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Abstract
In [10] a method to compute Lyapunov functions for systems with asymp-

totically stable equilibria was presented. The method uses finite differences
on finite elements to generate a linear programming problem for the system
in question, of which every feasible solution parameterises a piecewise affine
Lyapunov function. In [2] it was proved that the method always succeeds in
generating a Lyapunov function for systems with an exponentially stable equi-
librium. However, the proof could not guarantee that the generated function
has negative orbital derivative locally in a small neighborhood of the equilib-
rium. In this article we give an example of a system, where no piecewise affine
Lyapunov function with the proposed triangulation scheme exists. This failure
is due to the triangulation of the method being too coarse at the equilibrium,
and we suggest a fan-like triangulation around the equilibrium. We show that
for any two-dimensional system with an exponentially stable equilibrium there
is a local triangulation scheme such that the system possesses a piecewise affine
Lyapunov function. Hence, the method might eventually be equipped with an
improved triangulation scheme that does not have deficits locally at the equi-
librium.

Keywords: exponentially stable equilibrium; piecewise linear Lyapunov function;
triangulation

MSC 2010: 37C10; 37B25

1 Introduction

Consider the autonomous system ẋ = f(x), f ∈ C1(Rn,Rn), and assume that the
origin is an exponentially stable equilibrium of the system. Denote its basin of
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attraction by A. The standard method to obtain a local Lyapunov function and
thus a subset of the basin of attraction is to solve the Lyapunov equation, i.e. to
find a positive definite matrix Q ∈ Rn×n that is a solution to ATQ + QA = −P ,
where A = Df(0) is the Jacobian of f at the origin and P ∈ Rn×n is an arbitrary
positive definite matrix. Then the quadratic function x 7→ xTQx is a local Lyapunov
function for the system ẋ = f(x), i.e. it is a Lyapunov function for the system in
some neighborhood of the origin. The size of this neighborhood is a priori not known
and is, except for linear f , in general a poor estimate of A (see, for example, [2] for
more details).

In the last decades there have been several proposals of how to numerically
construct Lyapunov functions. To name a few, Johansson and Rantzer proposed a
construction method in [7] for piecewise quadratic Lyapunov functions for piecewise
affine autonomous systems. In [6] Johansen uses linear programming to parameterise
Lyapunov functions for autonomous nonlinear systems. His results are, however,
only valid within an approximation error, which is difficult to determine. Giesl
proposed in [1] a method to construct Lyapunov functions for autonomous systems
with an exponentially stable equilibrium by solving numerically a generalised Zubov
equation, cf. [11],

∇V (x) · f(x) = −p(x), (1.1)

where usually p(x) = ‖x‖2. A solution to the partial differential equation (1.1) is a
Lyapunov function for the system. He uses radial basis functions to find a numerical
solution to (1.1) and there are error estimates given.

In [10] Hafstein (alias Marinosson) presented a method to compute piecewise
affine Lyapunov function for autonomous systems with an asymptotically stable
equilibrium. This is the method we will be considering in this paper. In this method
one first triangulates a compact neighborhood C ⊂ A of the origin and then con-
structs a linear programming problem with the property, that a continuous Lyapunov
function V , affine on any triangle of the triangulation, can be constructed from any
feasible solution to it. In [2] it was proved that for exponentially stable equilibria
this method is always capable of generating a Lyapunov function V : C \ N −→ R,
where N ⊂ C is an arbitrary small, a priori determined neighborhood of the origin.
In [3] these results were generalised to asymptotically stable systems and in [4] to
asymptotically stable, arbitrary switched, non-autonomous systems.

Since the existence of a piecewise affine Lyapunov function in a neighborhood
of an equilibrium implies its exponential stability, one must necessarily cut out
some neighborhood N of the origin, if the equilibrium is not exponentially stable.
However, it has not been clear if the same holds for exponentially stable equilibria.
In this paper we will show, that due to the triangulation scheme used in [10, 2, 3, 4],
it is necessary to cut out N from the domain where the Lyapunov function will be
constructed. We show this by giving an example of a two-dimensional system with
an exponentially stable equilibrium at the origin, which cannot possess a Lyapunov
function that is affine on the eight triangles of the triangulation scheme sharing the
origin as a central vertex. This raises the question, whether this is because there
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are no piecewise affine Lyapunov functions around the origin, or if this is just the
result of the suboptimal triangulation scheme used by the method.

In two dimensions we can give a definite answer to this question. The failure of
the method to construct a piecewise affine Lyapunov function locally at the equilib-
rium for certain systems, is not an intrinsic property of the method, but is caused
by a triangulation scheme which is too coarse. Further, we show that for any sys-
tem with an exponentially stable equilibrium, there is a local triangulation scheme,
which generates triangles with the equilibrium as a central vertex such that the sys-
tem possesses a Lyapunov function, affine on all of the triangles. Further, we explain
why the proof for two dimensions cannot be generalised to higher dimensions in a
straight-forward way.

Because of these results, the authors are optimistic, that the method in [10, 2,
3, 4] to construct piecewise affine Lyapunov functions, can be equipped with a more
advanced triangulation scheme such that it can compute a piecewise affine Lyapunov
function V : C −→ R for any system with an exponentially stable equilibrium.
Note, that in contrast to the standard method to generate local quadratic Lyapunov
functions as described above, this would lead to an algorithm that kills two birds
with one stone: For every system with an exponentially stable equilibrium, it could
generate a both local and global Lyapunov function establishing exponential stability
and giving a reasonable estimate on the size of the basin of attraction.

This paper is organised as follows: In Section 2 we discuss triangulations and
piecewise affine Lyapunov functions. Section 3 deals with a counterexample, a two-
dimensional system such that there is no piecewise affine Lyapunov function for any
triangulation as in [10]. Section 4 contains the main result, Theorem 4.3, which
shows the existence of a piecewise affine Lyapunov function for any two-dimensional
system with an exponentially stable equilibrium. The paper closes with a summary
and outlook in Section 5.

2 Piecewise affine Lyapunov functions

In the following, x ·y = xTy =
∑n

i=1 xiyi denotes the usual dot product and ‖x‖2 :=√
x · x denotes the Euclidean norm for vectors x,y ∈ Rn. Moreover, ‖Q‖2 :=

sup‖x‖2=1 ‖Qx‖2 denotes the induced matrix norm of a matrix Q ∈ Rn×n. The
convex hull of the vectors x1,x2, . . . ,xk ∈ Rn is denoted by

co{x1,x2, . . . ,xk} :=

{
k∑
i=1

λixi | λi ≥ 0 for all i and
k∑
i=1

λi = 1

}
.

