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Given an autonomous discrete time system with an equilibrium at the origin and a hypercube
D containing the origin, we state a linear programming problem, of which any feasible solution
parameterizes a continuous and piecewise affine (CPA) Lyapunov function V : D → R for
the system. The linear programming problem depends on a triangulation of the hypercube.
We prove that if the equilibrium at the origin is exponentially stable, the hypercube is a subset
of its basin of attraction, and the triangulation fulfills certain properties, then such a linear
programming problem possesses a feasible solution. We present an algorithm that generates
such linear programming problems for a system, using more and more refined triangulations
of the hypercube. In each step the algorithm checks the feasibility of the linear programming
problem. This results in an algorithm that is always able to compute a Lyapunov function for
a discrete time system with an exponentially stable equilibrium. The domain of the Lyapunov
function is only limited by the size of the equilibrium’s domain of attraction. The system
is assumed to have a C2 right-hand side, but is otherwise arbitrary. Especially, it is not
assumed to be of any specific algebraic type like linear, piecewise affine, etc. Our approach
is a non-trivial adaption of the CPA method to compute Lyapunov functions for continuous
time systems to discrete time systems.

1. Introduction

Consider the discrete time dynamical system with an equilibrium at the origin:

xk+1 = g(xk), where g ∈ C2(Rn,Rn) and g(0) = 0. (1)

Define the mapping g◦m : Rn → Rn for all m ∈ N0 by induction through g◦0(x) := x
and g◦(m+1)(x) := g(g◦m(x)) for all x ∈ Rn. The origin is said to be an exponentially
stable equilibrium of the system (1) if there exist constants δ,M > 0 and 0 < µ < 1
such that ∥g◦m(x)∥ ≤ µmM∥x∥ for all ∥x∥ < δ and all m ∈ N0. The set A := {x ∈
Rn : lim supm→+∞ ∥g◦m(x)∥ = 0} is called its basin of attraction.
The stability of the equilibrium can be characterized by so-called Lyapunov func-

tions, i.e. continuous functionals on the state-space decreasing along the system tra-
jectories and with a minimum at the equilibrium. Further, Lyapunov functions addi-
tionally deliver an inner approximation of the basin of attraction.
For linear time discrete systems there is a well known method, using the discrete

Lyapunov equation, to compute a Lyapunov function for the system. If the system is
nonlinear one often computes a Lyapunov function for the linearized system, cf. Re-
mark 3. In most cases, however, this gives a very conservative estimate of the basin of
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attraction for the nonlinear system. This is unfortunate, because the size of the basin
of attraction is often of great importance. For example in engineering, the system (1)
is often a description of some machinery that has to be close to the equilibrium to
work as intended. Local stability of the equilibrium translates into “the system can
withstand all small enough perturbations” and this property is obviously a necessity
if the machinery is to be of any use. However, this property is clearly not sufficient
and the robustness of the machinery, i.e. how large perturbations it can withstand,
is of central importance. In social sciences or economics, for example, where models
and parameters are inherently subject to considerable uncertainty, the robustness of
an equilibrium is of even greater importance.
In such cases and many more, a Lyapunov function for the system, defined on a not

merely local neighbourhood of an equilibrium, but with a domain that extends over
a reasonable subset of the basin of attraction, gives useful and concrete information
on the robustness of an equilibrium. Such Lyapunov functions are, however, much
more difficult to construct than the local ones. For some general discussion on the
stability of equilibrium points of discrete time systems and Lyapunov functions see,
for example, chapter 5 in [39] or chapter 5 in [1] and for a more advanced discussion
on Lyapunov functions for discrete time systems see [20].
Numerical methods to compute Lyapunov functions for nonlinear discrete time

systems have, for example, been presented in [11, 12], where collocation is used to
solve numerically a discrete analogue to Zubov’s partial differential equation [42] us-
ing radial basis functions [8, 41] and in [4, 23], where graph algorithms are used to
compute complete Lyapunov functions [9, 36]. For nonlinear systems with a certain
structure there are many more approaches in the literature. To name a few, in [35]
the parameterization of piecewise-affine Lyapunov functions for linear discrete sys-
tems with saturating controls is discussed, [31] is concerned with the computation
of Lyapunov functions for (possibly discontinuous) piecewise-affine systems, and in
[10] linear matrix inequalities are used to compute piecewise quadratic Lyapunov
functions for discrete piecewise-affine systems.
The method in this paper does not require a special structure of the discrete time

