial n-complex.

We do this by extending the local simplicial n-complex from [11]; this is similar to
extending the local planar triangulation from [9] in [10]. The main idea is to take the
intersection of the boundary of a hypercube [—b, b]", b > 0, with the simplices in a simplicial
n-complex as in [15], such that the boundary is subdivided into a simplicial (n— 1)-complex.
The simplicial n-complex must be chosen such that the boundary of the hypercube [—b, b]™
and a simplex in complex can only intersect in a face of the simplex. Then the intersection is
naturally a simplicial (n — 1)-complex itself and we then add the origin as a vertex to all the
simplices in this complex to get a new simplicial n-complex locally at the origin. We refer
to this local triangulation as the simplicial fan because of its similarity to the 3D graphics
primitive triangle fan. Outside of the hypercube [—b, b]™ we continue to use the simplicial
n-complex from [15].

For the construction we use the set S,, of all permutations of the numbers 1,2,...,n,
the characteristic functions x 7(¢) equal to one if ¢ € J and equal to zero if ¢ ¢ 7, and the
standard orthonormal basis e, es, ..., e, of R®. Further, we use the functions R7 : R* —
R™, defined for every J C {1,2,...,n} by

n

R7(x) =) (1) Wase;.

=1

Thus R7 (x) puts a minus in front of the coordinate x; of x if i € J.

Note that the two parameters b and K of the triangulations Tjgb and Tk, refer to the
size of the hypercube [—b, b]™ covered by its simplicial fan at the origin and to the fineness,
respectively. C refers to the a priori given compact neighborhood C € A of the origin.

Definition 13. Let C € A be a given subset of R”. We will define a triangulation Tlgb of
aDeN,DDC, that approximates C. To construct the triangulation ng,b, we first define
the triangulations 75, 74 and Tfs(t’g as intermediate steps.

1. The standard triangulation 75 consists of the simplices

J
o ::co{RJ <Z—I—Zeg(i)> :j:O,l,Q,...,n}

i=1

forall z e N, all 7 C {1,2,...,n}, and all 0 € S,,.

{algorithm}
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2. Choose a K € Ny and consider the intersections of the n-simplices &, 7, in Tstd
and the boundary [—2%,2%]". We are only interested in those intersections that are
(n — 1)-simplices, i.e. we take every simplex with vertices x; := R7 (z +>7, eg(i)),
j €{0,1,...,n}, where exactly one vertex satisfies ||x;«||oc # 2¥ and the other n of
the n+ 1 vertices satisfy ||x;l = 2% for j € {0,1,...,n}\{j*}. Then we replace the
vertex X« by 0.

Thus, we obtain a new triangulation of [—2% 2K]" which is denoted by T3,

3. Now choose a constant b > 0 and scale down the triangulation T4 of the hypercube
[—2K,2K]™ and the triangulation 7' outside of the hypercube [—2% 2K]" with the
mapping x — px, where p := 27 Kb, We denote by T]S(tfg the resulting set of n-simplices,
ie.

Tiks = pTRUp{& e T : &) — 2K 2K "= 0} .
4. As a final step define

Tio={6, €T : 6,NC° # 0}

D .= U G,.

S.€TE,

and set

Lemma 2. Consider the sets C and D from the last definition. Then D D C and D € N.

PROOF: D is a closed set containing C° and thus contains C € A/ because C = C° by property
iii) in Definition 1, so C is the smallest closed set containing C°. D fulfills properties i) and iii)
of Definition 1 since D is a finite union of n-simplices. To see that property ii) of Definiton 1
is also fulfilled, i.e. that D° is connected, notice the following: The definition of TI((Z,b implies
that for any &, € Tg)b we have G2 NC° # (. Hence, any x € &, can be connected to a
y € C° with a line contained in &5 with a possible exception of x. Since C € A, we have
that C° is connected. This implies that D° is connected, too. O

Remark 14. For dimension n = 2 this construction is the same one as in [10] and for any
dimension n the simplicial fan 7344 is the same one as in [11]. In [10], the simplicial complex
Tls(fg for n = 2 is depicted and in [11], the simplicial fan T4 is depicted for n = 3.