Triangulation

In Rn we triangulate an area containing the origin into a finite number of closed
simplices T = {Tν | ν = 1, 2, . . . , N}, such that C :=

⋃
Tν∈T

Tν is simply connected
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and 0 ∈
◦
C. Further, we demand that if 0 ∈ Tν , then 0 is a vertex of Tν . Recall, that a

triangulation in Rn is defined as a subdivision of Rn into n-simplices (n-dimensional
objects), such that any two different simplices intersect in a common face or not at
all.

For the two-dimensional case n = 2, the simplices in T are triangles and this
condition reads for µ 6= ν,

Tµ ∩ Tν =


∅, or,
{y}, where y is a vertex common to Tµ and Tν , or
co{y, z}, where y and z are vertices common to Tµ and Tν .

This is necessary because we want a function V : C −→ R to be uniquely defined
by its values on the vertices of the simplices in T such that

• V : C −→ R is continuous and

• the restriction of V to any simplex Tν ∈ T is affine, i.e. there are wν ∈ Rn and
aν ∈ R such that V (x) = wν · x + aν for every x ∈ Tν .

If we fix ν = 1, 2, . . . , N and define the restriction of V to the simplex Tν by Vν(x) :=
V
∣∣
Tν

(x), then the gradient satisfies ∇Vν(x) = wν for x ∈ Tν . We will call such a set
C a triangulated domain and such a function V piecewise affine with respect
to C. Later we will use a triangulation where every triangle has 0 as a vertex and
the function V satisfies V (0) = 0. Hence, the function V will even be piecewise
linear.

Lyapunov functions

We consider the autonomous ordinary differential equation

ẋ = f(x), (2.1)

where f ∈ C1(Rn,Rn), and we denote the solution at time t with initial value ξ at
time 0 by φ(t, ξ). Moreover, we assume that the origin x0 = 0 is an exponentially
stable equilibrium. Then the basin of attraction A := {ξ ∈ Rn | limt→∞ φ(t, ξ) = 0}
is an open and non-empty set.

A method to determine compact subsets of the basin of attraction is to use
sublevel sets of a Lyapunov function. A smooth (strict) Lyapunov function for the
system (2.1) is a function V ∈ C1(U,R), where U ⊂ Rn is an open neighborhood of
0, such that for all x ∈ U we have

1. V (x) > 0 for x 6= 0 and V (0) = 0.

2. V ′(x) < 0 for x 6= 0, where V ′(x) = ∇V (x)·f(x) denotes the orbital derivative,
i.e. the derivative along solutions of ẋ = f(x).
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Then any compact sublevel set K = {x ∈ Rn | V (x) ≤ R} with R > 0 and K ⊂ U
is a subset of the basin of attraction of 0.

Now we consider the case that the function V is not C1, but only continuous. In
this case, the same consequences hold if the orbital derivative in 2. is replaced by
the Dini derivative D+[V (x)] of V along the trajectories of the system.

Definition 2.1 (Dini derivative) For a continuous function V ∈ C0(Rn,R) and
the ODE (2.1) we define the Dini derivative

D+[V (φ(t, ξ))] := lim sup
h→0+

V (φ(t+ h, ξ))− V (φ(t, ξ))
h

.

Proposition 2.2 Let V ∈ C0(U,R), where U ⊂ Rn is an open neighborhood of 0,
be a (strict) Lyapunov function for (2.1), i.e. for all x ∈ U we have

1. V (x) > 0 for x 6= 0 and V (0) = 0.

2. D+[V (x)] < 0 for x 6= 0, cf. Definition 2.1.

Then any compact sublevel set K = {x ∈ Rn | V (x) ≤ R} with R > 0 and K ⊂ U is
a subset of the basin of attraction of 0.

For a proof cf. [9, Theorem 1.16].
In the following Theorem 2.3 we derive a different way of calculating the deriva-

tive, using small variations not along the solution but along the vector field f . This
theorem is stated in [5, p. 196] without any restrictions on V , but there is no proof
or references given. In our theorem, we assume that V is locally Lipschitz.

Theorem 2.3 Let U ⊂ Rn be a domain, f ∈ C1(U,Rn), and assume that V ∈
C0(U,R) is locally Lipschitz on U . Let φ(t, ξ) be the solution of the initial value
problem

ẋ = f(x), x(0) = ξ.

Then
D+[V (φ(t, ξ))] = lim sup

h→0+

V (φ(t, ξ) + hf(φ(t, ξ)))− V (φ(t, ξ))
h

for every t in the domain of φ(t, ξ) with φ(t, ξ) ∈ U .

Proof: We denote x(t) := φ(t, ξ). By Taylor’s theorem there is a constant ϑh ∈
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(0, 1) for any h small enough, such that

lim sup
h→0+

V (x(t+ h))− V (x(t))
h

= lim sup
h→0+

V (x(t) + hẋ(t+ hϑh))− V (x(t))
h

= lim sup
h→0+

V (x(t) + hf(x(t+ hϑh)))− V (x(t))
h

= lim sup
h→0+

(
V (x(t) + hf(x(t)))− V (x(t))

h

+
V (x(t) + hf(x(t+ hϑh)))− V (x(t) + hf(x(t)))

h

)
.

For any real-valued functions a and b such that lim supx→y+ a(x) and limx→y+ b(x)
exist, we have

lim sup
x→y+

(a(x) + b(x)) = lim sup
x→y+

a(x) + lim
x→y+

b(x).

Hence, to finish the proof it suffices to prove that

lim
h→0+

V (x(t) + hf(x(t+ hϑh)))− V (x(t) + hf(x(t)))
h

= 0.

Let K be a compact neighborhood of x(t) and LK be a Lipschitz constant for
the restriction of V on K. Then for every h small enough,∣∣∣∣V (x(t) + hf(x(t+ hϑh)))− V (x(t) + hf(x(t)))

h

∣∣∣∣
≤ LK

h
‖hf(x(t+ hϑh))− hf(x(t))‖

= LK‖f(x(t+ hϑh))− f(x(t))‖

and the continuity of f and x imply the vanishing of the limit above. �

Corollary 2.4 Let C ⊂ Rn be a triangulated domain, f ∈ C1(C,Rn), and let V :
C −→ R be a continuous, piecewise affine function with respect to C, cf. Section 2.

Then for each x ∈
◦
C there is a simplex Tν and δ > 0 such that x + hf(x) ∈ Tν

for all h ∈ [0, δ]. Since V is affine in Tν , the orbital derivative V ′(x) exists in Tν
and we have

D+[V (x)] = V ′(x).