dynamical system, and includes error estimates within the computations, i.e. it proves
that the computed function satisfies all requirements of a Lyapunov function exactly.
To the best knowledge of the authors it is the first method that is guaranteed to
compute true Lyapunov functions for general nonlinear discrete time systems.
In this paper we adapt the continuous and piecewise-affine (CPA) method to com-

pute Lyapunov functions for continuous time systems, first presented in [21, 22] and
in a more refined form delivering true Lyapunov functions in [33, 34], to discrete time
systems. Originally the CPA method for continuous time systems was only guaran-
teed to compute Lyapunov functions for systems with an exponentially stable [17]
or an asymptotically stable [18] equilibrium, if an arbitrary small neighbourhood of
the equilibrium was cut out from the domain. In [13–16] this restriction was removed
by introducing a fan-like triangulation near the equilibrium. A similar approach is
used for the discrete time CPA method in this paper. Because a solution trajectory
of a discrete time system is a sequence of states rather than an absolutely continuous
path, as in the continuous time case, a fundamentally different methodology must be
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used to compute a CPA Lyapunov function for a discrete time system.
The CPAmethod for continuous time systems has been extended to nonautonomous

switched systems [19] and to autonomous differential inclusions [2, 3]. The CPA
method for discrete time systems can, at least with some limitation, be extended to
difference inclusions and we discuss this in Section 6. The details of this extension
would, however, go beyond the scope of this paper and are a matter of ongoing
research.
In this paper, we state in Definition 2.8 a linear programming feasibility prob-

lem with the property, that a solution to the problem parameterizes a Lyapunov
function for the system, cf. Theorem 2.10. The domain of the Lyapunov function is
only limited by the size of the equilibrium’s basin of attraction and not by artificial
bounds due to the approach as when linearizing the system. The exponential sta-
bility of an equilibrium of the system (1) is equivalent to the existence of a certain
type of Lyapunov functions for the system as shown in Lemma 4.1. We use this in
Theorem 4.2 to prove that the feasibility problem always possesses a solution if the
parameters of the problem are chosen in a certain way. Because there are algorithms,
for example the simplex algorithm, that always find a feasible solution to a linear
programming problem if one exists, and because we can adequately scan the param-
eter space algorithmically, cf. Definition 3.1, this delivers an algorithm that is always
able to compute a Lyapunov function, of which the domain is only limited by the
basin of attraction, for a system of the form (1) possessing an exponentially stable
equilibrium.
The structure of the paper is as follows: In Section 2 we define the Lyapunov

functions and the triangulations we will be using and then we state our linear pro-
gramming problem in Definition 2.8. Then, in Theorem 2.10, we prove that a feasible
solution to the linear programming problem parameterizes a CPA Lyapunov function
for the system. In Section 3 we state an algorithm in Definition 3.1 that systemat-
ically generates linear programming problems as in Definition 2.8. In Section 4 we
prove the existence of a certain Lyapunov function for systems with an exponentially
stable equilibrium in Lemma 4.1 and then use it in Theorem 4.2 to prove that the
algorithm from Definition 3.1 will deliver a feasible linear programming problem for
any such system. Thus, we can always compute a CPA Lyapunov function for a sys-
tem with an exponentially stable equilibrium. In Section 5 we give an example of
our approach to compute CPA Lyapunov functions and in Section 6 we give some
concluding remarks and ideas for future research.

Notations

For a vector x ∈ Rn we write xi or (x)i for its i-th component. For x ∈ Rn

and p ≥ 1 we define the norm ∥x∥p =
(∑n

i=1 |xi|
p
)1/p

. We also define ∥x∥∞ =
maxi∈{1,2,...,n} |xi|. We will repeatedly use the Hölder inequality |x · y| ≤ ∥x∥p∥y∥q,
where p−1 + q−1 = 1, and the norm equivalence relations

∥x∥p ≤ ∥x∥q ≤ nq
−1−p−1

∥x∥p for +∞ ≥ p > q ≥ 1 and x ∈ Rn.