Remark 15. The triangulation 759 is studied in more detail in Sections 4.1 and 4.2 in
[24], but with slightly different notations. A sometimes more intuitive description of &, 7 »
is the simplex {x € R" : 1 > x,(1) > ... > Zy(») > 0}, which is translated by x — x + z
and then a minus-sign is put in front of the i-th entry of the resulting vectors, whenever

i€ J.

Remark 16. ng’b is truly a triangulation, i.e. two different simplices in Tigb intersect in a
common face or not at all, as shown in Lemma 3.
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Lemma 3. Consider the set of simplices Tféyb from Definition 13 and let &, =
co{xXg,X1,...,Xn} and Ga = co{yo,y1,...,¥n} be two of its simplices. Then

&1 N 6y =63 :=co{zp,21,-.-,Zm}, (8)

where 7o, 21, . .., Zm are the vertices that are common to &1 and Ga, i.e. z; = Xo (i) = Y5(i)
fora,pe S, andi=1,...,m.

ProOOF: We split the proof into four cases. For 0 € &; N &y, equation (8) was proven
in Lemma 2.7 in [11]. For 0 ¢ &; and 0 ¢ &;, equation (8) follows directly by Theorem
4.11 in [24]. For 0 € &7 and 0 ¢ G,, equation (8) follows also from Theorem 4.11 in [24]
because 51 NGy = 61 NG2N{x : ||x||cc = b} and the intersection &1 NS, looks just like an
intersection of two simplices in p7°*. The case 0 ¢ &; and 0 € &, follows analogically. [J

Now we define the algorithm to compute CPA Lyapunov functions for systems with an
exponentially stable equilibrium at the origin.

Definition 17 (The Algorithm). Consider the system (1) and let C € . The procedure
to search for a Lyapunov function for the system is as follows:

1. Set K =0,b =1, and let B be a constant such that

0 fm

B> max  sup|o o (z)‘

T omyrs=12,...n 4c0

2. Generate a linear programming problem as in Definition 6 using the triangulation Tlg’b
and setting B, := B for all &, € ngb.

3. If the linear programming problem has a feasible solution, then we can compute a
Lyapunov function V' : D — R, D := UGueTﬁ‘b G,, for the system as shown in

Theorem 1 and we are finished. If the linear programming problem from Step 2 does
not have a feasible solution, then replace K by K +1 and b by 3/4-b, i.e. K + K +1
and b+ 3/4 - b, and repeat Step 2.

Remark 18. The algorithm in Definition 17 searches for a feasible solution to the linear

programming problems as in Definition 6, using the triangulations 76(31,7'163/4,7'26(3/4)2, e
By defining the sequence of triangulations,

._ 7C

776 e 7;6,(%)19;

we can rephrase the algorithm: Search for a feasible solution to the linear programming

problems defined as in Definition 6 using the elements of the sequence (7y) ken, 1 successive

order. When a feasible solution is found, then use it to parameterize a CPA Lyapunov

function. Further, it is advantageous to define Dy := U S, for k € Ny.
S.€Tk

for k € Ny, 9)

Remark 19. If better estimates for the B, than the uniform bound B from Step 1 in the
algorithm are available, then these can and should be used.
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4. Main result

The next theorem, the main result of this paper, is valid for more general sequences
(Tk)ken of triangulations, where Tj41 is constructed from 7 by scaling and tessellating its
simplices, than for the sequence (7% )ken, from Remark 18. However, it is quite difficult to
get hold of the exact conditions that must be fulfilled in a simple way so we restrict the
theorem to this specific sequence. First, we state a fundamental lemma, the results of which
are used in the proof of Theorem 5.

Lemma 4. Consider the system (1) and assume that the origin is an exponentially stable
equilibrium of the system. Let C e N bea set contained in the origin’s basin of attrac-
tion. Then there exists a Lyapunov function W : C — R in the sense of Definition 2 that
additionally satisfies the following conditions:

a) W is continuous on C and C? on C° \ {0}. Further, all second order derivatives of W
can be extended continuously to the boundary OC of C.
b) There is a constant C; < +oo such that

sup  [[VW(x)[]2 < C. (10)
xeC\{0}

k
1 ~
¢) For all k € Ny define e(k) := 3 (i) . For all k so large that C\ Bex) # 0 define

o?w
Ak = i,j:Hll,%%..,n {‘6@8% (X)