Proof: The first statement follows from the fact that simplices are convex sets.
Since V is affine on Tν , V (x) = wν · x + aν for x ∈ Tν . With x = φ(t, ξ), Theorem
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2.3 implies that

D+[V (x)] = lim sup
h→0+

V (x + hf(x))− V (x)
h

= lim sup
h→0+

wν · [x + hf(x)] + aν − (wν · x + aν)
h

= wν · f(x)
= ∇V (x) · f(x).

�

Corollary 2.4 implies that if we wish to show D+[V (x)] < 0, then it is sufficient
to show V ′(x) < 0 for all simplices.

3 A counterexample

In [10] a method to generate Lyapunov functions was presented, but even for ex-
ponentially stable equilibria a small neighborhood N has to be cut out beforehand,
if one wants to be sure that the method succeeds in computing a Lyapunov func-
tion for the system. If this is done, then the generated Lyapunov function does not
have a negative orbital derivative in this local set N in general. In R2 this method
uses a triangulation around the equilibrium in eight triangles, cf. Figure 1. We will
give an example where no piecewise affine Lyapunov function with respect to such
a triangulation exists, cf. Lemma 3.1, and therefore the method is bound to fail. In
a second lemma, cf. Lemma 3.2, we will show that this problem can be overcome
by using a finer triangulation around the equilibrium. Note that a piecewise affine
function V with respect to a triangulation where all triangles have 0 as a vertex and
which satisfies V (0) = 0, is a piecewise linear function.

Lemma 3.1 Consider the linear two-dimensional system{
ẋ = −εx− y
ẏ = −εy + x

(3.1)

For ε > 0, the origin is exponentially stable and solutions spiral towards it; in polar
coordinates x = r cos θ, y = r sin θ the system reads ṙ = −εr, θ̇ = 1.

Let
ε ≤

√
2− 1.

Then, starting with any partition in eight rectangular triangles with vertices on a
rectangle around the origin, there cannot exist a continuous Lyapunov function which
is linear in each of the triangles.

Proof: Without loss of generality we can restrict ourselves to choosing the vertices
6= (0, 0) of the triangles lying on a rectangle parallel to the axes since the system is
radially symmetric.

7



Figure 1: An example of the triangulation scheme proposed in [10]. Note the eight
triangles surrounding the origin at the center of the picture. For ε <

√
2− 1, there

is no continuous Lyapunov function, which is linear on these eight triangles for the
system (3.1), no matter how the triangles are scaled (cf. Lemma 3.1).

We choose the vertices of the triangles on the rectangle
(a, b), (−c, b), (−c,−d), (a,−d) where a, b, c, d > 0. We assume that V is a
continuous Lyapunov function which is linear on each triangle. We fix the values of
the piecewise linear function V by V (0, 0) = 0 and

V (a, 0) = c1, V (a, b) = c2, V (0, b) = c3, V (−c, b) = c4,

V (−c, 0) = c5, V (−c,−d) = c6, V (0,−d) = c7, V (a,−d) = c8.

Note that we have ci > 0 for all i since V is a Lyapunov function. Due to Corollary
2.4, we calculate the orbital derivative of V on each triangle.

We start with the first triangle with vertices (0, 0), (a, 0) and (a, b). Points in
this triangle fulfill 0 ≤ x ≤ a and 0 ≤ y

b ≤
x
a . We can write points in this triangle as(

x
y

)
= λ1

(
a
0

)
+ λ2

(
a
b

)
with 0 ≤ λ1, 0 ≤ λ2, and λ1 + λ2 ≤ 1.

Then
V (x, y) = λ1V (a, 0) + λ2V (a, b) = c1

(x
a
− y

b

)
+ c2

y

b
.

The orbital derivative of V is given by

V ′(x, y) = Vx(x, y) (−εx− y) + Vy(x, y)(−εy + x)

= x

[
−
(
ε

a
+

1
b

)
c1 +

1
b
c2

]
+ y

[(
−1
a

+
ε

b

)
c1 −

ε

b
c2

]
.
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V ′(x, y) < 0 holds for all (x, y) 6= (0, 0) in the triangle if and only if the equation
holds at all points at the boundaries 0 = y

b and y
b = x

a other than (0, 0) since V ′(x, y)
is linear:

−
(
ε

a
+

1
b

)
c1 +

1
b
c2 < 0 (3.2)

and −
(
ε

a
+

1
b

)
c1 +

1
b
c2 +

b

a

[(
−1
a

+
ε

b

)
c1 −

ε

b
c2

]
< 0. (3.3)

We can rewrite (3.2) and (3.3) into

c1 >
a

a+ bε
c2 (3.4)

and c1 >
a− bε

a+ b2/a
c2. (3.5)

Since a
a+bε >

a−bε
a+b2/a

, (3.4) implies (3.5).
In a similar way we obtain the following condition for the second triangle

c2 >
a2 + b2

abε+ b2
c3.

For the other six triangles we find similar conditions, which lead to the following
condition for V ′(x, y) to be negative in all triangles:

c1 >
a

a+ bε
· a

2 + b2

abε+ b2
· b

b+ cε
· b

2 + c2

bcε+ c2

· c

c+ dε
· c

2 + d2

cdε+ d2
· d

d+ aε
· d

2 + a2

daε+ a2
· c1.

This is equivalent to

F :=
(a+ bε)(aε+ b)

a2 + b2
· (b+ cε)(bε+ c)

b2 + c2
· (c+ dε)(cε+ d)

c2 + d2
· (d+ aε)(dε+ a)

d2 + a2

> 1. (3.6)

We define µ := 1+ε2

2ε ≥ 1, which implies 1 + ε2 = 2µε. We consider the term

(a+ bε)(aε+ b)
a2 + b2

=
(a2 + b2)ε+ ab(1 + ε2)

a2 + b2

= ε

(
1 + µ

2ab
a2 + b2

)
≤ ε (1 + µ)

by the binomial formula; note that equality holds if and only if a = b.
By treating the other factors similarly, we obtain

F ≤ ε4(1 + µ)4
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with equality if and only if a = b = c = d. Now we have

ε(1 + µ) = ε
(1 + ε)2

2ε
=
(

1 + ε√
2

)2

which means

F ≤
(

1 + ε√
2

)8

≤ 1

if ε ≤
√

2− 1. This is a contradiction to (3.6).
Hence, for ε ≤

√
2−1 the system (3.1) has no piecewise linear Lyapunov function,

linear in each of the eight triangles defined above, for any choice of (a, b, c, d). This
bound is sharp since the proof shows that the best choice is a square a = b = c = d. �

The main idea to overcome this problem is to divide the rectangle into more
triangles with zero as a central vertex and to find a piecewise linear Lyapunov
function which is linear on each triangle. In the following lemma we show that this
is possible for this particular example if we take the unit sphere and divide it into
sufficiently many parts. Since this example provides a formula for the number of
triangles necessary and sufficient as a function of ε, we have an interesting example
to be tested with the method from [10], when it has been equipped with a more
advanced triangulation scheme.