The induced matrix norm ∥ · ∥p is defined by ∥A∥p = max∥x∥p=1 ∥Ax∥p. Clearly
∥Ax∥p ≤ ∥A∥p∥x∥p. For a symmetric matrix P ∈ Rn×n we denote by λPmin and λPmax
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the minimal and maximal eigenvalue of A, respectively. Further, if P is additionally
positive definite, i.e. its eigenvalues are all strictly larger than zero, we define the
energetic norm ∥x∥P :=

√
xTPx. The estimate

√
λPmin ∥x∥2 ≤ ∥x∥P ≤

√
λPmax ∥x∥2

for all x ∈ Rn follows immediately from this definition.
Let (x0,x1, . . . ,xm) be an ordered (m + 1)−tuple of vectors in Rn. The set

of all convex combinations of these vectors is denoted by co(x0,x1, . . . ,xm) :={∑m
i=0 λixi : 0 ≤ λi ≤ 1,

∑m
i=0 λi = 1

}
. The vectors (x0,x1, . . . ,xm) are called

affinely independent if
∑m

i=1 λi(xi − x0) = 0 implies λi = 0 for all i = 1, . . . ,m.
If (x0,x1, . . . ,xm) are affinely independent, then the set co(x0,x1, . . . ,xm) is called
an m-simplex and the vectors x0,x1, . . . ,xm are said to be its vertices.
An inequality such as x ≤ y, where x and y are vectors, is always to be understood

componentwise, i.e. xi ≤ yi for all i.
The set of m-times continuously differentiable functions from an open set O to a

set P is denoted by Cm(O,P). We denote the closure of a set D by D, its interior by
D◦, and its boundary by ∂D := D \ D◦. Finally, Bδ is defined as the open ∥ · ∥2-ball
with center 0 and radius δ, i.e. Bδ := {x ∈ Rn : ∥x∥2 < δ}.

Remark 1. It is unusual to define a simplex as the convex combination of the vec-
tors of an ordered tuple, because the resulting set is obviously independent of the
particular order of the vectors. For our purposes their order is, however, important
and this definition has several advantages, cf. Definition 2.6 and Remark 5.

2. The linear programming problem

In the following definition we define the set N of certain neighborhoods of the origin
that will be used repeatedly in this paper.

Definition 2.1. Denote by N the set of all subsets D ⊂ Rn that fulfill :

i) D is compact.
ii) The interior D◦ of D is a connected open neighborhood of the origin.
iii) D = D◦.

A Lyapunov function for a system is a continuous function V : D → R, with a local
minimum at the equilibrium at the origin, which is decreasing along system trajec-
tories, i.e. V (g(x)) < V (x) for all x ̸= 0. Because the dynamics of a discrete time
system are nonlocal, i.e. g(x) is not necessarily close to x, the property “decreasing
along system trajectories” needs some additional consideration compared to the con-
tinuous time case, where solution trajectories are absolutely continuous. One must
either assume, that D is forward invariant or, more practically, restrict the demand
V (g(x)) < V (x) to all x in a subset O of D, such that x ∈ O implies g(x) ∈ D. We
follow the second approach.

Definition 2.2. Let D,O ∈ N , D ⊃ O, and ∥ · ∥ be an arbitrary norm on Rn. A
continuous function V : D → R is called a Lyapunov function for the system (1) if it
fulfills :

i) g(x) ∈ D for all x ∈ O.
ii) V (0) = 0 and there exist constants a, b > 0 such that a∥x∥ ≤ V (x) ≤ b∥x∥ for all
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x ∈ D.
iii) There exists a constant c > 0 such that V (g(x))− V (x) ≤ −c∥x∥ for all x ∈ O.

Remark 2. It is well known, that the origin is an exponentially stable equilibrium
of the system (1), if and only if it possesses a Lyapunov function in the sense of
Definition 2.2. In this case every connected component of a sublevel set V −1([0, r]),
r > 0, that is compact in O◦, is a subset of the equilibrium’s basin of attraction.
The sufficiency follows directly by

V (g(x)) ≤ −c∥x∥+ V (x) ≤ −c

b
V (x) + V (x) ≤

(
1− c

b

)
V (x),

from which

a∥xk∥ ≤ V (xk) ≤
(
1− c

b

)k
V (x0) ≤

(
1− c

b

)k
b∥x0∥

follows. The necessity follows by Lemma 4.1 below. The proposition about the sub-
level sets follows, for example, by Theorem 2.2 in [11].
This fact implies, that we can only consider discrete time systems possessing an

exponentially stable equilibrium in our method, because a CPA Lyapunov function
is a Lyapunov function in the sense of Definition 2.2.

