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Abstract

A Riemannian metric with a local contraction property can be used to prove
existence and uniqueness of a periodic orbit and determine a subset of its basin
of attraction. While the existence of such a contraction metric is equivalent to
the existence of an exponentially stable periodic orbit, the explicit construction
of the metric is a difficult problem.

In this paper, the construction of such a contraction metric is achieved
by formulating it as an equivalent problem, namely a feasibility problem in
semidefinite optimization. The contraction metric, a matrix-valued function, is
constructed as a continuous piecewise affine (CPA) function, which is affine on
each simplex of a triangulation of the phase space. The contraction conditions
are formulated as conditions on the values at the vertices.

The paper states a semidefinite optimization problem. We prove on the one
hand that a feasible solution of the optimization problem determines a CPA
contraction metric and on the other hand that the optimization problem is
always feasible if the system has an exponentially stable periodic orbit and the
triangulation is fine enough. An objective function can be used to obtain a
bound on the largest Floquet exponent of the periodic orbit.

1 Introduction

In this paper we consider a time-periodic ODE of the form ẋ = f(t, x), where
f(t, x) = f(t+ T, x) for all (t, x) ∈ R×Rn with a fixed period T > 0, and study the
basin of attraction of a periodic solution.
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The basin of attraction can be computed using a variety of methods: Invariant
manifolds form the boundaries of basins of attraction, and their computation can
thus be used to find a basin of attraction [19, 4]. However, this method needs
additional arguments to ensure that a certain region is the basin of attraction of an
attractor, and that, for example, there are no other attractors in that region. Other
approaches to compute the basin of attraction are for example the cell mapping
approach [17] or set oriented methods [6] which divide the phase space into cells
and compute the dynamics between these cells.

Lyapunov functions [21] are a natural way of analysing the basin of attrac-
tion, since they start from the attractive solution, not from the boundary. Moreover,
through their level sets, they give additional information about the basin of attrac-
tion than just the boundary. Converse theorems which guarantee the existence
of a Lyapunov function under certain conditions have been given by many authors,
for an overview see [15]. However, all converse theorems offer no general method to
analytically construct Lyapunov functions.

Recently, several methods to construct Lyapunov functions have been proposed:
Hafstein [14] constructed a piecewise affine Lyapunov function using linear pro-
gramming. Parrilo [24] and Papachristodoulou and Prajna in [23] consider the nu-
merical construction of Lyapunov functions that are presentable as sum of squares
of polynomials (SOS) for autonomous polynomial systems. These ideas have been
taken further by recent publications of Peet [25] and Peet and Papachristodoulou
[26], where the existence of a polynomial Lyapunov function on bounded regions for
exponentially stable systems in proven.

A different method deals with Zubov’s equation and computes a solution of
this partial differential equation (PDE). In Camilli et al. [5], Zubov’s method was
extended to control problems. Giesl considered a particular Lyapunov function
satisfying a linear PDE which was solved using meshless collocation, in particular
Radial Basis Functions [9]. This method has been extended to time-periodic ODEs
[13].

Lyapunov functions attain their minimum on the attractor and have a negative
orbital derivative for all points in the basin of attraction apart from the attractor.
Hence, it is necessary to have exact information about the attractor in the phase
space before one can compute a Lyapunov function. Whereas this information might
be easy to obtain in special examples, in general this information is not available.

Local contraction property – Borg’s criterion
Another method to characterise the basin of attraction, introduced by Borg

[3], uses a local contraction property and does not require information about the
periodic orbit. Let M(t, x) be a Riemannian metric, i.e. M ∈ C1(R × Rn,Rn×n)
such that M(t, x) is a positive definite, symmetric (n×n) matrix for all (t, x). Then
〈v, w〉M(x̃) := vTM(x̃)w defines a point-dependent scalar product, where v, w ∈ Rn.
We define

L̃M (t, x) := max
w∈Rn,wTM(t,x)w=1

wT
[
M(t, x)Dxf(t, x) +

1

2
M ′(t, x)

]
w, (1.1)
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where M ′(t, x) denotes the orbital derivative of M(t, x), which is the derivative
along solutions of ẋ = f(t, x), i.e. M ′ij(t, x) = ∂

∂tMij(t, x) + ∇xMij(t, x) · f(t, x).

The sign of the real-valued function L̃M (t, x), cf. (1.1), then describes whether the
solution through (t, x) and adjacent solutions approach each other with respect to
the Riemannian metric M .

If L̃M (t, x) is negative for all (t, x) ∈ K where K is a positively invariant, con-
nected set, then K is a subset of the basin of attraction of a unique periodic orbit
in K.

The maximum in (1.1) is taken over all w ∈ Rn with a norm condition,
and L̃M (t, x) < 0 is equivalent to LM (t, x) < 0 given by (1.2), where λmax(·)
denotes the maximal eigenvalue of a symmetric matrix. Here, we use that
wTM(t, x)Dxf(t, x)w = wTDxf(t, x)TM(t, x)w.

LM (t, x) := max
w∈Rn,‖w‖=1

wT
[
M(t, x)Dxf(t, x) +Dxf(t, x)TM(t, x) +M ′(t, x)

]
w

= λmax
(
M(t, x)Dxf(t, x) +Dxf(t, x)TM(t, x) +M ′(t, x)

)
. (1.2)

We seek to find a matrix-valued function M satisfying LM (t, x) < 0. This is
equivalent to the condition that the symmetric matrix

M(t, x)Dxf(t, x) +Dxf(t, x)TM(t, x) +M ′(t, x)

is negative definite. As this is a Linear Matrix Inequality, it can be formulated as a
constraint of a semidefinite optimization problem.

While the sufficiency of this local contraction criterion in the autonomous case
goes back to [3, 16, 27, 20], its necessity was shown in [7]. The method was extended
to time-periodic systems [8].

The advantage of this method over, for example, Lyapunov functions, is that it
does not require information about the position of the periodic orbit. Moreover, the
criterion is robust to small errors.

Although the existence of Riemannian metrics has been shown [7], it remains a
difficult problem to construct them for concrete examples. This is a similar problem
to the construction of a (scalar-valued) Lyapunov function, but Borg’s criterion re-
quires the construction of a matrix-valued function M(t, x). In the two-dimensional
autonomous case, however, there exists a special Riemannian metric of the form
M(x) = e2W (x)I, where W is a scalar-valued function [7]. This can be used to find
an approximation using Radial Basis Functions [10]. In higher dimensions, however,
the existence of such a special Riemannian metric is not true in general [7]. In [11], a
combination of a Riemannian metric locally near the periodic orbit with a Lyapunov
function further away was used, and the construction was again achieved by Radial
Basis Functions. This method, however, heavily depends on information about the
periodic orbit, which was obtained by a numerical approximation of the periodic
orbit and its variational equation.

In this paper, we will develop a new method to construct a Riemannian metric to
fulfill Borg’s criterion, which will use semidefinite optimization and does not require
any information about the periodic orbit.
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Semidefinite Optimization
A semidefinite optimization problem for the variables y1, . . . , ym is of the form

minimize
∑m

i=1 ciyi
subject to

∑m
i=1 Fiyi − F0 = X � 0,

where Fi are symmetric (N ×N) matrices and X � 0 means that the matrix X is
positive semidefinite.

The goal of this paper is to formulate the condition of a contraction metric as
a semidefinite optimization (feasibility) problem. In a subsequent paper we will
discuss the details of how to solve this problem efficiently.

The main idea is to first triangulate the phase space. The Riemannian met-
ric, i.e. the symmetric matrix M(t, x), will be expressed as a continuous piecewise
affine (CPA) function, i.e. if M is given at the vertices (t0, x0), . . . , (tn+1, xn+1) of
a simplex, then M(t, x) =

∑n+1
i=0 λiM(ti, xi), where (t, x) =

∑n+1
i=0 λi(ti, xi). The

conditions of Borg’s criterion will become the constraints of a semidefinite optimiza-
tion problem on the vertices of the triangulation, which will ensure the contraction
property for all points in the simplices.

In [1], a contraction metric is also constructed using semidefinite optimization.
There are, however, three main differences to our approach: firstly, adjacent trajec-
tories in all directions are contracted, whereas in our case the contraction takes place
in the n-dimensional subspace Rn of Rn+1, but not in the time-direction. Thus, in
our case, the attractor is a periodic orbit, whereas in their case, it is an equilibrium
point. Secondly, and more importantly, the above paper transforms the construc-
tion problem to a Linear Matrix Inequality and solves this using a sum-of-squares
approach. This approach is used to prove global stability, i.e. the basin of attrac-
tion is the whole space. The contraction metric is a polynomial function, and the
system considered is assumed to be polynomial, too. In this paper, we study sys-
tems which are not necessarily polynomial nor globally stable, and we triangulate
the phase space to obtain a large subset of the basin of attraction. Lastly, we are
able to prove that the semidefinite optimization problem is feasible if and only if the
dynamical system has an exponentially stable periodic orbit, whereas in their paper
the equivalence does not hold since the sum-of-squares condition is more restrictive
than positive definiteness of matrices.

The paper is organised as follows: In Section 2 we start with preliminaries, and
in Section 3 we generalise the existing theorem for a smooth Riemannian metric M
to a CPA (continuous piecewise affine) Riemannian contraction metric. We show
that the existence of such a metric is sufficient to prove existence and uniqueness of
a periodic orbit and to determine a subset of its basin of attraction. In Section 4, we
describe the triangulation of the phase space into a simplicial complex and state the
semidefinite optimization problem. Furthermore, we show that the feasibility of the
semidefinite optimization problem provides us with a CPA contraction metric. We
also discuss a possible objective function to obtain a bound on the largest Floquet
exponent. In Section 5, we show that the semidefinite problem is feasible, if the

4



dynamical system has an exponentially stable periodic orbit. In Section 6, finally, we
apply the method to two explicit examples to show the applicability of the method.

Altogether, this paper shows that the problem of finding a contraction metric is
equivalent to the feasibility of a semidefinite optimization problem.