Figure 2: An example of the improved triangulation scheme we propose in two
dimensions. Note the triangle-fan at the origin. Additionally, the picture gives an
idea of how to extend the triangulation away from the origin. For (3.1) with ε = 0.1
and this triangulation in 48 triangles with the origin as a central vertex, there exists
a continuous Lyapunov function that is linear on every triangle in the triangle-fan,
cf. Lemma 3.2.
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Lemma 3.2 We consider the linear two-dimensional system (3.1). We will investi-
gate the relation between the parameter ε and the existence of a continuous Lyapunov
function, which is linear on all triangles of the form (0, 0), pl, pl+1, where

pl :=
(

cos
(
l

k
2π
)
, sin

(
l

k
2π
))

, l = 0, . . . , k − 1,

denotes a point on the unit sphere and k ∈ N, k ≥ 8.
Such a piecewise linear Lyapunov function exists if and only if

1 < ε sin
(

2π
k

)
+ cos

(
2π
k

)
.

Proof: We consider the triangle with vertices (0, 0), pl and pl+1. We denote α :=
2π
k , αl := lα = l

k2π and the values of the Lyapunov function at the vertices by

V (pl) = cl > 0.

For simplicity assume that cosαl > cosαl+1 and sinαl < sinαl+1, the other cases
are similar. Then all points in this triangle fulfill 0 ≤ x ≤ cosαl and x tanαl ≤ y ≤
x tanαl+1. We can write points in this triangle as(

x
y

)
= λ1

(
cosαl
sinαl

)
+ λ2

(
cosαl+1

sinαl+1

)
with 0 ≤ λ1, 0 ≤ λ2, and λ1 + λ2 ≤ 1. Then

λ1 =
x sinαl+1 − y cosαl+1

sinα
,

λ2 =
y cosαl − x sinαl

sinα
and

V (x, y) = λ1V (pl) + λ2V (pl+1)

= cl
x sinαl+1 − y cosαl+1

sinα
+ cl+1

y cosαl − x sinαl
sinα

.

The orbital derivative of V is given by

V ′(x, y) = Vx(x, y)(−εx− y) + Vy(x, y)(−εy + x)

=
x

sinα
[(− cosαl+1 − ε sinαl+1)cl + (ε sinαl + cosαl)cl+1]

+
y

sinα
[(ε cosαl+1 − sinαl+1)cl + (sinαl − ε cosαl)cl+1].

V ′(x, y) < 0 holds for all (x, y) 6= (0, 0) in the triangle if and only if the condition
holds at all points at both boundaries, i.e. y = x tanαl+1 and y = x tanαl, other
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than (0, 0). Hence,

0 > cl

(
− cosαl+1 − ε sinαl+1 + ε sinαl+1 −

sin2 αl+1

cosαl+1

)
+cl+1

(
ε sinαl + cosαl +

sinαl sinαl+1

cosαl+1
− ε

cosαl sinαl+1

cosαl+1

)
and

0 > cl

(
− cosαl+1 − ε sinαl+1 + ε

cosαl+1 sinαl
cosαl

− sinαl+1 sinαl
cosαl

)
+cl+1

(
ε sinαl + cosαl +

sin2 αl
cosαl

− ε sinαl

)
,

which simplifies to

cl > (cosα− ε sinα)cl+1 and (3.7)

cl >
1

cosα+ ε sinα
cl+1 (3.8)

Since cos2 α − ε sin2 α ≤ cos2 α < 1 because of k ≥ 8, the inequality (3.8) implies
(3.7). Define C := cosα+ ε sinα.

This leads to the sequence of inequalities

c0 >
1
C
c1 >

1
C2

c2 >
1
C3

c3 > . . . >
1

Ck−1
ck−1

>
1
Ck

c0.

Hence, we get the following condition:

C = cosα+ ε sinα > 1

which shows the lemma. �

For example, if α = 2π
8 , then the condition becomes

1√
2

+ ε
1√
2
> 1 ⇔ ε >

√
2− 1.

Thus, for eight triangles there exists a piecewise linear Lyapunov function with
vertices on the unit circle for the same values of ε as for vertices on a rectangle, cf.
Lemma 3.1.

4 Main result

In this section we show the main result, which states that a piecewise linear Lya-
punov function exists for any two-dimensional ODE with an exponentially stable
equilibrium.
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First, in Proposition 4.1, we prove that for any system ẋ = f(x), f ∈ C1(Rn,Rn),
with an exponentially stable equilibrium at x0 = 0, there exists an open neighbor-
hood N of 0 and a Lyapunov function v ∈ C∞(N \ {0},R) ∩ C0(N ,R) fulfilling

a‖x‖2 ≤ v(x) ≤ b‖x‖2 and ∇v(x) · f(x) ≤ −c‖x‖2, x 6= 0, (4.1)

where a, b, and c are some positive constants. In the standard theory of Lyapunov
functions for exponentially stable systems one often sees the defining inequalities for
Lyapunov functions V ∈ C∞(N ,R) as

a‖x‖2
2 ≤ V (x) ≤ b‖x‖2

2 and ∇V (x) · f(x) ≤ −c‖x‖2
2. (4.2)

Corollary 4.2 tells us that the conditions (4.1) and (4.2) are equivalent in the sense,
that both are sufficient and necessary if the equilibrium is exponentially stable.

In Theorem 4.3, we use the Lyapunov function v from Proposition 4.1 to con-
struct a piecewise linear Lyapunov function w. Our construction only works for
n = 2. We do this by triangulating an area around the origin with a triangle-fan
with the origin as a central vertex. Then we fix the values of w at the vertices of
these triangles by setting w(x) = v(x) and show that the function w, continuous
and linear on each of the triangles, is a Lyapunov function for the system.

Proposition 4.1 Consider ẋ = f(x), where f ∈ C1(Rn,Rn) and assume that x0 =
0 is an exponentially stable equilibrium. Then there is a positive definite matrix Q ∈
Rn×n and a number r > 0, such that the function v ∈ C∞(Rn \ {0},R)∩C0(Rn,R),
given by

v(x) := r
∥∥∥Q 1

2 x
∥∥∥

2
, (4.3)

satisfies

a‖x‖2 ≤ v(x) ≤ b‖x‖2 for all x ∈ Rn, and
v′(x) = ∇v(x) · f(x) ≤ −2c‖x‖2 for all x ∈ E2 \ {0},

where

a :=
r∥∥∥Q− 1

2

∥∥∥
2

, b := r‖Q
1
2 ‖2, c :=

r

8
∥∥∥Q 1

2

∥∥∥
2

, and E2 :=
{
x ∈ Rn | ‖Q

1
2 x‖2 ≤ r

}
.