Remark 3. The classical approach to compute a Lyapunov function for a time
discrete system is to solve the so-called discrete Lyapunov equation,

ATPA = P −Q,

where A := Dg(0) is the Jacobian matrix of g at the origin and Q is any positive
definite matrix. For discussion of the discrete Lyapunov equation see, for example,
Lemma 5.7.19 in [39]. It can be solved numerically in an efficient way [6]. See also
[30] and [5].
If the moduli of all eigenvalues of A are less than one then V (x) :=

√
xTPx is a

Lyapunov function for the system in the sense of Definition 2.2 in some neighbourhood
of the origin. If g is linear then g(x) = Ax for all x ∈ Rn and this neighborhood is
Rn, but for general nonlinear systems this neighbourhood will be much smaller than
the equilibrium’s basin of attraction.

The idea of how to compute a CPA Lyapunov function for the system (1) given
a hypercube D ∈ N , is to subdivide D into a set T := {Sν : ν = 1, 2, . . . , N}
of n-simplices Sν , such that any two simplices in T intersect in a common face or
are disjoint, cf. Definition 2.3. Then we construct a linear programming problem in
Definition 2.8, of which every feasible solution parameterizes a CPA function V , i.e. a
continuous function that is affine on each simplex in T , cf. Definition 2.4. Then we
show in Theorem 2.10 that V is a Lyapunov function for the system in the sense of
Definition 2.2.
Because we cannot use a linear programming problem to check the conditions

a∥x∥ ≤ V (x) ≤ b∥x∥ and V (g(x)) − V (x) ≤ −c∥x∥ for more than finitely many
x, the essence of the linear programming problem is how to ensure that this holds for
all x ∈ D and all x ∈ O ⊂ D, respectively, by only using a finite number of points x.
We start by defining general triangulations and CPA functions, then we define the

triangulations we use in this paper and derive their basic properties.

Definition 2.3 (Triangulation). Let T be a collection of n-simplices Sν in Rn. T
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is called a triangulation of the set D :=
∪

Sν∈T Sν if for every Sν ,Sµ ∈ T , either
Sν ∩Sµ = ∅ or Sν and Sµ intersect in a common face. The latter means, with

Sν = co (xν
0 ,x

ν
1 , . . . ,x

ν
n) and Sµ = co

(
xµ
0 ,x

µ
1 , . . . ,x

µ
n

)
,

that there are permutations α and β of the numbers 0, 1, 2, . . . , n such that

zi := xν
α(i) = xµ

β(i)
, for i = 0, 1, . . . , k, where 0 ≤ k ≤ n,

and

Sν ∩Sµ = co (z0, z1, . . . , zk) .

Definition 2.4 (CPA function). Let T be a triangulation of a set D ⊂ Rn. Then
we can define a continuous, piecewise affine function P : D → R by fixing its values
at the vertices of the simplices of the triangulation T . More exactly, assume that for
every vertex x of every simplex Sν ∈ T we are given a unique real number Px. In
particular, if x is a vertex of Sν ∈ T and y is a vertex of Sµ ∈ T and x = y, then
Px = Py. Then we can uniquely define a function P : D → R through :

i) P (x) := Px for every vertex x of every simplex Sν ∈ T .
ii) P is affine on every simplex Sν ∈ T .

The set of such continuous, piecewise affine functions D → R fulfilling i) and ii) is
denoted by CPA[T ].

Remark 4. If P ∈ CPA[T ] then for every Sν ∈ T there is a unique vector aν ∈ Rn

and a unique number bν ∈ R, such that P (x) = aTν x + bν for all x ∈ Sν . Further,
if x ∈ Sν = co (xν

0 ,x
ν
1 , . . . ,x

ν
n) ∈ T , then x can be written uniquely as a convex

combination x =

n∑
i=0

λix
ν
i , 0 ≤ λi ≤ 1 for all i = 0, 1, . . . , n, and

∑n
i=0 λi = 1, of the

vertices of Sν and

P (x) = P

(
n∑

i=0

λix
ν
i

)
=

n∑
i=0

λiP (xν
i ) =

n∑
i=0

λiPxν
i
.