2 Preliminaries

In this paper we consider a time-periodic ODE of the form

ẋ = f(t, x), (2.1)

where f(t, x) = f(t + T, x) for all (t, x) ∈ R × Rn with a fixed period T > 0. We

denote f̃(t, x) =

(
1

f(t, x)

)
and x̃ = (t, x). We study the equation on the cylinder

S1
T × Rn as the phase space, where S1

T denotes the circle of circumference T . We
assume that f ∈ C2(S1

T × Rn,Rn). If even f ∈ C3(S1
T × Rn,Rn) holds, then we

obtain improved results, in particular higher order approximations; this is, however,
not necessary to derive the main result. We denote the (unique) solution of the ODE
with initial value x(t0) = x0 by x(t) =: Sxt (t0, x0) and denote (t+ t0 mod T, x(t)) =:
St(t0, x0) ∈ S1

T ×Rn. Furthermore, we assume that the solution exists for all t ≥ 0.
We use the usual notations for the vector and matrix norms, in particular we

denote by ‖M‖max := maxi,j=1,...,n |Mij | the maximal entry of a matrix. Sn denotes
the set of all symmetric real-valued n×n matrices. For a symmetric matrix M ∈ Sn,
λmax(M) denotes its maximal eigenvalue, we write M � 0 if and only if M is positive
semidefinite and M � 0 if and only if M is negative semidefinite. The convex hull
is defined by

co(x̃0, x̃1, . . . , x̃n+1) :=

{
n+1∑
i=0

λix̃i : λi ≥ 0,
n+1∑
i=0

λi = 1

}
.

3 A CPA contraction metric is sufficient for a periodic
orbit

It was shown in [8] that a smooth contraction metric implies the existence and
uniqueness of a periodic orbit and gives information about its basin of attraction.
In this paper, we will seek to construct a CPA contraction metric, which is not of
the smoothness required in the above paper.

In this section we show that we can relax the conditions on the smoothness of M
to cover the case of a CPA contraction metric. We will require that M is continuous,
Lipschitz continuous with respect to x, and the forward orbital derivative exists. We
will later relate this to the construction of the CPA contraction metric on a suitable
triangulation, and we will prove that such a CPA metric will satisfy all assumption
that we make in this section (Lemma 4.7). The proof of the main theorem, Theorem
3.4, will closely follow [8].
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First we define a weaker notion of a Riemannian metric, which does not assume
that M is differentiable, but only that the orbital derivative in forward time exists.

Definition 3.1 (Riemannian metric) M is called a Riemannian metric for
(2.1), if M ∈ C0(S1

T × Rn, Sn) where M(t, x) is positive definite. Moreover,
we assume that M is locally Lipschitz-continuous with respect to x, i.e. for all
(t0, x0) ∈ S1

T × Rn there exists a neighborhood U ⊂ S1
T × Rn such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖

holds for all (t, x), (t, y) ∈ U . Furthermore, we assume that the forward orbital
derivative M ′+(t, x) is defined for all (t, x) ∈ S1

T × Rn, where M ′+(t, x) denotes the
matrix

M ′+(t, x) = lim
θ→0+

M(Sθ(t, x))−M(t, x)

θ
.

We have the following statements for functions with a right-hand side derivative.

Lemma 3.2 Let g1, g2 ∈ C0(R,R) be RHS differentiable, i.e. g′+(x) :=

limh→0+
g(x+h)−g(x)

h exists. Let G : R→ R be differentiable.
Then g1(x) · g2(x) and G(g(x)) are RHS differentiable and

(g1 · g2)′+(x) = (g1)
′
+(x) · g2(x) + g1(x) · (g2)′+(x) (3.1)

(G ◦ g)′+(x) = G′(g(x)) · g′+(x). (3.2)

Let g ∈ C0(I,R), where I ⊂ R is open, be RHS differentiable. Let [x1, x2] ⊂ I,
and let

∫ x2
x1
g′+(ξ) dξ exist and be finite.

Then we have ∫ x2

x1

g′+(ξ) dξ = g(x2)− g(x1).

Proof: The first two statements follow directly from the usual proofs, replacing the
limit with the RHS limit. The last statement is a result due to Lebesgue, formulated
originally for Dini derivatives. �

Lemma 3.3 Let V (t, x) be a function which is locally Lipschitz with respect to x

and let limθ→0+
V ((t0,x0)+θf̃(t0,x0))−V (t0,x0)

θ exist.
Then the orbital derivative V ′+(t0, x0) exists and is equal to

V ′+(t0, x0) := lim
θ→0+

V (Sθ(t0, x0))− V (t0, x0)

θ

= lim
θ→0+

V ((t0, x0) + θf̃(t0, x0))− V (t0, x0)

θ
.

6



Proof: Recall that f̃(t, x) =

(
1

f(t, x)

)
and x̃ = (t, x). We use that

V (Sθ(t0, x0))− V (t0, x0)

θ
=

V (Sθ(t0, x0))− V ((t0, x0) + θ(1, f(t0, x0)))

θ

+
V ((t0, x0) + θ(1, f(t0, x0)))− V (t0, x0)

θ

Note that due to the Lipschitz continuity |V (t, y)− V (t, x)| ≤ L‖y− x‖ we have for
small θ∣∣∣∣V (Sθ(t0, x0))− V ((t0, x0) + θ(1, f(t0, x0)))

θ

∣∣∣∣ ≤ L
‖Sxθ (t0, x0)− x0 − θf(t0, x0)‖

θ
.

By the Mean Value Theorem there are h1(θ), . . . , hn(θ) ∈ [0, 1] such that

(Sxθ (t0, x0)− x0)i = θ
∂

∂t
(Sxhi(θ)θ(t0, x0))i = θfi(Shi(θ)θ(t0, x0)).

Hence,

lim
θ→0+

|(Sxθ (t0, x0)− x0 − θf(t0, x0))i|
θ

≤ lim
θ→0+

∣∣fi(Shi(θ)θ(t0, x0))− fi(t0, x0)∣∣
= 0

since the solution and fi are both continuous. Altogether, we thus have

lim
θ→0+

∣∣∣∣V (Sθ(t0, x0))− V ((t0, x0)− θ(1, f(t0, x0)))

θ

∣∣∣∣ = 0.

�

Theorem 3.4 Consider the equation ẋ = f(t, x), where x ∈ Rn, and assume that
f ∈ C0(S1

T ×Rn,Rn) and all partial derivatives of f order one with respect to x are
continuous functions of (t, x). Let ∅ 6= G ⊂ S1

T × Rn be a connected, compact and
positively invariant set. Let M be a Riemannian metric in the sense of Definition
3.1.

Moreover, assume LM (t, x) ≤ −ν < 0 for all (t, x) ∈ G, where

LM (t, x) := sup
w∈Rn,wTM(t,x)w=1

wT
[
M(t, x)Dxf(t, x) +

1

2
M ′+(t, x)

]
w (3.3)

Then there exists one and only one periodic orbit Ω ⊂ G which is exponentially
asymptotically stable. Moreover, G ⊂ A(Ω) holds, where A(Ω) denotes the basin of
attraction of Ω.

If ∫ T

0
p(t)TM ′+(t, x(t))p(t) dt
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exists and is finite for all solutions x(t) with x(0) ∈ G and all functions p ∈
C0([0, T ],Rn), then the largest real part −ν0 of all Floquet exponents of Ω satis-
fies

−ν0 ≤ −ν.

Note that in contrast to [8], here LM (t, x) is not necessarily continuous, since
M ′+(t, x) is not continuous in general.

Proof: The only parts in the proof that need to be changed slightly from [8] are
the proof of Proposition 3.1 and the estimate on the Floquet exponents; the other
steps of the proof are exactly the same.
Proposition 3.1

We replace the temporal derivative in Step III of [8, Proposition 3.1] by the
forward temporal derivative of

A(θ)2 := [Sxθ (t0, x0 + η)− Sxθ (t0, x0)]
T M(Sθ(t0, x0))

· [Sxθ (t0, x0 + η)− Sxθ (t0, x0)] .

Note that the product rule holds for the RHS derivative as usual, cf. Lemma 3.2.
Furthermore, we use the comparison lemma in the version for RHS limits; a more
general version for Dini derivatives can be found in [18, Lemma 3.4]. This shows
that the result of [8, Proposition 3.1] remains true for the Riemannian metric M as
in Definition 3.1.

Floquet exponent
In this part of the proof in [8] we need to show that∫ T

0

(
ln
(
p(t)TM(t, x(t))p(t)

))′
+
dt

= ln
(
p(T )TM(T, x(T ))p(T )

)
− ln

(
p(0)TM(0, x(0))p(0)

)
where x(t) is the periodic orbit and p(t)e−ν0t with p(0) = p(T ) 6= 0 is a solution of
the first variation equation ẏ = Dxf(t, x(t))y along the periodic orbit. Note that
we have already used that the RHS derivative satisfies the product rule, cf. Lemma
3.2. Using the same lemma, the composition with the differentiable function ln is
also RHS differentiable. To apply the last statement of this lemma, we need to show
that ∫ T

0

(
ln
(
p(t)TM(t, x(t))p(t)

))′
+
dt

exists and is finite. Indeed, we have, using the chain rule in Lemma 3.2, that

(
ln
(
p(t)TM(t, x(t))p(t)

))′
+

=

(
p(t)TM(t, x(t))p(t)

)′
+

p(t)TM(t, x(t))p(t)
.
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Since M(t, x(t)) is positive definite and continuous and p(t) 6= 0, the denominator is
bounded away from zero. We apply the product rule to the nominator and use that∫ T

0
p(t)TM ′+(t, x(t))p(t) dt

exists and is finite by assumption, and that the other terms are smooth. This shows
the theorem. �

4 A solution of the semidefinite optimization problem
defines a contraction metric

In this section we will state a semidefinite optimization problem and show that
a feasible solution of the semidefinite optimization problem defines a contraction
metric, satisfying the assumptions of Theorem 3.4. The solution will be a CPA
matrix-valued function M , which is defined by the values at the vertices.