Proof: We consider the linearised system ẋ = Ax, where A = Df(0) and f(x) =
Ax+ψ(x) with lim‖x‖2→0

‖ψ(x)‖2
‖x‖2 = 0. Let Q be the positive definite solution to the

equation

ATQ+QA = −I. (4.4)
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Since Q is positive definite, the square-root Q
1
2 is well defined and itself symmetric

and positive definite. We choose r > 0 so small that

‖ψ(x)‖2 ≤ 1
4‖Q‖2

‖x‖2 holds for all x with ‖Q
1
2 x‖2 ≤ r. (4.5)

The first inequality follows from

v(x) = r‖Q
1
2 x‖2 ≤ r‖Q

1
2 ‖2‖x‖2 = b‖x‖2 and because

‖x‖2 = ‖Q− 1
2Q

1
2 x‖2 ≤ ‖Q− 1

2 ‖2 · ‖Q
1
2 x‖2 we have

v(x) = r
∥∥∥Q 1

2 x
∥∥∥

2
≥ r∥∥∥Q− 1

2

∥∥∥
2

‖x‖2 ≥ a‖x‖2.

We now show the second inequality: let x ∈ E2 \ {0}, i.e. 0 < ‖Q
1
2 x‖2 ≤ r. We

have

∇v(x) · f(x) =
r

2
∥∥∥Q 1

2 x
∥∥∥

2

[
xTQf(x) + f(x)TQx

]
=

r

2
∥∥∥Q 1

2 x
∥∥∥

2

[
xTQAx + xTQψ(x) + xTATQx + ψ(x)TQx

]
≤ r

2
∥∥∥Q 1

2 x
∥∥∥

2

(
−‖x‖2

2 + 2‖x‖2 · ‖Q‖2 · ‖ψ(x)‖2

)
by (4.4)

≤ − r

4
∥∥∥Q 1

2 x
∥∥∥

2

‖x‖2
2 by (4.5)

≤ − r

4
∥∥∥Q 1

2

∥∥∥
2

‖x‖2 since ‖Q
1
2 x‖2 ≤ ‖Q

1
2 ‖2 · ‖x‖2.

Hence,
∇v(x) · f(x) ≤ −2c‖x‖2.

�

It is well known that the exponential stability of x0 = 0 for the system ẋ = f(x),
f ∈ C1(Rn,Rn), is equivalent to the existence of a Lyapunov function fulfilling the
conditions in (4.2), cf. [8, Theorem 4.10 and 4.14]. In the next corollary we show
that one can just as well use the conditions in (4.1). In this case one sacrifices
the smoothness of the Lyapunov function at the origin for the prize of a Lyapunov
function much better suited for the construction of a piecewise affine Lyapunov
function.

Corollary 4.2 Consider the system ẋ = f(x), with f ∈ C1(Rn,Rn). Then x0 = 0
is an exponentially stable equilibrium of the system, if and only if there exists a
neighborhood N of 0 and a function v ∈ C∞(N \ {0},R) ∩ C0(N ,R) fulfilling

a‖x‖2 ≤ v(x) ≤ b‖x‖2 and ∇v(x) · f(x) ≤ −c‖x‖2 for all x ∈ N \ {0}

for some positive constants a, b, and c.
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Proof: The “only if” part follows by Proposition 4.1. The “if” part can be proved
by mimicing the proof of [8, Theorem 4.10]. �

The following theorem shows that locally there exists a piecewise linear Lyapunov
function w for any two-dimensional system with an exponentially stable equilibrium.
In the proof, the system ẋ = f(x) in x is transformed to a system in y = Q

1
2 x and

the vertices zi of the triangulation in the x-space, which lie on a rectangle, are
transformed to points yi on a sphere with radius r. Note that this result uses that
the phase space is two-dimensional, in particular in Step 5, where we express the
vertices yi on the sphere by polar coordinates. The main step is the estimate (4.29),
where the difference between the gradient of the piecewise linear Lyapunov function
(w1, w2) and the gradient of the quadratic Lyapunov function in the y-space yi is
expressed by rξ, locally on any triangle. We can derive the estimate ‖ξ‖2 ≤ αC0

on the difference vector in (4.30), where α is an upper bound on the angles between
the vertices yi and yi+1. Although large parts of the proof work also in higher
dimensions, it is not immediately clear how to generalise this crucial step to higher
dimensions.

Theorem 4.3 Consider ẋ = f(x), f ∈ C1(R2,R2), and assume that x0 = 0 is an
exponentially stable equilibrium. Let v(x) := r

∥∥∥Q 1
2 x
∥∥∥

2
be the Lyapunov function

from Proposition 4.1 that can be constructed for the system. Then for any rectangle
R = {(x, y) ∈ R2 | −a ≤ x ≤ a,−b ≤ y ≤ b} with a, b > 0 small enough and any
triangulation

T = {co{zi, zi+1,0}
∣∣zi, zi+1 ∈ ∂R, i = 1, 2, . . . , N}

of R fine enough, i.e. ‖zi − zi+1‖2 small, the function w : R −→ R, defined by

• w(0) = v(0) = 0 and w(zi) = v(zi) for i = 1, 2, . . . , N and

• w is linear on every triangle co{zi, zi+1,0} for i = 1, 2, . . . , N ,

is a continuous Lyapunov function for the system. In particular, we have

w(x) ≥ C‖x‖2 for all x ∈ R2 and D+[w(x)] ≤ −c‖x‖2 for all x ∈ R \ {0}

with positive constants c and C.

Proof: Step 1: Transformation to the y-system

As in the proof of Proposition 4.1, we consider the linearised system ẋ = Ax,
where A = Df(0) and f(x) = Ax + ψ(x) with lim‖x‖2→0

‖ψ(x)‖2
‖x‖2 = 0. We define Q

as the positive definite symmetric matrix solution of the equation

ATQ+QA = −I. (4.6)
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Since Q is positive definite, the square-root Q
1
2 is well defined and itself symmetric

and positive definite. We use the transformation y = Q
1
2 x. Then the differential

equation ẋ = f(x) becomes

ẏ = Q
1
2 f(Q− 1

2 y) =: g(y) (4.7)

= Q
1
2AQ− 1

2 y +Q
1
2ψ(Q− 1

2 y)︸ ︷︷ ︸
=:ϕ(y)

.