Then there are constants A > 0 and K* € N such that

:XECT\BE(;C)}. (11)

k
A, < A (g) for all k > K*. (12)

d)
W(x) > [|[x]2s, DYW(x) < —|x||2, and D*W(x)=VW(x) f(x) (13)

Jor allx € C, all x € C° and all x € C°\ {0} respectively.

e) Let J := Df(0) be the Jacobian of f at the origin, I € R™*™ be the identity matriz and
Q € R™" be the unique symmetric positive definite matriz that fulfills the Lyapunov
equation JTQ + QJ = —I. Then there are constants 6 > 0 and s > 0 such that

W(x)=s-vxTQx forallx e Bs. (14)

PRrROOF: The idea of how to construct the function W is as follows: Locally, near the origin,
W is defined by (14), and away from the origin by W(x) = a ;" ||S:x||3 dt, where a > 0
and Syx denotes the solution to (1) with initial value x at time ¢ = 0. In between, W is
a smooth interpolation of these two functions. For n = 2 the details of this construction
are worked out in the proof of Theorem 3.3 in [10] and the extension to a general n > 2 is
straight forward so we skip it here. More exactly:

12

{Wlemma}

{Cdef}

{Akdef}

{Ak}

{West}

{1locW}



The statements a)-c) are proved in steps 1-5 of the proof of Theorem 3.3 in [10] for n = 2.
The proof for general n > 2 is practically identical, just replace 2 by n where appropriate.
For a proof of d) see Remark 4. The statement in e) follows from the definition of Wi, in
Step 1 in the proof of Theorem 3.3 in [10], generalized to an arbitrary n, and d). O

Remark 20. The second order derivatives of W will in general diverge at the origin, but
at a predictable rate as stated by (12).

Now we are ready for the main result of this paper.

Theorem 5. Consider the system (1) and assume that the origin is an exponentially stable
equilibrium of the system. Let C € N be contained in the origin’s basin of attraction. Then
the algorithm from Definition 17 succeeds in computing a CPA Lyapunov function for the
system in a finite number of steps.

ProoF: By Remark 18, it suffices to show that there is a & € N such that any linear
programming problem constructed as in Definition 6 using the triangulation Ty for any
k > R has a feasible solution. The set C in Tjg,b is the same C as in the statement of the

theorem. Our proof further uses the Lyapunov function W : C - R and Cy, K*, e(k), A,

and Ay from Lemma 4. The domain C of W will be defined in Step 2 of the proof. We split
the proof into eight steps.

1. Definition of h,
For every integer k define

= (3 5)

Note that hj is the scale down factor of the simplices in 75 not containing the origin.
Further note that for every &, = co{x¢,X1,...,X,} € 7%, 0 ¢ &,, we have

min  ||x; — Xj||2 = hy and
i,j=0,1,...,n
%5

Comax  ||x; — x|l = Vnhy. (16)
$,§=0,1,...,n

2. 5andCCDkC5
Denote by A the basin of attraction of the equilibrium at the origin. Since C C A is
compact and A open, cf. e.g. Lemma 8.1 in [22], there is a positive Euclidean distance
between C and the boundary of A. Let d > 0 denote this distance if it is finite and
otherwise set d := 1. Now define C to be the set of all x € R™ that have Euclidean
distance less than or equal to d/2 to C. Clearly C € N. For all large enough k € Ny the
Euclidean distance from the boundary of Dy, defined in Remark 18, to C is bounded
by \/n hg, so there is a K** € N such that C C Dy, C C for every k > K**.

3. Estimate on ||Xk_i||1 when 0 ¢ &;,
Choose an arbitrary n-simplex co{xg,X1,...,Xn} € T3t and construct the matrix X
by writing the components of the vector x; —xg in its i-th row for i = 1,2,...,n. Note
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that up to translations there are no more than 2" - n! different simplices in 754 and
because there are (n + 1)! possibilities of ordering the vertices of any such simplex,
there is only a finite number of possibilities of forming such a matrix X. Further,
all of them are invertible. This means that we can define @ > 0 as the minimum
eigenvalue of all possible X7 X and then for any such X we have || X[, < 1/1/a.
Define X* := y/n/a. Now, for every &, € Ty, 0 ¢ S, we can construct a matrix
X, as in Remark 9 and hg16k,,, is, up to a possible translation, equal to a simplex
in 7°*. Thus, the matrix X,/ hy corresponds to a matrix X as above and therefore
[ X ll2 < 1/(hiy/@). Hence,