For the construction of our triangulations we use the set Sn of all permutations
of the numbers 1, 2, . . . , n, and the standard orthonormal basis e1, e2, . . . , en of Rn.
For a set J ⊂ {1, 2, . . . , }, we define the characteristic function χJ (i) equal to one
if i ∈ J and equal to zero if i /∈ J . Further, we use the functions RJ : Rn → Rn,
defined by

RJ (x) :=

n∑
i=1

(−1)χJ (i)xiei.

RJ (x) puts a minus in front of the coordinate xi of x whenever i ∈ J .

Definition 2.5. We define three general triangulations T std, T std
K , and T std

K,b of Rn.

(1) The standard triangulation T std consists of the simplices

SzJ σ := co

(
RJ

(
z+

j∑
i=1

eσ(i)

)
: j = 0, 1, 2, . . . , n

)
for all z ∈ Nn

0 , all J ⊂ {1, 2, . . . , n}, and all σ ∈ Sn.
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(2) Choose a K ∈ N0 and consider the intersections of the n-simplices SzJ σ in
T std and the boundary of [−2K , 2K ]n. We are only interested in those inter-
sections that are (n − 1)-simplices, i.e. we take every simplex with vertices

xj := RJ
(
z+
∑j

i=1 eσ(i)

)
, j ∈ {0, 1, . . . , n}, where exactly one vertex satis-

fies ∥xj∗∥∞ ̸= 2K and the other n of the n + 1 vertices satisfy ∥xj∥∞ = 2K .
Then we replace the vertex xj∗ by 0. We collect the thus constructed simplices
and remove duplicates, i.e. if Sν and Sµ are the same subset of Rn we remove
one of them. This collection is a new triangulation of [−2K , 2K ]n. We denote
it T std

K and refer to it as simplicial fan.
(3) Now choose a constant b > 0 and scale down the triangulation (simplicial

fan) T std
K of the hypercube [−2K , 2K ]n and the triangulation T std outside of

the hypercube [−2K , 2K ]n with the mapping x 7→ ρx, where ρ := 2−Kb. We
denote by T std

K,b the resulting set of n-simplices, i.e.

T std
K,b = ρT std

K ∪ ρ
{
S ∈ T std : S∩ ]− 2K , 2K [n= ∅

}
.

(a) T std = T std
0,b (b) T std

1,b (c) T std
2,b

Figure 1. Schematic pictures in 2D of some of the triangulations used in this paper. The
first parameter of the triangulations is a positive integer K that determines the number of
simplices in the fan at the origin. The second parameter b > 0 is used to fix the size of the
regular simplices not at the origin.

The two parameters b and K of the triangulation T std
K,b in Definition 2.5 refer to

the size of the hypercube [−b, b]n covered by its simplicial fan at the origin and to
the fineness of the triangulation, respectively. For schematic pictures of some of these
triangulations in 2D see Figure 1. For similar pictures in 3D see Figure 1 in [15].
The triangulations T std, T std

K , and T std
K,b are the same as in [16]. Especially, it is

proven in Lemma 3 in that paper that T std
K,b actually is a triangulation.

The simplicial fan T std
K at the origin is needed, for otherwise the triangulation

might not support enough structure for a CPA Lyapunov function close to the equi-
librium. This is discussed in detail for continuous time systems in [13–16] and the
same argumentation applies to the discrete time case.

Definition 2.6. For an n-simplex S = co (x0,x1, . . . ,xn) we define its shape
matrix XS ∈ Rn×n through

XS := (x1 − x0,x2 − x0, . . . ,xn − x0)
T
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Thus, the matrix XS is defined by writing the entities of the vector xi − x0 in the
i-th row of XS for i = 1, 2, . . . , n.
For a triangulation T given as a collection of simplices with ordered vertices we

refer to the set {XS : S ∈ T } as the shape matrices of the triangulation T .

Remark 5. Definition 2.6 is the reason why we have defined a simplex as the convex
combination of the vectors in an ordered tuple. The resulting simplex is not dependent
on the particular order of the vectors, however, the shape matrix is.

Notice, that because S is an n-simplex, the vectors (x0,x1, . . . ,xn) are affinely
independent, i.e. the shape matrix XS is nonsingular.