We will first define a triangulation of the phase space and then define a Rie-
mannian metric by its values at the vertices of this triangulation and affine on each
simplex. This CPA Riemannian metric is shown to fulfill all conditions of Theorem
3.4, also inside the simplices.

4.1 Triangulation

For the algorithm to construct a piecewise affine Lyapunov function we need to
fix our triangulation. This triangulation is a subdivision of S1

T × Rn into (n + 1)-
simplices, such that the intersection of any two different simplices in the subdivision
is either empty or a k-simplex, 0 ≤ k < n+ 1, and then its vertices are the common
vertices of the two different simplices. Such a structure is often referred to as a
simplicial (n+ 1)-complex.

In contrast to [12], we do not need to have a fine triangulation near 0, but we
need to ensure that the triangulation respects the periodicity in t of the phase space,
i.e. it is a triangulation of the cylinder S1

T × Rn.
For the construction we use the standard orthonormal basis ẽ0, ẽ1, ẽ2, . . . , ẽn of

R×Rn, where ẽ0 denotes the unit vector in t-direction. We also fix a scaling matrix
S = diag(1, s1, . . . , sn) with diagonal entries si > 0 which fixes the ratio of the
fineness of the triangulation with respect to different directions. We have fixed
the 1 in t-direction to ensure that the simplicial complex is compatible with the
periodicity.

Further, we use the characteristic functions χJ (i) equal to one if i ∈ J ⊂ N
and equal to zero if i /∈ J and the functions RJ : Rn+1 → Rn+1, defined for every
J ⊂ {1, 2, . . . , n} by

RJ (x̃) := x0ẽ0 +
n∑
i=1

(−1)χJ (i)xiẽi,
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where x̃ = (x0, x1, . . . , xn) and x0 = t. Thus RJ (x̃) puts a minus in front of the
coordinate xi of x̃ if i ∈ J .

Definition 4.1 Denote by N the set of all subsets D ⊂ S1
T × Rn that fulfill :

i) D is compact.

ii) The interior D◦ of D is connected and open.

iii) D = D◦.

Note that compactness, connectedness etc. refer to the space S1
T × Rn.

Figure 1: The triangulation T basic of S1
T × R1. Note that the operator RJ puts a

minus-sign in x-directions, but not in the t-direction, which results in the simplices
shown in this figure.

Definition 4.2 Let C ∈ N be a given subset of S1
T ×Rn. We will define a triangula-

tion T CK of a DK ∈ N , DK ⊃ C, that approximates C. To construct the triangulation
of a set T CK , we first define the triangulations T basic and T basic

K as intermediate steps.

1. The triangulation T basic, cf. Figure 1, consists of the simplices

Sz̃,J ,σ := co

(
RJ

(
z̃ +

j∑
i=0

ẽσ(i)

)
: j = −1, 0, 1, 2, . . . , n

)

for all z̃ ∈ Nn+1
0 , all J ⊂ {1, 2, . . . , n}, and all σ ∈ Sn+1, where Sn+1 denotes

the set of all permutations of the numbers 0, 1, 2, . . . , n.

2. Now scale down the triangulation T basic with the mapping x̃ 7→ ρSx̃, where
ρ := 2−KT and S is the fixed diagonal matrix defined above. We denote by
T basic
K the resulting set of (n+ 1)-simplices, i.e.

S := co

(
ρSRJ

(
z̃ +

j∑
i=0

ẽσ(i)

)
: j = −1, 0, 1, 2, . . . , n

)
.
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Note that for each simplex S ∈ T basicK there is a unique i ∈ N0 such that
S ∈ [iT, (i + 1)T ] × Rn. This follows from the fact that the scaling matrix
S has 1 as its entry in t-direction and ρ = 2−KT . Hence, we can and will
interpret a simplex T ∈ T basicK as a set in S1

T × Rn in the following step.

3. As a final step define

T CK :=
{
S ∈ T basic

K : S ∩ C◦ 6= ∅
}

and set
DK :=

⋃
S∈T CK

S ⊂ S1
T × Rn.

Note that T CK consists of finitely many simplices due to the fact that C is compact
and the triangulation respects the periodicity.

Lemma 4.3 Consider the sets C and DK from the last definition. Then DK ⊃ C
and DK ∈ N .

Proof: DK is a closed set containing C◦ and thus contains C ∈ N because C = C◦
by property iii) in Definition 4.1, so C is the smallest closed set containing C◦. That
DK fulfills properties i) and iii) of Definition 4.1 follows directly from the fact that
DK is a finite union of (n + 1)-simplices. To see that property ii) of Definition 4.1
is also fulfilled, i.e. that D◦K is connected, notice the following: The definition of T CK
implies that for any S ∈ T CK we have S◦ ∩ C◦ 6= ∅. Because of this, any x̃ ∈ S can
be connected to a ỹ ∈ C◦ with a line contained in S◦ with a possible exception of
the endpoint x̃. Because C ∈ N we have that C◦ is connected so this implies that
D◦K is connected too, i.e. DK also fulfills property ii) of Definition 4.1 and therefore
DK ∈ N . �

Remark 4.4 The triangulation T basic is studied in more detail in sections 4.1 and
4.2 in [22]. A sometimes more intuitive description of Sz̃,J ,σ is the simplex {x̃ ∈
Rn+1 : 0 ≤ x̃σ(0) ≤ . . . ≤ x̃σ(n) ≤ 1} translated by x̃ 7→ x̃+ z̃ and then a minus-sign
is put in front of the i-th entry of the resulting vectors whenever i ∈ J ⊂ {1, . . . , n};
but no change of sign in the t-coordinate.

T CK is truly a triangulation, i.e. two different simplices in T CK intersect in a com-
mon face or not at all, as shown in Lemma 4.5.

Lemma 4.5 Consider the set of simplices T CK from Definition 4.2 and let S1 =
co(x̃0, x̃1, . . . , x̃n+1) and S2 = co(ỹ0, ỹ1, . . . , ỹn+1) be two of its simplices. Then

S1 ∩S2 = S3 := co(z̃0, z̃1, . . . , z̃m), (4.1)

where z̃0, z̃1, . . . , z̃m are the vertices that are common to S1 and S2, i.e. z̃i = x̃α(i) =
ỹβ(i) for α, β ∈ Sn+2 and i = 0, . . . ,m, m ∈ {−1, 0, . . . , n+ 1}.
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Proof: The equation (4.1) follows as in Theorem 4.11 in [22] and the fact that the
triangulation respects the periodicity. �

One important property of the chosen triangulation is that the simplices are
sufficiently regular, i.e. the angles all have a lower bound. To make this precise and
to also measure the influence of K, we prove the following lemma. The matrix XK,ν ,
as defined in the next lemma, consists of the n+ 1 vectors which span the simplex.
We obtain an estimate on its inverse X−1K,ν depending on K. This estimate will later
be used to estimate the derivative of an affine function on the simplex.

Lemma 4.6 Using the notation of Definition 4.2, there is a constant X∗, which is
independent of K and ν, such that for all simplices Sν ∈ T basicK we have

‖X−1K,ν‖1 ≤
2K

s∗T
X∗

where XK,ν =


(x̃1 − x̃0)T
(x̃2 − x̃0)T

...
(x̃n+1 − x̃0)T

, x̃0, . . . , x̃n+1 are the vertices of Sν (in any order)

and s∗ := min(1, s1, . . . , sn) > 0.

Proof: Every simplex in T basicK is formed from an (n + 1)-simplex
co(x̃0, x̃1, . . . , x̃n+1) ∈ T basic with corresponding matrix Xν . The matrices XK,ν

and Xν relate via
XK,ν = ρXνS.

Note that for the matrices Xν , up to translations, there are finitely many different
simplices in T basic and also finitely many possibilities of ordering the vertices of any
such simplex. Hence, there is only a finite number of possibilities of forming such
a matrix Xν . Further, all of them are invertible. This means that we can define
α2 > 0 as the minimal eigenvalue of all possible XT

ν Xν . Note that

λmin(STXT
ν XνS) ≥ λmin(XT

ν Xν)λmin(STS).

Hence,

‖X−1K,ν‖1 ≤
√
n+ 1‖X−1K,ν‖2

=

√
n+ 1

λmin(XT
K,νXK,ν)

≤

√
n+ 1

λmin(XT
ν Xν)ρ2(s∗)2

≤
√
n+ 1

s∗αT
2K

12



as ρ = 2−KT . This shows the lemma with X∗ =
√
n+1
α . Note especially that X∗ is

a constant independent of K and ν. �

In the next lemma we show that a CPA function on a simplicial complex as
defined above satisfies the assumptions of Lemma 3.3 and the technical assumption
of Theorem 3.4.

Lemma 4.7 Let T be a simplicial complex in S1
T × Rn, which is locally finite,

i.e. each point has a neighborhood U such that U ∩S 6= ∅ only for a finite number
of simplices S ∈ T . Denote D = ∪S∈TS. Let M ∈ C0(D,Sn) be a CPA function,
which is affine on each simplex of T , and let M(t, x) be positive definite for all (t, x).

Then M is Lipschitz-continuous on D◦ and for each (t0, x0) ∈ D◦

lim
θ→0+

M((t0, x0) + θf̃(t0, x0))−M(t0, x0)

θ
(4.2)

exists.
There also exists (at least) one simplex Sν ∈ T and θ∗ > 0 such that

(t0, x0) + θf̃(t0, x0) ∈ Sν for all θ ∈ [0, θ∗]. (4.3)

M |Sν restricted to this simplex is an affine function and the expression in (4.2) is
equal to

• M |′Sν (t0, x0) = ∇x̃M |Sν (t0, x0) · f̃(t0, x0), the smooth orbital derivative of the
affine function M |Sν ,

• and M ′+(t0, x0).

These expressions are the same for all simplices which satisfy (4.3).
In particular, M is a Riemannian metric in D◦ in the sense of Definition 3.1.