_ _ X
Kbl < VR IX < (17)
for all k£ and v. Note especially that X* is a constant independent of k and v.
. Estimate on ||Xk_7iw;;’y — VW(x;)|l1 when 0 ¢ &,
Let k > max{K*, K**} and &, = co{Xo,X1,...,Xn} € Tk and define
W (x1) = W(xo)
W(Xg) — W(Xo)
W, = . . (18)

W () — W (x0)

We will need upper bounds on HX,;iW;;V — VW (x;)|]1 later on, for i =0,1,2,...,n if
0¢ 6y, andfori=1,2,...,nif 0¢ Gy, Here, we derive the appropriate bounds if
0 ¢ &, and in Step 5 we consider the case 0 € &y, ,,, which is quite different.
Assume 0 ¢ Sy, Note that in this case &, C C \ Be (k) by the definition of (k)
and the construction of the triangulation 7. Moreover, W is two times continuously
differentiable on &y, and for i = 1,2,...,n we have by Taylor’s theorem

W (xi) = W(xo) + VW (xo) - (x; — x0) + %(Xz‘ —x0)" Hw (2:)(x; — X0),

where Hyy is the Hessian of W and z; = x¢ + ¢;(x; — xg) for some 9; €]0,1].
By rearranging terms and combining this delivers

(x1 — Xo);gw(zl)(xl —x)
Wi~ X VW (x0) = (32 = o) vT<zQ><x2 —x0) | o

(xn — XO)THW(ZH)(Xn — Xo)
With Hw (z) = (hi;(2)); j—, .., we have that maxsees, , |hij(z)] < Ax by (11) be-
cause Sy, € C \ Be (k). Hence, e.g. by Lemma 4.2 [1], we have

max ||[Hw(z)ll2 < ndg. (20)
z€Sy,,
By (16), (12), and (15), we obtain

A
| (i = x0)" Hw (2:) (xi = %0)| < (Vnhi)* | Hw (23) |2 < n® Aghi; < n® Sz b
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Hence, by (19),

. n3A
Wi = X VW (x0) 1 < 57 k- (21)
Further, for 4,5 = 1,2,...,n there is a z;; on the line segment between x; and x¢, such

that
W (xi) — 0;W(x0) = VO; W (zi;) - (xi — x0),

where 0;WW denotes the j-th component of VW and VO;W is the gradient of this
function. Then, by the definition of A we have
|0;W (xi) — 0;W (x0)| < [VO;W (245 l2ll%; — %oll2 < VnAxv/nhy, = nAphy

so we have

n?A

2k -
From this, (17), and (21) we obtain for ¢ = 0,1,2,...,n the inequality

IVW (x;) — VIV (x0)|l1 < n-ndihy <

X5 Wi — VW ()11
< X Wi = VW (x0) 1 + VW (x:) = VW (x0) 1

_ N n?A
< X lhliwe, — Xk VIV (x0)[11 + o
X*n3A n?A  n?A N
< Gt o = Ger (X 2), (22)

A further useful consequence, which we need later, is that

n2A n?

A
ST (nX*+2) <V/nCf+ —(nX*+2) (23)

[ Xeowioly < IVW )+ o

holds, where we used the bounds (10) on ||V (x;)|2-
. Estimate on ||X1;iwlt,y — VW (x;)||1 when 0 € &,
We will show that there is a constant C5 > 0 and a K*** € Ny, such that

I Xp Wi, — VW (x)|1 <C527% forall k> K** and all &, € Tp.  (24)

This estimate follows from the inequality at the end of Step 7 in the proof of Theorem
3.2 in [11] and Lemma 4 e). We explain this in more detail.
In Step 7 in the proof of Theorem 3.2 in [11] it is shown that