The function ϕ(y) is the nonlinear part of g(y), i.e. g(y) = Q
1
2AQ− 1

2 y +ϕ(y) with
lim‖y‖2→0

‖ϕ(y)‖2
‖y‖2 = 0. We also consider the linearised equation

ẏ = Q
1
2AQ− 1

2 y. (4.8)

Step 2: Definitions and constants
Define the constants

C0 :=
4
7

(√
2 +

1
2

)
, (4.9)

α :=
1
2

min

(
1

2C0‖Q
1
2 ‖2

2‖A‖2

, 1

)
∈
(

0,
1
2

]
, (4.10)

ν :=
1

8
∥∥∥Q 1

2

∥∥∥
2
(1 + αC0)

, (4.11)

ρ :=
√

2(1− cosα) > 0. (4.12)

Since lim‖y‖2→0
‖ϕ(y)‖2
‖y‖2 = 0, we can choose r > 0 so small that, additionally to (4.5)

in Proposition 4.1, we have

r ≤ 1∥∥∥Q− 1
2

∥∥∥
2

, and (4.13)

‖ϕ(y)‖2 ≤ ν‖Q− 1
2 y‖2 holds for all y with ‖y‖2 ≤ r. (4.14)

Note that with (4.11) and c := r

8
‚‚‚Q 1

2

‚‚‚
2

as in Proposition 4.1 we have

ν =
c

r(1 + αC0)
. (4.15)

Choose a and b in the definition of the rectangle R so small that∥∥∥∥Q 1
2

(
a
0

)∥∥∥∥
2

+
∥∥∥∥Q 1

2

(
0
b

)∥∥∥∥
2

≤ r

2
.
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This implies R ⊂ E1 :=
{
x ∈ R2 | ‖Q

1
2 x‖2 ≤ r

2

}
, since for x ∈ R we have x =

λ1

(
a
0

)
+ λ2

(
0
b

)
with λ1, λ2 ∈ [−1, 1] and thus

∥∥∥Q 1
2 x
∥∥∥

2
≤ |λ1|

∥∥∥∥Q 1
2

(
a
0

)∥∥∥∥
2

+ |λ2|
∥∥∥∥Q 1

2

(
0
b

)∥∥∥∥
2

≤ r

2
.

Using the function v of Proposition 4.1, we also define the function

ṽ(y) := v(Q− 1
2 y) = r‖y‖2. (4.16)

Choose the points zi on ∂R such that

T = {co{zi, zi+1,0}
∣∣zi, zi+1 ∈ ∂R, i = 1, 2, . . . , N}

is a triangulation of R and

‖zi+1 − zi‖2 ≤ ρmin(a, b)
1

2‖Q
1
2 ‖ · ‖Q− 1

2 ‖
(4.17)

holds for all i. In particular, we have zN+1 = z1 and the four corner points of R are
vertices in the triangulation. Define the ellipse E2 :=

{
x ∈ R2 | ‖Q

1
2 x‖2 ≤ r

}
and

define by xi the projections of zi on ∂E2, i.e.

xi :=
r∥∥∥Q 1
2 zi
∥∥∥

2

zi (4.18)

and let yi := Q
1
2 xi. (4.19)

Then ‖yi‖2 = r, i.e. the points yi lie on a circle of radius r. Hence, we can write

yi = r

(
cos(αi)
sin(αi)

)
. (4.20)

Step 3: α is an upper bound on the angles between yi and yi+1

We show that |αi+1 − αi| ≤ α, where αi and αi+1 are defined by (4.20) up
to a multiple of 2π. Then we can, if needed, change the order of the yi so that
0 ≤ αi+1 − αi ≤ α. Indeed, using equation (4.21) which we show below,

2r2(1− cos(|αi+1 − αi|)) = ‖yi+1 − yi‖2
2

= r2

∥∥∥∥∥∥ Q
1
2 zi+1∥∥∥Q 1
2 zi+1

∥∥∥
2

− Q
1
2 zi∥∥∥Q 1
2 zi
∥∥∥

2

∥∥∥∥∥∥
2

2

by (4.18) and (4.19)

≤ r2ρ2 by (4.21)
= 2r2(1− cosα) by (4.12).
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This implies cosα ≤ cos(αi+1 − αi) and thus |αi+1 − αi| ≤ α.
We show (4.21): Note that zi+λ(zi+1−zi) lies on the boundary of the rectangle

for all i and λ ∈ [0, 1], since the corners are points zi. We use the mean value

theorem for g(z) = Q
1
2 z‚‚‚Q 1
2 z

‚‚‚
2

, where Dg(z) = 1‚‚‚Q 1
2 z

‚‚‚
2

Q
1
2 − 1‚‚‚Q 1

2 z
‚‚‚3

2

Q
1
2 z(Q

1
2 z)TQ

1
2

∥∥∥∥∥∥ Q
1
2 zi+1∥∥∥Q 1
2 zi+1

∥∥∥
2

− Q
1
2 zi∥∥∥Q 1
2 zi
∥∥∥

2

∥∥∥∥∥∥
2

≤
∫ 1

0
‖Dg(zi + λ(zi+1 − zi))‖ dλ · ‖zi+1 − zi‖2

≤ 2 max
z∈∂R

1∥∥∥Q 1
2 z
∥∥∥

2

‖Q
1
2 ‖2 · ‖zi+1 − zi‖2.

Using ‖z‖2 =
∥∥∥Q− 1

2Q
1
2 z
∥∥∥

2
≤
∥∥∥Q− 1

2

∥∥∥
2
·
∥∥∥Q 1

2 z
∥∥∥

2
we conclude with (4.17)∥∥∥∥∥∥ Q

1
2 zi+1∥∥∥Q 1
2 zi+1

∥∥∥
2

− Q
1
2 zi∥∥∥Q 1
2 zi
∥∥∥

2

∥∥∥∥∥∥
2

≤ 2 max
z∈∂R

‖Q− 1
2 ‖2

‖z‖2

‖Q
1
2 ‖2 · ρmin(a, b)

1

2‖Q
1
2 ‖2 · ‖Q− 1

2 ‖2

≤ ρ. (4.21)

Step 4: equivalent definitions of w(x) and w̃(y)
We define the continuous function w by

w(0) = 0, w(zi) := v(zi) = r‖Q
1
2 zi‖2 for every vertex zi,

and w is linear on every triangle co{zi, zi+1,0} and beyond on the whole sector

sect{zi, zi+1,0} := {y = λ1zi + λ2zi+1, λ1, λ2 ≥ 0}.