Moreover, ∫ T

0
p(t)TM ′+(t, x(t))p(t) dt

exists and is finite for all solutions x(t) with x(t) ∈ D◦ for all t ∈ [0, T ] and all
functions p ∈ C0([0, T ],Rn).

Proof: Let x̃0 := (t0, x0) ∈ D◦. Since there are only finitely many simplices
S1, . . . ,SN ∈ T , which have a non-empty intersection with a neighborhood U of
x̃0, and on each of them Mij is affine and has a finite Lipschitz constant, the overall
constant can be chosen as the maximum of the finitely many.

Now we show that there is a θ∗ > 0 and a simplex Sν ∈ T such that x̃0+θf̃(x̃0) ∈
Sν for all θ ∈ [0, θ∗]. Then it is clear by the smooth chain rule that the limit (4.2)
exists and is equal to the smooth orbital derivative M |′Sν (t, x) = ∇x̃M |Sν (x̃0) · f̃(x̃0)
of the function M restricted to the simplex Sν . Furthermore, (4.2) is equal to
M ′+(x̃0) by Lemma 3.3. If there are two simplices S1 and S2 with property (4.3),

13



then M |S1(x̃0) = M |S2(x̃0) and also (M |S1)′+(x̃0) = (M |S2)′+(x̃0) by Lemma 3.3

since M |S1(x̃) = M |S2(x̃) for all x̃ = x̃0 + θf̃(x̃0) with θ ∈ [0, θ∗].
Now we show that there exists a simplex with property (4.3). Indeed, there

is a J ∈ N such that x̃0 + f̃(x̃0)
j ∈ U for all j ≥ J where U is the neighborhood

of x̃0 from above. Assume that there is no simplex Sν and no θ∗ > 0 such that
x̃0 + θf̃(x̃0) ∈ Sν for all θ ∈ [0, θ∗]. Then{

x̃0 +
f̃(x̃0)

j
, j ≥ J

}
∩Sk = ∅

for all simplices S1, . . . ,SN∗ ∈ T to which x̃0 belongs, since if one such point was
in Sk, then, due to the convexity of Sk, the whole line between that point and x̃0
would be in Sν .

Since there are infinitely many points in
{
x̃0 + f̃(x̃0)

j , j ≥ J
}
, which are in U , but

only finitely many simplices that have nonempty intersection with U by assumption,
at least one of them, say Sν , must contain infinitely many such points. Since the

sequence x̃0 + f̃(x̃0)
j converges to x̃0 as j →∞ and Sν is closed, x̃0 ∈ Sν and hence

Sν must be one of the S1, . . . ,SN∗ defined above, which is a contradiction. This
shows the statement.

For the last statement, we show that the function θ →M ′+(Sθx̃0) is RHS contin-
uous. Then the function p(t)TM ′+(t, x(t))p(t) is RHS continuous and bounded, and
thus it is integrable.

Fix x̃0 and a neighborhood U such that there are only finitely many simplices
with nonempty intersection with U . Denote by S1, . . . ,SN the subset of those
finitely many simplices such that for each Si there is a θ∗i with x̃0 + θf̃(x̃0) ∈ Si for
all θ ∈ [0, θ∗i ], these are the ones the qualify to be S(x̃0).

Now take a sequence θk → 0+ and we seek to prove that M ′+(Sθk x̃0)→M ′+(x̃0).
Since Sθk x̃0 ∈ U , if k is large enough, there are only finitely many simplices which
contain infinitely many elements Sθk x̃0 of the sequence. We show that these simplices
are in fact a subset of S1, . . . ,SN as defined above, satisfying property (4.3). If this
was not true then there would be a simplex S and a sequence (the subsequence
from above) of points Sθk x̃0 ∈ S, x̃0 ∈ S, but x̃0 + θf̃(x̃0) 6∈ S for all θ > 0. The
simplex S is the intersection of finitely many half-spaces. The point x̃0 lies on the
boundary of (at least) one of these half-spaces, since otherwise a neighborhood of
x̃0 would lie in S. Hence, there is a half-space of the form {x̃ | (x̃ − x̃0) · ñ ≤ 0}
with ñ ∈ Rn+1 \ {0} such that f̃(x̃0) · ñ > 0. Hence there is an ε such that ṽ · ñ > 0
for all ṽ with ‖ṽ − f̃(x̃0)‖ < ε. Now we have

S 3 Sθk x̃0 = x̃0 + θk

∫ 1

0
f̃(x̃0 + λ(Sθk x̃0 − x̃0)) dλ.

If k is large enough, then ṽ :=
∫ 1
0 f̃(x̃0 +λ(Sθk x̃0− x̃0)) dλ fulfills ‖ṽ− f̃(x̃0)‖ < ε by

continuity of f̃ and thus Sθk x̃0 6∈ S, which is a contradiction. This shows that each
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simplex which contains infinitely many elements of the sequence fulfills property
(4.3) and thus is a candidate for S(x̃0).

Let S be one of the simplices which contains infinitely many elements of the
sequence and define the subsequence θkl by choosing the next θk with the property
Sθk x̃0 ∈ S. We do the same for all (finitely many) simplices that contain infinitely
many elements. For the convergence of the overall sequence it is enough to show that
every subsequence Sθk x̃0 converges to the same limit, since there are only finitely
many.

For each subsequence, the elements are in one simplex and on this simplex M ′+
is a continuous function, so it converges. The limit is the same, as M ′+(x̃0) is the
same no matter which simplex S(x̃0) we choose. �

Remark 4.8 The condition locally finite for the triangulation is indispensable as
shown by the following example: Let f(1/2, 0) = (0, 1) and for every n ∈ N define
the triangle Sn := co((0, 0), (1, 1/n), (1, 1/(n+ 1))). Then clearly there is no n ∈ N
with a corresponding θ∗ > 0 such that (1/2, 0) + θf(1/2, 0) = (1/2, θ) ∈ Sn for all
θ ∈ [0, θ∗].

4.2 The semidefinite optimization problem

For each simplex Sν ∈ T CK we denote

hν := diam(Sν) = max
x̃,ỹ∈Sν

‖x̃− ỹ‖2.

Note that for our triangulation we have with Sν = co(x̃0, . . . , x̃n+1) and S∗ =√
n+ 1 max(1, s1, . . . , sn) the estimate

hν = max
k,l∈{0,...,n+1}

‖x̃k − x̃l‖2 ≤ S∗ρ = S∗2−KT. (4.4)

Moreover, denote

Bν := max
x̃∈Sν ,i,j∈{0,...,n}

∥∥∥∥∂2f(x̃)

∂xi∂xj

∥∥∥∥
∞
, where x0 := t (4.5)

B2,ν := max
x̃∈Sν ,i∈{1,...,n},j∈{0,...,n}

∥∥∥∥∂2f(x̃)

∂xi∂xj

∥∥∥∥
∞
, where x0 := t (4.6)

B3,ν := max
x̃∈Sν ,i∈{1,...,n},j,k∈{0,...,n}

∥∥∥∥ ∂3f(x̃)

∂xi∂xj∂xk

∥∥∥∥
∞

if f ∈ C3. (4.7)

Variables
The variables of the semidefinite optimization problem are

1. Mij(x̃k) ∈ R for all 1 ≤ i ≤ j ≤ n and all vertices x̃k of all simplices Sν =
co(x̃0, . . . , x̃n+1) ∈ T CK – values of the Riemannian metric at vertices
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2. Cν ∈ R+
0 for all simplices Sν ∈ T CK – bound on M in Sν

3. Dν ∈ R+
0 for all simplices Sν ∈ T CK – bound on derivative of M in Sν

Thus we have 2s + 1
2n(n + 1)v variables, where s denotes the number of simplices

and v the number of vertices.
In this section, there is no objective function, so we are considering a feasibility

problem – see Section 4.4 for a suitable objective function. The equality Constraint
1. can be incorporated by choosing the variables in this way and thus is no actual
constraint. Note that Constraint 3. is linear and Constraints 2., 4. and 5. are
semidefinite. Constraints 2. and 5. need to be satisfied for each simplex and
then for each vertex, so vertices common to more simplices need to satisfy several
constraints. In Constraint 4., however, each vertex only needs to be checked once.
Note, however, that we can replace the individual constants Cν for each simplex by
their maximum C, so that also Constraint 2. only needs to be checked at each vertex.
Note that if the triangulation is fine enough and the system has an exponentially
stable periodic orbit, this more restrictive form of the constraint can be satisfied, cf.
the proof of Theorem 5.1.

1. Periodicity

Mij(0, xk) = Mij(T, xk)

for all 1 ≤ i ≤ j ≤ n and for all vertices at times 0 and T , i.e. for all vertices
(0, xk) and (T, xk). Note that by construction of the triangulation (0, xk) is a
vertex of a simplex in T CK if and only if (T, xk) is.

2. Bound on M

M(x̃k) � CνI

for all vertices x̃k of all simplices Sν = co(x̃0, . . . , x̃n+1) ∈ T CK , where the
symmetric matrix M(x̃k) is defined by setting Mji(x̃k) := Mij(x̃k) for all
1 ≤ i < j ≤ n.

3. Bound on derivative of M

|(wνij)l| ≤
Dν

n+ 1

for all l = 0, . . . , n, 1 ≤ i ≤ j ≤ n and for all simplices Sν ∈ T CK , where
wνij = ∇x̃Mij

∣∣
Sν

(x̃) for all x̃ ∈ Sν = co(x̃0, . . . , x̃n+1), which is given by

wνij := X−1K,ν

 Mij(x̃1)−Mij(x̃0)
...

Mij(x̃n+1)−Mij(x̃0)

 ∈ Rn+1 (4.8)
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where XK,ν =


(x̃1 − x̃0)T
(x̃2 − x̃0)T

...
(x̃n+1 − x̃0)T

 ∈ R(n+1)×(n+1).

4. Positive definiteness of M

We fix ε0 > 0.
M(x̃k) � ε0I

for all vertices x̃k ∈ Sν of all simplices Sν ∈ T CK .