[Vw(x:) = Vo(x)l2 < §Co, (25)

where Cj is a constant. Further, p/b = 27 and the estimate (25) holds true for all
b > 0 small enough and K € N large enough. Note that in the proof of Theorem
3.2 in [11], the values of b and K are fixed in Step 2 and Step 4, respectively. Let us
consider such a fixed pair band K. Following the proof in [11], it is easy to see that
the estimate (25) holds true for all b such that 0 < b < b and all K € Ny with K > K.
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In our notation, (25) reads

<27 K. (26)

1 1
HX,;iw,’; ,— = VW (x;)
S ? ’ S 9

since Vw(x;) in (25) corresponds to %X;iwz)u in our notation, see Remark 9, and
Vou(x;) in (25) corresponds to 1 VW (x;) in our notation. Here, s > 0 is the constant
from Lemma 4 e).
Consider the sequence of triangulations (7j)ken, from Remark 18 and recall that the
simplicial fan of 7 triangulates the cube [—(3/4)%, (3/4)*]". Now, for all k € Ny such
that

[—(3/4)%, (3/4)%]" c Bs, (3/4)* <b, and k> K, (27)

the estimate (26) holds true with b := (3/4)* and K := k. Here § > 0 is the
constant from Lemma 4 e), and X, and wj , are constructed for an arbitrary
6, = co{x0,x1,...,X,} € Tx as in Remark 9 and (18), respectively. Hence, there
is a K*** € Ny and a constant C§ such that the assertion (24) holds true, e.g. with
K*** as the smallest k such that (27) holds true and C§ = /n s Cj.

Similar to (23) we can deduce from (24) that

1X o wi ol < IVW (i)l + C527% < VO + C327". (28)

. Assign values to the linear program

In this step we assign values to the variables of the linear programming problem from
Definition 6 used by the algorithm in Definition 17. We then show that the constraints
(4), (5), and (6) are fulfilled if the simplices in the triangulation 7j are small enough,
i.e. for all large enough k € Ny. To do this, let k£ > max{K*, K**, K***} be arbitrary
but fixed.

The assignments are as follows. For every 6, = co{xg,X1,...,X,} € T we set:
i) Vi, := 2W(x;) for every vertex x; of &, = co{xo,X1,...,X,}, where W is the
Lyapunov function from Lemma 4.
i) Cy, = |eZTXV_1v;§ for i =1,2,...,n, where X, and v} are constructed for &,

and Vi, as in Remark 9.

By doing this, we have assigned values to all the variables of the linear programming
problem. The factor 2 in i) is necessary because we need V not merely to fulfill
—|Ix:ill2 > VV, - £(x;), but the stronger inequality (6).

Clearly Vo = 2W(0) = 0 and Vy, = 2W(x;) > 2||x;ill2 > [|x:ill2 by (13) for every
6, € T and every vertex x; of &,. Therefore, the constraints (4) are fulfilled.
Further, by Remark 9, VV, ; = elTXl,_lv:j, where VV, ; is the i-th component of VV,,
so Cy; = [ef X, 'vi| > |VV,;| holds trivially. Hence, the constraints (5) are fulfilled.
The challenge is to show that the constraints (6) are fulfilled. We show this for an
arbitrary simplex &,, distinguishing between the two cases that &, is not in the
simplicial fan of 75 (Step 7) and that &, is in the simplicial fan (Step 8).

. Constraints (6) when 0 ¢ &,

Pick an arbitrary &, = co{X¢,X1,...,Xn} € Ti such that 0 ¢ &,. We notice that

_ —1_ % __ —1__ %
VV, =X, v, =2X Wi,
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where W;;,V is defined as in (18) and we emphasize the k-dependence of X, = Xj,, as

in Step 4. Let L > 0 be a Lipschitz constant for f on C such that [|f(x) — £(y)||so <

L|x — yl|2 for all x,y € C.
By (13) and the estimate (22) we have for i = 0,1,...,n that

VvV, - f(x;) = 2X,;iw;;l, -f(x;)
= 29W(x;) - Flxi) +2 (X bwi, = VIV(x:)) - £(x:)