Lemma 2.7. The set of the shape matrices of T std is finite. For any fixed K ∈ N0

and b > 0 the set of the shape matrices of T std
K,b is finite.

Proof . Notice that SzJ σ and Sz∗J ∗σ∗ have the same shape matrix if J = J ∗ and
σ = σ∗. As there are 2n different subsets J ⊂ {1, 2, . . . , n} and n! different permuta-
tions σ of {1, 2, . . . , n} there can be no more than 2nn! different shape matrices for
T std.
The second statement of the lemma now follows immediately, because the simplicial

fan at the origin in T std
K,b is finite. �

Now we can formulate our linear programming feasibility problem for the system
(1): Let F > 0 be a real number and 2 ≤ NI < NO < ND be natural numbers,
satisfying some additional assumptions specified below. Define

I := NI · F, O := NO · F, and D := ND · F
and the hypercubes

D := [−D,D]n, O := [−O,O]n, I := [−I, I]n, and F := [−F, F ]n.

These hypercubes serve the following purposes: D is the domain of the Lyapunov
function. O ⊂ D (outer set) is the same set as in Definition 2.2. For every x ∈ O
we demand g(x) ∈ D and the decreasing property V (g(x))− V (x) ≤ −c∥x∥. I ⊂ O
(inner set) is defined such that for every x ∈ F we have g(x) ∈ I. Finally, F ⊂ I
(fan) is the domain close to the origin where we use the simplicial fan triangulation.
Let the numbers 2 ≤ NI < NO < ND be chosen such that x ∈ F implies g(x) ∈ I

and x ∈ O implies g(x) ∈ D, i.e.
max

∥x∥∞≤F
∥g(x)∥∞ ≤ I and max

∥x∥∞≤O
∥g(x)∥∞ ≤ D. (2)

Clearly D ⊃ O ⊃ I ⊃ F and F contains the origin as an inner point.
Let K ∈ N0 and consider the triangulation T std

K,F of Rn from Definition 2.5. Define

T :=
{
S ∈ T std

K,F : S ∩ D◦ ̸= ∅
}
. (3)

Then, by the definitions of T std
K,F and D, clearly

∪
S∈T S = D and T is a triangu-

lation of D in the sense of Definition 2.3. Before we present the linear programming
problem we need a few specifications and definitions.
With A := Dg(0) as the Jacobi matrix of g at the origin and Q ∈ Rn×n an arbitrary

positive definite matrix, we solve the discrete time Lyapunov equation

ATPA = P −Q (4)
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for a positive definite P ∈ Rn×n. We define

VP (x) := ∥x∥P , (5)

α :=
1

8

√
λQmin/λ

P
max, (6)

Hmax :=
λPmax√
λPmin

(
1 +

λPmax

λPmin

)
, (7)

for every Sν ∈ T define

hν := max
x,y∈Sν

∥x− y∥2 (8)

and let Bν and Gν be constants fulfilling

Bν ≥ n · max
m,r,s=1,2,...,n

z∈Sν

∣∣∣∣ ∂2gm
∂xr∂xs

(z)

∣∣∣∣ if Sν ⊂ F and (9)

Gν ≥ n · max
i,j=1,2,...,n

z∈Sν

∣∣∣∣ ∂gi∂xj
(z)

∣∣∣∣ if Sν ⊂ O. (10)

See Remark 6 for an interpretation of the constants Bν and Gν .
We further define

hI\F := max {hν : Sν ⊂ I \ F◦} , (11)

h∂F ,P := max {∥x− y∥P : x ̸= 0 and y ̸= 0 vertices of an Sν ⊂ F} , (12)

GF := max {Gν : Sν ⊂ F} , and (13)

EF := GF ·max
{
Hmax · (hI\F )2/F, 2h∂F ,P

}
. (14)

Note that all constants α,Hmax, hν , Bν , Gν , hI\F , h∂F ,P , GF , EF are strictly positive.
We are now ready to state the linear programming problem. The variables of the

linear programming problem are C and Vx for all vertices x of all of the simplices
S1,S2, . . . ,SN in T . The variable C is an upper bound on the gradient of the
function V : D → R and for every vertex x the variable Vx is its value at x, i.e. V (x) =
Vx, cf. Definition 2.4.