Another way to define w is by specifying its values at the xi instead of the zi.

w(0) = 0, w(xi) := v(xi) = r‖Q
1
2 xi‖2 for every vertex xi, (4.22)

and w is linear on every sector sect{xi,xi+1,0}. Indeed, define w by the values on
zi and let xi = r‚‚‚Q 1

2 zi

‚‚‚
2

zi, cf. (4.18). Then, since the piecewise linear function w

satisfies
w(xi) =

r∥∥∥Q 1
2 zi
∥∥∥

2

w(zi) =
r∥∥∥Q 1
2 zi
∥∥∥

2

r‖Q
1
2 zi‖2 = r‖Q

1
2 xi‖2.

The other direction is shown in a similar way.
Moreover, we define the continuous, piecewise linear function w̃ by

w̃(y) := w(Q− 1
2 y). (4.23)
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Note that we can equivalently define the continuous function w̃ by its values on the
vertices yi:

w̃(0) = 0, w̃(yi) := ṽ(yi) = r‖yi‖2 for every vertex yi, (4.24)

cf. (4.16), and linear on each sector sect{yi,yi+1,0}. We show that the definition
(4.24) gives the function in (4.23). Indeed, for the point yi we have

w(Q− 1
2 yi) = w(xi) by (4.19)

= r‖Q
1
2 xi‖2 by (4.22)

= r‖yi‖2.

Now let y =
∑1

j=0 λjyi+j with 0 ≤ λj . Then the piecewise linear function w̃ defined
by the values on yi, cf. (4.24), satisfies

w̃(y) =
1∑
j=0

λjw̃(yi+j)

=
1∑
j=0

λjr
2 (4.25)

=
1∑
j=0

λjr‖yi+j‖2 =
1∑
j=0

λjw(Q− 1
2 yi+j) as shown above

=
1∑
j=0

λjw(xi+j) = w

 1∑
j=0

λjxi+j

 = w

Q− 1
2

1∑
j=0

λjyi+j


= w(Q− 1

2 y)

as in the first definition (4.23).
If w̃ is defined by (4.23), then the values on yi are given by the formula (4.24).

Since w is continuous and linear on the sector given by sect{xi,xi+1,0}, w̃ is contin-
uous and linear on each sector given by sect{Q

1
2 xi, Q

1
2 xi+1,0} = sect{yi,yi+1,0}.

Hence, it coincides with the function defined by (4.24).
Now we show the first inequality of the theorem: Let x ∈ R2 \ {0} since for

x = 0 the inequality holds trivially. Then there is an i with x ∈ sect{xi,xi+1,0},
i.e. there are λ0, λ1 ≥ 0 with x =

∑1
j=0 λjxi+j . Since y = Q

1
2 x =

∑1
j=0 λjQ

1
2 xi+j =∑1

j=0 λjyi+j , we have with (4.25) and ‖xi+j‖2 = ‖Q− 1
2 yi+j‖2 ≤ ‖Q− 1

2 ‖2 · r :

w(x) = w(Q− 1
2 y) =

1∑
j=0

λjr
2 by (4.25)

≥ r

‖Q− 1
2 ‖2

1∑
j=0

λj‖xi+j‖2 ≥ r

‖Q− 1
2 ‖2

∥∥∥∥∥∥
1∑
j=0

λjxi+j

∥∥∥∥∥∥
2

=
r

‖Q− 1
2 ‖2

‖x‖2
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which shows the first inequality of the theorem with C := r‚‚‚Q− 1
2

‚‚‚
2

.

Step 5: w̃(y) has negative orbital derivative at the vertices yi
Consider two adjacent vertices

yi =
(
xi
yi

)
= r

(
cos(αi)
sin(αi)

)
and (4.26)

yi+1 =
(
xi+1

yi+1

)
= r

(
cos(αi+1)
sin(αi+1)

)
. (4.27)

On each triangle Ti = co
{(

xi
yi

)
,

(
xi+1

yi+1

)
,

(
0
0

)}
we have defined the piece-

wise linear function w̃i(y) = (w1, w2)y by ṽ(y) = r‖yi‖2 = r2 on the vertices, cf.
(4.24). We fix an i and write w̃(y).

We seek to show that w̃(y) is a Lyapunov function for (4.8). We will first
check that the orbital derivative with respect to the linearised system (4.8), namely

∇yw̃(y)TQ
1
2AQ− 1

2 y is negative at the vertices yi =
(
xi
yi

)
and yi+1 =

(
xi+1

yi+1

)
.

We deal with the other points of the triangle in Step 6.
First we determine (w1, w2). Since w̃(y) = (w1, w2)y, we have

(w1, w2)
(
xi
yi

)
= r2 and (w1, w2)

(
xi+1

yi+1

)
= r2. This leads to the system of

linear equations

(w1, w2)
(
xi xi+1

yi yi+1

)
=

(
r2, r2

)
.

The solution is

(w1, w2) = r2 (1, 1)
(
xi xi+1

yi yi+1

)−1

.

Using the special form (4.26) and (4.27) we obtain(
xi xi+1

yi yi+1

)−1

=
1

xiyi+1 − xi+1yi

(
yi+1 −xi+1

−yi xi

)
=

1
r

1
cos(αi) sin(αi+1)− cos(αi+1) sin(αi)

(
sin(αi+1) − cos(αi+1)
− sin(αi) cos(αi)

)
=

1
r

1
sin(αi+1 − αi)

(
sin(αi+1) − cos(αi+1)
− sin(αi) cos(αi)

)
.

Hence, we obtain

(w1, w2) =
r

sin(αi+1 − αi)
(sin(αi+1)− sin(αi),− cos(αi+1) + cos(αi)) .
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Now we use Taylor’s Theorem to obtain

sin(αi+1)− sin(αi) = [cos(αi) + ε1](αi+1 − αi)
− cos(αi+1) + cos(αi) = [sin(αi) + ε2](αi+1 − αi)

sin(αi+1 − αi) = sin 0 + cos(α̃)(αi+1 − αi)

where |εj | ≤ 1
2 |αi+1 − αi| ≤ α

2 for j = 1, 2. Note that α̃ ∈ [0, αi+1 − αi] ⊂ [0, α] and
thus cos α̃ ∈ [cosα, 1] since α ∈

(
0, 1

2

]
. Thus,

1
cos α̃

≤ 1
cosα

≤ 1
1− α2

2

=
2

2− α2
. (4.28)

We obtain (
w1

w2

)
= yi + rξ (4.29)

where ξ =
1

cos(α̃)

(
ε1
ε2

)
+
(

1
cos(α̃)

− 1
)(

cos(αi)
sin(αi)