=2fxillz + 2] X, Wi, — YW () [l (i) oo
n%A
72HX1'||2 + 72k (TlX* + 2) . L||XZH2

IN

IN

Hence, the constraints (6), i.e.
n
—|xill2 > VV; - £(x;) + Ei Y Clj
Jj=1

are fulfilled whenever k is so large that

n?AL . =
—lIxill2 > —2{|xll2 + (nX*+2) - |xill2 + Evi Y Cuj,

ok
j=1
which is equivalent to
n2AL 1 -
1> —nX*"+2)+ —F,; C,. 29 uffi
2k ( ) ||Xz||2 ) ; 5J ( ) { }
Because 0 ¢ &, we have by (7) and (16) that
nB,
B i= I = xoll (a1 =il + [ = ol
J=1,2,..., n 2

B,
< Vihi(2Vihy) - 58 = n?hiB

and [|x;(|2 > (3/4)% because &, is not in the simplicial fan of 7. Further, by (23)

2A
Zc v =2lIXowi I <2VnCY + (X" +2). (30) {1astc}
j=1
Thus, (29) holds true if,
2 k
1> #( X*+2)+ <§) n?hiB (2[01 A(nX* +2)>
n?AL

o ——(nX*+2)+n’B, <2fcl A(nX*+2)> 2; <i>k

where we have used the formula (15) for hy. This last inequality clearly holds true for
all large enough k.
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8. Constraints (6) when 0 € G,
We now consider an arbitrary &, = co{xg,X1,...,X,} € T, with xo = 0. Define Wi,
and X, , exactly as in the last step.

By (7),

nB
Buo = "2 o = xoll (g s =l + oo = xollz ) =0
Jj=1,2,...,n

so the linear constraints (6) are automatically fulfilled for 4 = 0, because the condition
is
n

=0z > VV, -£(0) + E,0 Y Cuj,

s

~—— -~ ~~5
=0 =0 =0 77

ie.0>0.

For i = 1,2,...,n, the constraints (6) read

—|xill2 > VV, - £(x;) + Eyi Y Clj.

j=1
Similar to Step 7, but using the estimate (24) instead of (22), we get
VvV, - f(x;) = 2X,;lllw;;l, -f(x;)
= 29W(x;) - Flxi) +2 (X bwi, = VIV(x:)) - £(x:)

IN

=2xill2 + 2] X5, Wk, — VW (i)l - [1£(6:) [l
< =2lxil2 + 20527 - Lxill2.

Thus, the constraints are fulfilled if

n
—xill2 > =2[|x;ll2 + 2C527% - Lixill2 + Evi > Cuj,

j=1
which is equivalent to
1>205027% + WEM > C.;. (31) {uff2}
Xill2 ,
Jj=1
Since xo = 0 and [|x, s = (3/4) for j = 1,2,...,n, we now have

Eui = nBy

k
3 3
o= P = ol (eI = ol + = xollz ) < (3) il
j=1,2,....,n 4

Finally, notice that similar to (30) we get by (28) that

203

> Cog = 20X, Wi < 2/nCL+ 52

J=1
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o (31) is fulfilled if

k
s (3 205
1>205L27% +n?B <4) (2\/501* + 2,}’) .

Again this inequality clearly holds true for all large enough k.

The conclusions are: In Step 6 we assigned values to the variables of the linear programming
problem from Definition 6 and showed that for all k& > max{K™, K**, K***} the linear
constraints (4) and (5) of the linear programming problem are fulfilled. In Steps 7 and 8 we
proved that for all large enough k > max{K™*, K** K***} the constraints (6) of the linear
programming problem are fulfilled. Hence, there is a 8 > max{K*, K** K***} such that
the linear programming problem has a feasible solution using the triangulation 7, whenever
k > K. By Theorem 1 we can use such a feasible solution to parameterize a CPA Lyapunov
function for the system (1). Since the algorithm from Definition 17 tries to find a feasible
solution to the linear programming problem from Definition 6 using the triangulations 7Ty
for k = 0,1,2,..., and there are algorithms, e.g. the Simplex algorithm, that always find
a solution to a linear programming problem whenever it possesses a feasible solution, we
have shown that the algorithm from Definition 17 always succeeds in parameterizing a CPA
Lyapunov function for the system (1). O

5. Examples

5.1. Van der Pol

Consider the time-reversed van der Pol equation @ = —y, ¢ = = + (1 — 2?)y from [2],
i.e. the system x = f(x) with

f(21,32) = <x1 + (1172967‘1)962) '