5. Contraction of the metric

M(x̃k)Dxf(x̃k) +Dxf(x̃k)
TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n + (Eν + 1)I � 0

for all simplices Sν = co(x̃0, . . . , x̃n+1) ∈ T CK and all of its vertices k =

0, . . . , n + 1. Here, f̃(x̃) =

(
1

f(x̃)

)
and (wνij · f̃(x̃k))i,j=1,...,n denotes the

symmetric (n × n) matrix with entries wνij · f̃(x̃k), where wνij was defined in
(4.8) and is the same vector for all vertices in one simplex and

Eν =

{
hνn[
√
n+ 1hνBνDν + 2n(n+ 1)B2,νCν ] if f ∈ C2

h2νn[
√
n+ 1BνDν + 4n

√
n+ 1B2,νDν + 2n(n+ 1)B3,νCν ] if f ∈ C3(4.9)

Remark 4.9 In Constraint 3. we have claimed that the gradient of the affine func-
tion Mij

∣∣
Sν

, i.e. ∇x̃Mij

∣∣
Sν

= wνij, is given by the expression in (4.8). For a proof of
this fact and, moreover, that the definition is independent of the choice of the vertex
x̃0, see [12, Remark 2.9].

Remark 4.10 The constraints above are easily transferred into the standard form∑m
i=1 Fiyi − F0 � 0 in the following way: Denote by y1, . . . , yn(n+1)/2 the matrix

elements Mij(x̃1), 1 ≤ i ≤ j ≤ n, by the following n(n+1)
2 elements yi the matrix

elements of Mij(x̃2) etc. and finish the vector y by the Cν and Dν . This results in

m = 2s+ n(n+1)
2 v as above.

Now Constraints 2. and 4. are expressed in v blocks of size n each in the matrices
Fi. Constraint 3. is expressed in 2 · n(n+1)

2 conditions (for each i, j) for each of the
n+ 1 entries of the vector wνij. This needs to be considered for each simplex, so that

we have n(n+ 1)2s blocks of size 1.
Finally, Constraint 5. is expressed in (n + 2)s blocks of size n, since for every

simplex each of its vertices needs to be considered. Note that Eν depends linearly on
Cν and Dν and wνij depends linearly on Mij(x̃k).

The size of the matrices Fi is thus a block-diagonal structure with n(n + 1)2s
blocks of size 1 and 2v + (n+ 2)s blocks of size n.
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Remark 4.11 Note that Constraint 2. implies that maxk=0,...,n+1 |Mil(x̃k)| ≤
‖M(x̃k)‖max ≤ ‖M(x̃k)‖2 ≤ Cν since M(x̃k) is positive definite. Note also that
Constraint 3. implies that ‖wνij‖1 ≤ Dν . Moreover, Constraint 5. is equivalent to

λmax

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)
+ Eν ≤ −1

where λmax denotes the maximal eigenvalue.

4.3 Feasible solution is CPA contraction metric

A solution of the semidefinite optimization problem returns a matrix M(x̃k) at each
vertex x̃k of the triangulation. We define the CPA metric by affine interpolation on
each simplex.

Definition 4.12 Fix C and a triangulation T CK with DK =
⋃

Sν∈T CK
Sν . Let Mij(x̃k)

be defined by a feasible solution of the semidefinite optimization problem. Let (t, x) =
x̃ ∈ Sν = co(x̃0, . . . , x̃n+1) such that x̃ =

∑n+1
k=0 λkx̃k with λk ∈ [0, 1] and

∑n+1
k=0 λk =

1. Then define

M(x̃) =
n+1∑
k=0

λkM(x̃k).

Lemma 4.13 The matrix M(x̃) as in Definition 4.12 is symmetric and positive
definite for all x̃ ∈ DK . The function M(t, x) is periodic in t with period T .

Proof: The symmetry follows directly from the symmetry of M(x̃k):

Mij(x̃) =
n+1∑
k=0

λkMij(x̃k) =
n+1∑
k=0

λkMji(x̃k) = Mji(x̃).

The positive definiteness also follows from the positive definiteness of M(x̃k),
using that the minimal eigenvalue λmin is a concave function. Indeed, consider
x̃ ∈ Sν = co(x̃0, . . . , x̃n+1). Note that λmin(M(x̃k)) ≥ ε0 for all k = 0, . . . , n+ 1 due
to Constraint 4. Thus,

λmin(M(x̃)) = λmin

(
n+1∑
k=0

λkM(x̃k)

)

≥
n+1∑
k=0

λkλmin(M(x̃k))

≥ ε0

n+1∑
k=0

λk

= ε0 > 0.
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The T -periodicity follows directly from the definition and the triangulation:

M(0, x) =

n+1∑
k=0

λkM(0, xk) =

n+1∑
k=0

λkM(T, xk) = M(T, x).

�

We will now relate M ′(x̃) to M ′(x̃k), as well as M(x̃)Dxf(x̃) to M(x̃k)Dxf(x̃k).
For the proof we will need the following auxiliary result, see [2, Proposition 4.1 and
Corollary 4.3].

Lemma 4.14 Let f ∈ C2(Rn+1,Rn) and x̃ ∈ co(x̃0, . . . , x̃n+1) = Sν with x̃ =∑n+1
k=0 λkx̃k, λk ∈ [0, 1] and

∑n+1
k=0 λk = 1.

Then for all l ∈ {1, . . . , n} we have∣∣∣∣∣fl(x̃)−
n+1∑
k=0

λkfl(x̃k)

∣∣∣∣∣ ≤ max
x̃∈Sν

‖Hfl(x̃)‖2h2ν ,

especially ∥∥∥∥∥f(x̃)−
n+1∑
k=0

λkf(x̃k)

∥∥∥∥∥
∞

≤ (n+ 1)Bνh
2
ν ,

where hν = diam(Sν), Bν = maxx̃∈Sν ,i,j∈{0,...,n}

∥∥∥ ∂2f(x̃)∂xi∂xj

∥∥∥
∞

, x0 := t and Hfl(x̃) :=(
∂2fl(x̃)
∂xi∂xj

)
i,j=0,...,n

denotes the Hessian of fl.

In the following we restrict ourselves to one simplex Sν ∈ T CK . First we need to
define M ′(x̃) (the orbital derivative) for a general point in the simplex Sν . Note
that for all points of a simplex the vector ∇x̃Mij(x̃) is the same, but the contribution
of f̃(x̃) is different.

Definition 4.15 Let M(x̃) be as in Definition 4.12. Fix a point x̃ ∈ D◦K and a
simplex Sν = co(x̃0, . . . , x̃n+1) ∈ T CK such that x̃+ θf̃(x̃) ∈ Sν for all θ ∈ [0, θ∗], cf.
Lemma 4.7. Then x̃ =

∑n+1
k=0 λkx̃k with λk ∈ [0, 1],

∑n+1
k=0 λk = 1 and

(Mij)
′
+(x̃) = M ′ij

∣∣
Sν

(x̃) = ∇x̃Mij

∣∣
Sν

(x̃) · f̃(x̃) = wνij · f̃(x̃).

Note that Mij

∣∣
Sν

is an affine function and its gradient wνij was defined in Constraint
3. and is the same vector for all points x̃ ∈ Sν . Note that for vertices x̃ = x̃k this
term appears in Constraint 5.

Lemma 4.16 Let f ∈ C2 and let M(x̃) be as in Definition 4.12. Fix a point x̃ ∈ D◦K
and a corresponding simplex Sν ∈ T CK as in Definition 4.15.
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Then we have the following estimates for all x̃ ∈ Sν∣∣∣∣∣(Mij)
′
+(x̃)−

n+1∑
k=0

λkw
ν
ij · f̃(x̃k)

∣∣∣∣∣ ≤ √
n+ 1BνDνh

2
ν∣∣∣∣∣(M(x̃)Dxf(x̃))ij −

n+1∑
k=0

λk(M(x̃k)Dxf(x̃k))ij

∣∣∣∣∣ ≤ n(n+ 1)B2,νCνhν∣∣∣∣∣(Dxf(x̃)TM(x̃))ij −
n+1∑
k=0

λk(Dxf(x̃k)
TM(x̃k))ij

∣∣∣∣∣ ≤ n(n+ 1)B2,νCνhν ,

where Bν = maxx̃∈Sν ,i,j∈{0,...,n}

∥∥∥ ∂2f(x̃)∂xi∂xj

∥∥∥
∞

, B2,ν =

maxx̃∈Sν ,i∈{1,...,n},j∈{0,...,n}

∥∥∥ ∂2f(x̃)∂xi∂xj

∥∥∥
∞

, x0 := t and hν = diam(Sν).

Altogether we have∥∥∥∥ (M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃)
)

−
∑n+1

k=0 λk

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)∥∥∥∥
max

≤ hν(
√
n+ 1hνBνDν + 2n(n+ 1)B2,νCν) =

Eν
n
.

If f ∈ C3 we obtain in addition the estimates∣∣∣∣∣(M(x̃)Dxf(x̃))ij −
n+1∑
k=0

λk(M(x̃k)Dxf(x̃k))ij

∣∣∣∣∣
≤ n(2

√
n+ 1B2,νDν + (n+ 1)B3,νCν)h2ν ,∣∣∣∣∣(Dxf(x̃)TM(x̃))ij −

n+1∑
k=0

λk(Dxf(x̃k)
TM(x̃k))ij

∣∣∣∣∣
≤ n(2

√
n+ 1B2,νDν + (n+ 1)B3,νCν)h2ν ,

where B3,ν = maxx̃∈Sν ,i∈{1,...,n},j,k∈{0,...,n}

∥∥∥ ∂3f(x̃)
∂xi∂xj∂xk

∥∥∥
∞

, x0 := t. Altogether we have∥∥∥∥ (M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃)
)

−
∑n+1

k=0 λk

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)∥∥∥∥
max

≤ h2ν [
√
n+ 1BνDν + 4n

√
n+ 1B2,νDν + 2n(n+ 1)B3,νCν ] =

Eν
n
.
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Proof: Step 1: M ′

Fix one simplex Sν ∈ T CK of the triangulation and let x̃ ∈ Sν . By defini-
tion of Mij(x̃) as a CPA function, interpolating Mij(x̃k) at the vertices, we have
∇x̃Mij(x̃) = wνij for all x̃ ∈ Sν , where M is restricted to the simplex, cf. Definition

4.15. Thus, letting x̃ =
∑n+1

k=0 λkx̃k with λk ∈ [0, 1] and
∑n+1

k=0 λk = 1

(Mij)
′
+(x̃) = ∇x̃Mij

∣∣
Sν

(x̃) · f̃(x̃)

= wνij · f̃(x̃)

= wνij ·

(
n+1∑
k=0

λkf̃(x̃k)

)
+ wνij ·

(
f̃(x̃)−

n+1∑
k=0

λkf̃(x̃k)

)
.