)
so that ‖ξ‖2 ≤

√
2 α

2− α2
+

α2

2− α2

=
α

2− α2

(√
2 + α

)
≤ 4α

7

(√
2 +

1
2

)
= αC0 (4.30)

using (4.9), (4.10) and (4.28). Hence,∥∥∥∥( w1

w2

)∥∥∥∥
2

≤ r + rαC0. (4.31)

Note that ∇yw̃(y)T = (w1, w2), since w̃ is linear. We can conclude that the orbital
derivative of w̃ with respect to the linearised system (4.8) in the vertex yi is

∇yw̃(yi)TQ
1
2AQ− 1

2 yi
= yTi Q

1
2AQ− 1

2 yi + rξTQ
1
2AQ− 1

2 yi by (4.29)

≤ 1
2
yTi Q

1
2AQ− 1

2 yi +
1
2
[Q

1
2AQ− 1

2 yi]Tyi

+r · ‖ξ‖2 · ‖Q
1
2 ‖2 · ‖A‖2 · ‖Q− 1

2 yi‖2

≤ 1
2
[Q− 1

2 yi]T [QA+ATQ]Q− 1
2 yi + αC0‖Q

1
2 ‖2

2 · ‖A‖2 · ‖Q− 1
2 yi‖2

2 by (4.30)

≤
(
−1

2
+

1
4

)
‖Q− 1

2 yi‖2
2

≤ −1
4

r

‖Q
1
2 ‖2

‖Q− 1
2 yi‖2
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by (4.6) and (4.10); we have also used

r = ‖yi‖2 = ‖Q
1
2Q− 1

2 yi‖2 ≤ ‖Q
1
2 ‖ · ‖Q− 1

2 yi‖2.

A similar argument holds for the other vertex yi+1.

Step 6: w̃(y) has negative orbital derivative on the triangle
In Step 5 we have shown that

∇yw̃(yi)TQ
1
2AQ− 1

4 yi ≤ −2c‖Q− 1
2 yi‖2, where c =

r

8‖Q
1
2 ‖2

(4.32)

holds for the vertices yi. Now choose any y with ‖y‖2 ≤ r. Then there is an i
such that y ∈ sect{yi,yi+1,0}, i.e. y =

∑1
j=0 λjyi+j with λ0, λ1 ≥ 0. The orbital

derivative with respect to the nonlinear system (4.7) is given by

w̃′(y) = ∇yw̃(y)T g(y)

= (w1, w2)(Q
1
2AQ− 1

2 y + ϕ(y))

=
1∑
j=0

λj(w1, w2)Q
1
2AQ− 1

2 yi+j + (w1, w2)ϕ(y)

≤ −2c
1∑
j=0

λj‖Q− 1
2 yi+j‖2 +

∥∥∥∥( w1

w2

)∥∥∥∥
2

· ‖ϕ(y)‖2

using (4.32). By (4.14), ‖ϕ(y)‖2 ≤ ν‖Q− 1
2 y‖2 holds for all ‖y‖2 ≤ r. This means,

‖ϕ(y)‖2 ≤ ν‖Q− 1
2 y‖2 = ν

∥∥∥∥∥∥
1∑
j=0

λjQ
− 1

2 yi+j

∥∥∥∥∥∥
2

≤ ν

1∑
j=0

λj‖Q− 1
2 yi+j‖2.

Moreover, using r = ‖yi+j‖2 ≤ ‖Q
1
2 ‖2 · ‖Q− 1

2 yi+j‖2 and (4.31) we have

w̃′(y) ≤ −2c
1∑
j=0

λj‖Q− 1
2 yi+j‖2 + r(1 + αC0)ν

1∑
j=0

λj‖Q− 1
2 yi+j‖2

= (−2c+ c)
1∑
j=0

λj‖Q− 1
2 yi+j‖2 by (4.15).

This means,

w̃′(y) = ∇yw̃(y) · g(y) ≤ −c‖Q− 1
2 y‖2 (4.33)

for all y with ‖y‖2 ≤ r.
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Step 7: w(x) has negative orbital derivative
With (4.23) we can conclude

w(x) = w̃(Q
1
2 x).

Let x ∈ E2 \ {0}, i.e. with y = Q
1
2 x we have ‖y‖2 ≤ r and thus

w′(x) = ∇xw(x)T f(x)

= ∇yw̃(Q
1
2 x)TQ

1
2 f(x)

= ∇yw̃(y)TQ
1
2 f(Q− 1

2 y)
= ∇yw̃(y)T g(y)

≤ −c‖Q− 1
2 y‖2 by (4.33)

= −c‖x‖2.

This holds for all triangles in T ′ = {co{xi,xi+1,0}
∣∣ i = 1, 2, . . . , N} because

co{xi,xi+1,0} ⊂ E2 for all i. Since co{zi, zi+1,0} ( co{xi,xi+1,0} for every i,
Corollary 2.4 implies that the above inequality also holds for the Dini derivative
D+[w(x)] for every x ∈ R \ {0}; this shows the second inequality and finishes the
proof. �

5 Summary and Outlook

In [2] it was proved that the method in [10] can always generate a piecewise affine
Lyapunov function for a system with an exponentially stable equilibrium, except for
a small neighborhood of the equilibrium. In this article we have given an example of a
system, where no piecewise affine Lyapunov function with the proposed triangulation
scheme exists. Hence, there are indeed examples where the method in [10, 2, 3, 4]
must fail to generate a Lyapunov function locally.

Further, we have shown that this is not an intrinsic disadvantage of the method,
but it is caused by its triangulation scheme which is too coarse. We have shown
that for any two-dimensional system with an exponentially stable equilibrium, there
is a local triangulation scheme, which generates triangles with the equilibrium as a
central vertex, such that the system possesses a piecewise affine Lyapunov function
in a neighborhood of the equilibrium, cf. Figure 3.

Natural further questions are how to adapt the method to an improved triangu-
lation scheme and to show that it always succeeds in generating a Lyapunov function
if a proper triangulation is chosen. Furthermore, our conjecture is that a general-
isation of Theorem 4.3 to higher dimensions holds true. Although some parts of
the proof hold for arbitrary dimensions, other parts use tools specific to the two-
dimensional case. However, we are optimistic that these tools can be generalised to
higher dimensions.
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(a) V (x) = xT Px. (b)
p

V (x) = ‖P
1
2 x‖2. (c) Piecewise linear approxi-

mation to
p

V (x).

Figure 3: A system with an exponentially stable equilibrium possesses a local
quadratic Lyapunov function (a). The square root of this function is also a Lya-
punov function (b) and this Lyapunov function can be approximated by a piecewise
linear Lyapunov function (c), cf. Theorem 4.3.
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