We computed a CPA Lyapunov function V' : [—4,4] x [—1.6,1.6] — R for this system. The
parameters used for the triangulation Tlg’b in Definition 13 were C = [—4,4] x [-1.6, 1.6],
b= 0.8, and K = 2. We used this triangulation in the linear programming problem in
Definition 6 and because

9 fm
0x,0x4 (2)

= max max{| — 2z3|,| — 2z1|}

x€6,

max Imax
m,r,s=1,2x€e6,

we can set B, = 2maxxees, max{|zi|, |z2|} for all &, € T, cf. Step 4 in (6). Here it is
very easy to derive exact tight bounds on the second-order derivatives of f, but even if it is
not, it is usually not difficult to deliver some upper bounds. If bounds are more generous,
one might need a finer triangulation. For the above parameters, the linear programming
problem has a feasible solution. A computed CPA Lyapunov and some of its level sets are
depicted in Figure 1.
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(a) CPA Lyapunov function. (b) Some of its level sets.

Figure 1: Computed CPA Lyapunov function and some of its level sets for a time-reversed van der Pol
equation. Each of the closed level sets is the boundary of a sublevel set which is a subset of the basin of
attraction of the origin. The computation takes less than 13 sec. on a state of the art PC.

5.2. 8-dimensional Fxample

As a second example we consider the system & = —z —y — z, y = sinz — 2y(1 4+ x) + z,
z=z(1+2x)+y—2sinz, i.e. x = f(x) with

—X1 — X2 — I3
f(z1, 22, 23) = | sin(z1) — 2x2(1 + 21) + a3
1‘1(1 + 56‘1) + 29 — QSin(l‘g)

We computed a CPA Lyapunov function V : [-0.5,0.5]*> — R for this system. The param-
eters used for the triangulation ng’b in Definition 13 were C = [-0.5,0.5]3, b = 0.5, and

K = 0. Thus Tgﬁb = 0.57%4 in C. We used this triangulation in the linear programming
problem in Definition 6 and because

O fm
0x,0x, (2)

max max

o8 | 08X = max max{| — sin(z1)|, 2, | — 2|, |2sin(z3)|}

xe6,

we can set B, := 2 for all &, € T, cf. Step 4 in (6). For these parameters the linear
programming problem has a feasible solution. A level set of the computed CPA Lyapunov
function is depicted in Figure 2.

6. Summary and further work

With this paper the authors close the theoretical and algorithmical part of a project
started in 2009: We have now revised the CPA method to compute Lyapunov functions
for systems with exponentially stable equilibria to include the equilibrium in the domain of
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Figure 2: A level set of a CPA Lyapunov function for the system ¢ = —z —y — 2, y = sinz — 2y(1 + z) + 2,
%2 = x(1+x)+y—2sinz. The sublevel set is a subset of the basin of attraction of the origin. The computation
takes less than a second on a state of the art PC.

the CPA Lyapunov function. Designing such a revised algorithm turned out to be a much
harder problem than anticipated, but the results are very satisfactory and not only solve
the problem aimed at but give a much deeper understanding of the CPA method itself. For
the full solution, as presented in this paper, a series of partially very technical details had
to be worked out. Former publications by the authors, [9, 10, 11], in addition to presenting
important results in themselves, worked out many of these details. In particular, the revised
CPA algorithm for planar systems was presented in [10]. In Step 9 in the proof of the main
theorem of [10] we had to rely explicitly on the system being planar and the extension to
higher dimensions needed a completely different methodology.

We have implemented the revised CPA method for n-dimensional systems and have ap-
plied it to examples. In Figure 1, a planar example of a computed CPA Lyapunov function
and some of its level sets are presented, and in Figure 2 a level set of a computed CPA Lya-
punov function for a three-dimensional system is depicted. Our program is written in C++
and makes use of the Armadillo linear algebra library [34] and the GNU Linear Program-
ming Kit (http://www.gnu.org/software/glpk/glpk.html). Our software is in the stage of
being properly debugged, tested and documented, and will be made available free of charge
on the internet in the near future. The goal is to be able to equip the scientific community
with an easy-to-use tool to compute CPA Lyapunov functions for general nonlinear systems
with exponentially stable equilibria.
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