Hence ∣∣∣∣∣(Mij)
′
+(x̃)−

n+1∑
k=0

λkw
ν
ij · f̃(x̃k)

∣∣∣∣∣ ≤ ‖wνij‖1
∥∥∥∥∥f(x̃)−

n+1∑
k=0

λkf(x̃k)

∥∥∥∥∥
∞

since
∥∥∥f̃(x̃)−

∑n+1
k=0 λkf̃(x̃k)

∥∥∥
∞

=
∥∥∥f(x̃)−

∑n+1
k=0 λkf(x̃k)

∥∥∥
∞

as the t-component is

0.
Now we use Lemma 4.14 for the C2 function f , establishing that ‖f(x̃) −∑n+1
k=0 λkf(x̃k)‖∞ ≤ (n+ 1)Bνh

2
ν . Thus,∣∣∣∣∣(Mij)

′
+(x̃)−

n+1∑
k=0

λkw
ν
ij · f̃(x̃k)

∣∣∣∣∣ ≤ ‖wνij‖1(n+ 1)Bνh
2
ν .

Using that ‖wνij‖1 ≤ Dν holds from Remark 4.11, we obtain∣∣∣∣∣(Mij)
′
+(x̃)−

n+1∑
k=0

λkw
ν
ij · f̃(x̃k)

∣∣∣∣∣ ≤ (n+ 1)DνBνh
2
ν .

Step 2: MDxf
We consider (M(x̃)Dxf(x̃))ij =

∑n
l=1Mil(x̃)(Dxf(x̃))lj . We first consider two

scalar-valued functions g and h, where g(x̃) =
∑n+1

k=0 λg(x̃k) and h is C1 in x̃. We
have, using Taylor expansion for h at x̃k, i.e. h(x̃) = h(x̃k) +∇h(x̃∗)(x̃− x̃k), where
x̃∗ lies on the straight line between x̃k and x̃,

g(x̃)h(x̃) =

n+1∑
k=0

λkg(x̃k)h(x̃)

=

n+1∑
k=0

λkg(x̃k)[h(x̃k) +∇x̃h(x̃∗)(x̃− x̃k)]

∣∣∣∣∣g(x̃)h(x̃)−
n+1∑
k=0

λkg(x̃k)h(x̃k)

∣∣∣∣∣ ≤ max
x̃∗∈Sν

‖∇x̃h(x̃∗)‖1hν max
k=0,...,n+1

|g(x̃k)|
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where ‖x̃− x̃k‖∞ ≤ ‖x̃− x̃k‖2 ≤ hν .
Applying this to g(x̃) = Mil(x̃) and h(x̃) = (Dxf(x̃))lj we obtain with

maxk=0,...,n+1 |Mil(x̃k)| ≤ Cν from Remark 4.11 and ‖∇x̃(Dxf(x̃∗))lj‖1 ≤ (n +

1) maxx̃∈Sν ,i,k∈{0,...,n},k 6=0

∥∥∥ ∂2f(x̃)∂xi∂xk

∥∥∥
∞
≤ (n + 1)B2,ν for all l, j ∈ {1, . . . , n}, using

that x̃, x̃k ∈ Sν and Sν is a convex set. Thus,∣∣∣∣∣
n∑
l=1

Mil(x̃)(Dxf(x̃))lj −
n∑
l=1

n+1∑
k=0

λkMil(x̃k)(Dxf(x̃k))lj

∣∣∣∣∣ ≤ n(n+ 1)B2,νhνCν

Hence,∣∣∣∣∣(M(x̃)Dxf(x̃))ij −
n+1∑
k=0

λk(M(x̃k)Dxf(x̃k))ij

∣∣∣∣∣ ≤ n(n+ 1)B2,νhνCν .

A similar estimate holds for Dxf(x̃)TM(x̃).
Step 2’: MDxf

If f ∈ C3, then we can derive an estimate for this term which establishes order
h2ν . We consider two scalar-valued functions g and h, where g(x̃) =

∑n+1
k=0 λkg(x̃k)

for x̃ =
∑n+1

k=0 λkx̃k and h(x̃) is C2 in x̃. We apply Lemma 4.14 to (g · h), yielding∣∣∣∣∣g(x̃)h(x̃)−
n+1∑
k=0

λkg(x̃k)h(x̃k)

∣∣∣∣∣ ≤ max
x̃∈Sν

‖H(x̃)‖2h2ν (4.10)

where the matrix H(x̃) is defined by (H(x̃))km = ∂2(g·h)(x̃)
∂xk∂xm

. Note that ∂
∂xm

(g · h) =
∂g
∂xm

h+ g ∂h
∂xm

and

∂2

∂xk∂xm
(g · h) =

∂2g

∂xk∂xm
h+

∂g

∂xm

∂h

∂xk
+

∂g

∂xk

∂h

∂xm
+ g

∂2h

∂xk∂xm
.

Applying this to g(x̃) = Mil(x̃), we observe that, since g(x̃) = Mil(x̃) is affine on

the simplex, ∂g
∂xm

(x̃) = (wνil)m and ∂2g
∂xk∂xm

(x̃) = 0 for all x̃ ∈ Sν . Hence,

∂2

∂xk∂xm
(g · h)(x̃) = (wνil)m

∂h(x̃)

∂xk
+ (wνil)k

∂h(x̃)

∂xm
+Mil(x̃)

∂2h(x̃)

∂xk∂xm
.

Using h(x̃) = (Dxf(x̃))lj , we obtain with ∂h
∂xk

= ∂2fl
∂xk∂xj

and ∂2h
∂xk∂xm

= ∂3fl
∂xk∂xm∂xj

,

j 6= 0, defining B3,ν = maxx̃∈Sν ,j∈{1,...,n},i,l∈{0,...,n},j 6=0

∥∥∥ ∂3f(x̃)
∂xi∂xj∂xl

∥∥∥
∞

|(H(x̃))km| =

∣∣∣∣∂2(g · h)(x̃)

∂xk∂xm

∣∣∣∣
≤ |(wνil)m|B2,ν + |(wνil)k|B2,ν +B3,ν |Mil(x̃)|
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Thus, using ‖H1 + H2‖2 ≤ ‖H1‖2 + ‖H2‖2, as well as ‖H1‖2 ≤
√
n+ 1‖H1‖1,

‖H2‖2 ≤
√
n+ 1‖H2‖∞ and ‖H‖2 ≤ (n+ 1)‖H‖max we obtain

‖H‖2 ≤ 2
√
n+ 1‖wνil‖1B2,ν + (n+ 1)B3,ν max

x̃∈Sν
max

1≤i≤l≤n
|Mil(x̃)|

≤ 2
√
n+ 1DνB2,ν + (n+ 1)B3,νCν ,

using Remark 4.11 . Hence, (4.10) establishes∣∣∣∣∣
n∑
l=1

Mil(x̃)(Dxf(x̃))lj −
n∑
l=1

n+1∑
k=0

λkMil(x̃k)(Dxf(x̃k))lj

∣∣∣∣∣
≤ nh2ν(2

√
n+ 1DνB2,ν + (n+ 1)B3,νCν).

which proves the lemma. �

Now we can estimate the value of LM for all points x̃ for the CPA metric M ,
given our constraints on the vertices.

Lemma 4.17 Let all constraints be satisfied. Then the CPA metric M defined in
Definition 4.12 fulfills:

λmax(M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃)) ≤ −1 (4.11)

for all x̃ ∈ D◦K .

Proof: The maximal eigenvalue is a convex and thus sublinear function, i.e. for
L, S ∈ Sn symmetric (but not necessarily positive definite), we have

λmax(L+ S) ≤ λmax(L) + λmax(S). (4.12)

We show that |λmax(S)| ≤ ‖S‖2 holds for a symmetric (but not necessarily
positive definite) matrix S ∈ Rn×n. Indeed, denote by λ1 ≤ . . . ≤ λn the eigenvalues
of the symmetric matrix S with corresponding eigenvectors v1, . . . , vn, forming a
basis of Rn. Then

Svi = λivi ⇒ STSvi = Sλivi = λ2i vi.

Thus, vi is an eigenvector of STS with eigenvalue λ2i . Hence,

‖S‖2 =
√
λmax(STS)

= max(|λ1|, . . . , |λn|)
= max(|λ1|, |λn|) ≥ |λn| = |λmax(S)|. (4.13)

Fix x̃ ∈ D◦K and Sν ∈ T CK such that x̃ + θf̃(x̃) ∈ Sν for all θ ∈ [0, θ∗] as in
Definition 4.15. Then x̃ =

∑n+1
k=0 λkx̃k,

∑n+1
k=0 λk = 1 and λk ∈ [0, 1]. Now, using
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(4.12) and ‖S‖2 ≤ n‖S‖max, where ‖S‖max = max1≤i≤j≤n |Sij | for a matrix S ∈ Sn,
we have with Remark 4.11

λmax(M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃))

≤ λmax

(
n+1∑
k=0

λk

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

))

+λmax

(
M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃)

−
n+1∑
k=0

λk

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

))

≤
n+1∑
k=0

λkλmax

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)
+

∥∥∥∥M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃)

−
n+1∑
k=0

λk

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)∥∥∥∥
2

≤
n+1∑
k=0

λk(−1− Eν) + n

∥∥∥∥M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃)

−
n+1∑
k=0

λk

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)∥∥∥∥
max

≤ −1− Eν + Eν

= −1

by Lemma 4.16 and the definition of Eν . �

We summarize the results of this section in the following theorem.

Theorem 4.18 Let T CK be a triangulation as in Definition 4.2 and DK :=⋃
Sν∈T CK

Sν . Let all constraints be satisfied. Then the CPA metric defined in Defi-

nition 4.12 fulfills:

1. M(x̃) is symmetric, positive definite and a T -periodic function and thus defines
a Riemannian metric on D◦K in the sense of Definition 3.1.

2. LM (x̃) ≤ − 1
2µmax

≤ − 1
2C < 0 for all x̃ ∈ D◦K , where µmax :=

maxx̃∈DK λmax(M(x̃)) > 0, LM is defined in Theorem 3.4 and C :=
maxSν∈T CK

Cν .

3. If G ⊂ D◦K is positively invariant, then∫ T

0
p(t)TM ′+(t, x(t))p(t) dt
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exists and is finite for all solutions x(t) with x(0) ∈ G and all functions p ∈
C0([0, T ],Rn).

Hence, M satisfies all assumptions of Theorem 3.4.

Proof: Part 1. follows directly from Lemma 4.13 and 4.7.
For Part 2., note that µmax exists and is positive, since M is positive definite for

all x̃ and depends continuously on x̃. Then

LM (x̃) = sup
w∈Rn\{0}

wT
[
M(x̃)Dxf(x̃) + 1

2M
′
+(x̃)

]
w

wTM(x̃)w

≤ 1

2

λmax(M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′+(x̃))

λmax(M(x̃))

≤ − 1

2µmax

using Lemma 4.17. Moreover, Constraint 2. yields that µmax ≤ maxSν∈T CK
Cν ≤ C.

Part 3. follows from Lemma 4.7 using that G ⊂ D◦K is positively invariant. This
shows the theorem. �

4.4 Objective function

While we are primarily interested in the calculation of any Riemannian contraction
metric, i.e. a feasible solution of the semidefinite optimization problem, the optimiza-
tion problem also allows for an objective function. Theorem 4.18 suggests a possible
objective function, namely simply the maximum over all Cν , i.e. C = maxSν∈T CK

Cν .
We can either implement this by adding C as an additional variable with constraints

Cν ≤ C

for all ν. Or we can replace the variables Cν in Constraint 2. by the uniform bound
C directly, which reduces the number of Constraints 2. to v, the number of vertices.
By minimizing the constant C, we minimize the bound − 1

2C on the maximal Floquet
exponent. Note, however, that C has a lower bound given by ε0. This means that
by choosing ε0 too large, the estimate on the Floquet exponent will be very rough.

5 Feasibility of the semidefinite optimization problem

In the next theorem we assume that there exists an exponentially stable periodic
orbit. Then we can show that the semidefinite optimization problem has a feasible
solution and we can thus construct a suitable Riemannian metric. We have to
assume that the triangulation is fine enough, i.e. in practice we start with a coarse
triangulation and refine until we obtain a solution. The triangulation has to stay
suitably regular, i.e. the angles in simplices have lower and upper bounds. For
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simplicity, we use the reference simplicial complex and scale it uniformly as described
in Section 4.1, but other refinements are also possible.

Theorem 5.1 Let the system ẋ = f(t, x), f ∈ C2(S1
T × Rn,Rn) have an exponen-

tially stable periodic orbit Ω with basin of attraction A(Ω). Let C ⊂ A(Ω), C ∈ N ,
Ω ⊂ C be a compact set in the cylinder S1

T × Rn. Fix ε0 > 0.
Then there is a K∗ ∈ N such that the semidefinite optimization problem is feasible

for all triangulations T CK as described in Section 4.1 with K ≥ K∗. Note that we can
choose the constants Cν and Dν to be the same for each simplex, i.e. Cν = C and
Dν = D for all ν.

Proof:

1. Smooth Riemannian metric

Denote the maximal real part of the Floquet exponents of the exponentially
stable periodic orbit Ω by −ν0 < 0 and set ε := ν0

2 .

Since C ⊂ A(Ω) is compact and A(Ω) open, there is a positive Euclidean
distance between C and the boundary of A(Ω). Let d > 0 denote this distance
if it is finite and otherwise set d := 1. Now define C∗ to be the set of all
x̃ ∈ S1

T × Rn that have Euclidean distance less than or equal to d/2 to C.
Clearly C∗ ∈ N . For all large enough K ∈ N0 the Euclidean distance from the

boundary of DK :=
⋃

Sν∈T CK

Sν to C is bounded above by maxSν∈T CK
diam(Sν) ≤

S∗2−KT , see (4.4). Thus, there is a K∗∗ ∈ N0 such that C ⊂ DK ⊂ C∗ for
every K ≥ K∗∗.
Now apply the following theorem to the above defined C∗ and ε.

Theorem 5.2 (Theorem 4.2, [8]) Assume that f ∈ C0(R × Rn,Rn) is a
periodic function in t with period T , and all partial derivatives of order one with
respect to x are continuous functions of (t, x). Let Ω := {(t, x̃(t)) ∈ S1

T × Rn}
be an exponentially asymptotically stable periodic orbit, A(Ω) be its basin of
attraction, and let the maximal real part of the Floquet exponents be −ν0 < 0.
Then for all ε > 0 and all compact sets C∗ with Ω ⊂ C∗ ⊂ A(Ω) there exists

a Riemannian metric M̃ ∈ C1(C∗,Rn×n), such that L
M̃

(t, x) ≤ −ν0 + ε holds
for all (t, x) ∈ C∗.

Remark 5.3 The proof of this theorem, cf. [8, Theorem 4.2] shows that we

have M̃ ∈ C2(C∗,Rn×n), if f ∈ C2(S1
T × Rn,Rn), as is the case by our as-

sumptions.

Since both M̃(x̃) and λmin are continuous functions and M̃ is positive definite
for all x̃ ∈ C∗, there exists an ε1 > 0 such that

λmin(M̃(x̃)) ≥ ε1
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for all x̃ ∈ C∗, as C∗ is compact.

Moreover, since L
M̃

is a continuous function (note that M̃ is smooth) satisfying
L
M̃

(x̃) ≤ −ν0
2 for all x̃ ∈ C∗, we have

λmax(M̃(x̃)Dxf(x̃) +Dxf(x̃)T M̃(x̃) + M̃ ′(x̃)) < 0

for all x̃ ∈ C∗. As M̃(x̃)Dxf(x̃) + Dxf(x̃)T M̃(x̃) + M̃ ′(x̃) and λmax are con-
tinuous functions, there exists an ε2 > 0 such that

λmax(M̃(x̃)Dxf(x̃) +Dxf(x̃)T M̃(x̃) + M̃ ′(x̃)) ≤ −ε2

for all x̃ ∈ C∗, as C∗ is compact.

Now define M(x̃) := max
(
ε0
ε1
, 2
ε2

)
M̃(x̃). Then

λmin(M(x̃)) ≥ ε0 (5.1)

λmax(M(x̃)Dxf(x̃) +Dxf(x̃)TM(x̃) +M ′(x̃)) ≤ −2 (5.2)

for all x̃ ∈ C∗.
M is C2 on the compact set C∗, so that we can define the following constants

M∗0 := max
x̃∈C∗

λmax(M(x̃))

M∗1 := max
x̃∈C∗

max
1≤i≤j≤n

‖∇x̃Mij(x̃)‖1

M∗2 := max
x̃∈C∗

max
1≤i≤j≤n

‖HMij (x̃)‖2

where HMij (x̃) denotes the Hessian of Mij(x̃).

2. Assigning the variables of the optimization problem

Set

F := max
x̃∈C∗
‖f̃(x̃)‖∞

B := max
x̃∈C∗,i,j∈{0,...,n}

∥∥∥∥∂2f(x̃)

∂xi∂xj

∥∥∥∥
∞

B2 := max
x̃∈C∗,i∈{1,...,n},j∈{0,...,n}

∥∥∥∥∂2f(x̃)

∂xi∂xj

∥∥∥∥
∞

B3 := max
x̃∈C∗,i∈{1,...,n},j,k∈{0,...,n}

∥∥∥∥ ∂3f(x̃)

∂xi∂xj∂xk

∥∥∥∥
∞

if f ∈ C3.
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Finally, we define, using the constant X∗ from Lemma 4.6,

C∗ := M∗2 (n+ 1)

(
S∗X∗

2s∗
+
√
n+ 1

)
C := M∗0

D := (C∗ +M∗1 )(n+ 1)

h∗1 :=

{
[2n(
√
n+ 1BD + 2n(n+ 1)B2C)]−1 if f ∈ C2

[2n(
√
n+ 1BD + 4n

√
n+ 1B2D + 2n(n+ 1)B3C)]−1/2 if f ∈ C3

h∗2 :=
1

2nFC∗
.

Now define

K∗ := max

(⌈
ln(S∗T )− ln(min(h∗1, h

∗
2, 1))

ln 2

⌉
,K∗∗

)
,

let K ≥ K∗ and consider the triangulation T CK . Note that, since K ≥ K∗, we
have by (4.4)

hν ≤ S∗2−KT ≤ S∗2−K
∗
T ≤ min(h∗1, h

∗
2, 1). (5.3)

Interpolate M(x̃) on this triangulation, i.e. assign the variables Mij(x̃k) for
all vertices x̃k of the triangulation; moreover, set Cν = C and Dν = D for all
ν. By (5.3) and the definition of h∗1 this ensures

Eν ≤ 1

2
. (5.4)

3. Auxiliary results

To check the feasibility in the next step, we need some estimates.

Consider a simplex Sν = co(x̃0, x̃1, . . . , x̃n+1) ∈ T CK . Denote, as in Constraint

3., (4.8) wνij := X−1K,νM
∗
ij,ν , where XK,ν =


(x̃1 − x̃0)T
(x̃2 − x̃0)T

...
(x̃n+1 − x̃0)T

 and

M∗ij,ν :=


Mij(x̃1)−Mij(x̃0)
Mij(x̃2)−Mij(x̃0)

...
Mij(x̃n+1)−Mij(x̃0)

 . (5.5)

Note that Mij(x̃) is two times continuously differentiable on Sν ⊂ C∗ and for
i, j ∈ {1, 2, . . . , n+ 1} we thus have by Taylor’s theorem

Mij(x̃k) = Mij(x̃0) +∇x̃Mij(x̃0) · (x̃k − x̃0) +
1

2
(x̃k − x̃0)THMij (z̃k)(x̃k − x̃0),
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where HMij is the Hessian of Mij and z̃k = x̃0+ϑk(x̃k−x̃0) for some ϑk ∈ ]0, 1[.

By rearranging terms and combining, this delivers with (5.5)

M∗ij,ν −XK,ν∇x̃Mij(x̃0) =
1

2


(x̃1 − x̃0)THMij (z̃1)(x̃1 − x̃0)
(x̃2 − x̃0)THMij (z̃2)(x̃2 − x̃0)

...
(x̃n+1 − x̃0)THMij (z̃n+1)(x̃n+1 − x̃0)

 . (5.6)

We have ∣∣(x̃k − x̃0)THMij (z̃k)(x̃k − x̃0)
∣∣ ≤ h2ν‖HMij (z̃k)‖2 ≤M∗2h2ν .

Note that z̃k ∈ Sν since the simplex is convex. Hence, by (5.6),

‖M∗ij,ν −XK,ν∇x̃Mij(x̃0)‖1 ≤
n+ 1

2
M∗2h

2
ν . (5.7)

Now we need to obtain an estimate on ∇x̃Mij(x̃k). For k ∈ {1, 2, . . . , n + 1},
l ∈ {0, . . . , n}, there is a z̃kl on the line segment between x̃k and x̃0, such that

∂lMij(x̃k)− ∂lMij(x̃0) = ∇x̃∂lMij(z̃kl) · (x̃k − x̃0),

where ∂lMij denotes the l-th component of ∇x̃Mij and ∇x̃∂lMij is the gradient
of this function. Then we have

|∂lMij(x̃k)− ∂lMij(x̃0)| ≤ ‖∇x̃∂lMij(z̃kl)‖2‖x̃k − x̃0‖2 ≤
√
n+ 1M∗2hν .

Hence,

‖∇x̃Mij(x̃k)−∇x̃Mij(x̃0)‖1 ≤ (n+ 1)3/2M∗2hν .

From this, Lemma 4.6 and (5.7) we obtain the estimate

‖wνij −∇x̃Mij(x̃k)‖1
= ‖X−1K,νM

∗
ij,ν −∇x̃Mij(x̃k)‖1

≤ ‖X−1K,νM
∗
ij,ν −∇x̃Mij(x̃0)‖1 + ‖∇x̃Mij(x̃0)−∇x̃Mij(x̃k)‖1

≤ ‖X−1K,ν‖1‖M
∗
ij,ν −XK,ν∇x̃Mij(x̃0)‖1 + (n+ 1)3/2M∗2hν

≤ 2KX∗

s∗T

n+ 1

2
M∗2h

2
ν + (n+ 1)3/2M∗2hν

≤ S∗X∗

s∗
n+ 1

2
M∗2hν + (n+ 1)3/2M∗2hν

= C∗hν , (5.8)

using (4.4) and the definition of C∗.

A further useful consequence, which we need later, is that

‖X−1K,νM
∗
ij,ν‖1 ≤ ‖X−1K,νM

∗
ij,ν −∇x̃Mij(x̃k)‖1 + ‖∇x̃Mij(x̃k)‖1

≤ C∗hν +M∗1 . (5.9)
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4. Feasibility

Now we check that the assignment in Step 2. is a feasible point of the semidef-
inite optimization problem. We discuss each constraint in the following.

Constraint 1. This follows directly from the periodicity of M .

Constraint 2. This follows directly from the definition of C.

Constraint 3. We have for all 1 ≤ i ≤ j ≤ n and any l = 0, . . . , n by (5.9)

|(wνij)l| ≤ ‖wνij‖1 = ‖X−1K,νM
∗
ij,ν‖1 ≤ C∗hν +M∗1 ≤

D

n+ 1

by definition of D as hν ≤ 1.

Constraint 4. This follows from (5.1).

Constraint 5. This is the main step and will be shown below.

We fix a simplex Sν = co(x̃0, . . . , x̃n+1) ∈ T CK and a vertex x̃k, k ∈ {0, . . . , n+
1}. With Remark 4.11 we need to show that

λmax

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)
+ Eν ≤ −1.

We have Eν ≤ 1
2 , cf. (5.4). Hence, using the sublinearity of λmax, we have

λmax

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)
+ Eν

≤ λmax
(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) +M ′(x̃k)
)

+λmax((wνij · f̃(x̃k))i,j=1,...,n −M ′(x̃k)) +
1

2

≤ −2 +
1

2
+ n max

1≤i≤j≤n
|wνij · f̃(x̃k)−M ′ij(x̃k)|

where we have used (5.2) and λmax(S) ≤ ‖S‖2 ≤ n‖S‖max, cf. (4.13).

Using M ′ij(x̃k) = ∇x̃Mij(x̃k) · f̃(x̃k), we obtain

λmax

(
M(x̃k)Dxf(x̃k) +Dxf(x̃k)

TM(x̃k) + (wνij · f̃(x̃k))i,j=1,...,n

)
+ Eν

≤ −3

2
+ n max

1≤i≤j≤n
‖wνij −∇x̃Mij(x̃k)‖1 · ‖f̃(x̃k)‖∞

≤ −3

2
+ nC∗hνF

≤ −3

2
+

1

2
= −1

with (5.8), the definition of F and using hν ≤ h∗2 = 1
2nFC∗ .

This proves that the constraints are fulfilled and the optimization problem has a
feasible solution. �
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6 Examples

In this section apply the method to two examples. Both examples are solved by
the SDPA method on the NEOS solver1; the time needed was 0.41 sec. for the first
example and 5.5 sec. for the second example.

These examples show that the proposed new method works in practice. Further
research, however, is needed to ensure that larger examples with more grid-points
can be treated efficiently.

6.1 Example 1

We apply the method to the following example:

ẋ = −x+ y

ẏ = x− 2y

over the time interval [0, 1]. We choose the 18 points {(t, x, y) | t ∈ {0, 0.5}, x, y ∈
{−0.5, 0, 0.5}}, which results in 18 symmetric (2× 2) matrices, i.e. 54 variables. We
set all variables Cν =: C and Dν =: D, so we have 56 variables in the semidefinite
programming problem. The triangulation has v = 18 vertices and s = 48 simplices.
The number of the constraints is 2184; these consist of 1728 linear constraints (blocks
of size 1) and 456 (2 × 2) matrices which need to be positive semidefinite. We set
the lower bound on the positive definiteness (Constraint 4.) as ε0 := 0.1.

The solution obtained by the SDPA method on the NEOS solver is for both t = 0

1http://www.neos-server.org/neos/solvers/sdp:SDPA/SPARSE SDPA.html
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and t = 0.5

M(t,−0.5,−0.5) =

(
+1.278e+00 +4.968e-02

+4.968e-02 +1.229e+00

)
M(t,−0.5, 0) =

(
+1.275e+00 +5.559e-02

+5.559e-02 +1.219e+00

)
M(t,−0.5, 0.5) =

(
+1.286e+00 +3.770e-02

+3.770e-02 +1.248e+00

)
M(t, 0,−0.5) =

(
+1.283e+00 +4.244e-02

+4.244e-02 +1.240e+00

)
M(t, 0, 0) =

(
+1.296e+00 +2.122e-02

+2.122e-02 +1.275e+00

)
M(t, 0, 0.5) =

(
+1.283e+00 +4.244e-02

+4.244e-02 +1.240e+00

)
M(t, 0.5,−0.5) =

(
+1.286e+00 +3.770e-02

+3.770e-02 +1.248e+00

)
M(t, 0.5, 0) =

(
+1.275e+00 +5.559e-02

+5.559e-02 +1.219e+00

)
M(t, 0.5, 0.5) =

(
+1.278e+00 +4.968e-02

+4.968e-02 +1.229e+00

)
and C = +1.31e+00, D = +6.820e+04. The bound on the maximal Floquet
exponent is thus − 1

2C = −0.38168. This is very close to the actual bound
1
2(−3 +

√
5) = −0.38197.

6.2 Example 2

Now we apply the method to the following example:

ẋ = −x+ 0.1 sin(2πt)x

ẏ = −2y − 0.1 sin(2πt)y

over the time interval [0, 1]. We choose the 144 points {(t, x, y) | t ∈
{0, 1

16 ,
2
16 , . . . ,

15
16}, x, y ∈ {−

1
16 , 0,

1
16}}, which results in 144 symmetric 2 × 2 ma-

trices, i.e. 432 variables. We set all variables Cν =: C and Dν =: D, so that we have
432+2 = 434 variables in the semidefinite programming problem. The triangulation
has v = 144 vertices and s = 384 simplices. The number of the constraints is 8736;
these consist of 6912 linear constraints (blocks of size 1) and 1824 (2× 2) matrices
which need to be positive semidefinite. We set the lower bound on the positive
definiteness (Constraint 4.) as ε0 := 0.1.

The solution obtained by the SDPA method on the NEOS solver is M(x̃k) =(
+1.45e+00 0

0 +1.385e+00

)
for all points x̃k and C = +1.45e+00, D =

+1.035e-06. The bound on the maximal Floquet exponent is thus − 1
2C = −0.34483.
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