Definition 2.8 (The linear programming feasibility problem). The constraints of
the linear programming feasibility problem are :

(I) For every Sν = co(x0,x1, . . . ,xn) ∈ T , Sν ⊂ I, we set

Vxi = VP (xi) for i = 0, 1, . . . , n,

where VP is the local Lyapunov function from (5).
(II) For every Sν = co(x0,x1, . . . ,xn) ∈ T we demand

Vxi ≥ VP (xi) for i = 0, 1, . . . , n. (15)

(III) For every Sν = co(x0,x1, . . . ,xn) we define the vectors

wν := (Vx1 − Vx0 , Vx2 − Vx0 , . . . , Vxn − Vx0)
T and ∇Vν := X−1

Sν
wν ,

where XSν
is the shape matrix of Sν , cf. Definition 2.6, and we demand

∥∇Vν∥1 ≤ C. (16)

These constraints are linear in the variables of the linear programming prob-
lem, cf. Remark 7.
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(IV) For every Sν = co (x0,x1, . . . ,xn) ∈ T , Sν ⊂ O, and every i = 0, 1, . . . , n,
there is a simplex Sµ ∈ co(y0,y1, . . . ,yn) ∈ T such that g(xi) ∈ Sµ. This
means that we can write g(xi) uniquely as a convex combination g(xi) =∑n

j=0 µjyj of the vertices of Sµ, cf. Remark 8.
If Sν ⊂ O \ F◦ we demand

n∑
j=0

µjVyj − Vxi + CGνhν ≤ −α∥xi∥Q for i = 0, 1, . . . , n. (17)

If Sν ⊂ F we demand
n∑

j=0

µjVyj − Vxi + CBνhν∥xi∥2 + EF ≤ −α∥xi∥Q for i = 1, . . . , n. (18)

Note, that we do not demand (18) for i = 0, cf. Remark 8.

We have several remarks before we prove in Theorem 2.10 that a feasible solution
to the linear programming problem in Definition 2.8 parameterizes a CPA Lyapunov
function for the system in question. For some of the remarks and for later we need
the following results, proved, for example, in Proposition 4.1 and Lemma 4.2 in [3].

Proposition 2.9. Let co(x0,x1, . . . ,xk) ⊂ Rn be a k-simplex, define S :=
co(x0,x1, . . . ,xk), h := maxi,j=0,1,...,k ∥xi − xj∥2, and consider a convex combina-

tion
∑k

i=0 λixi ∈ S. Let U ⊂ Rn be an open set with S ⊂ U .

a) If g : U → R is Lipschitz-continuous with constant L on U , i.e. |g(x) − g(y)| ≤
L∥x− y∥2 for all x,y ∈ U , then∣∣∣∣∣g

(
k∑

i=0

λixi

)
−

k∑
i=0

λig(xi)

∣∣∣∣∣ ≤ Lh.

b) If g ∈ C2(U ,R) and BH := max
z∈S
∥H(z)∥2, where H(z) is the Hessian of g at z,

then ∣∣∣g( k∑
i=0

λixi

)
−

k∑
i=0

λig(xi)
∣∣∣

≤ 1

2

k∑
i=0

λiBH∥xi − x0∥2
(
max
z∈S
∥z− x0∥2 + ∥xi − x0∥2

)

≤ hBH

k∑
i=0

λi∥xi − x0∥2

≤ BHh2,

Further useful bounds are obtained by noting that

BH ≤ n · max
r,s=1,2,...,n

z∈S

∣∣∣∣ ∂2g

∂xr∂xs
(z)

∣∣∣∣ .
Remark 6. For everySν = co (x0,x1, . . . ,xn) ∈ T ,Sν ⊂ F , we have by Proposition
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2.9 with the constants Bν in (9) for every convex combination x =
∑n

i=0 λixi:∥∥∥∥∥g(x)−
n∑

i=0

λig(xi)

∥∥∥∥∥
∞

≤ Bνh
2
ν .

Now let Sν ⊂ O. For an interpretation of the constants Gν in (10), notice that
for any x,y ∈ Rn there is an i ∈ {1, 2, . . . , n} and a vector zxy on the line segment
between x and y such that

∥g(x)− g(y)∥∞ = |gi(x)− gi(y)| = |∇gi(zxy) · (x− y)| ≤ ∥∇gi(zxy)∥1∥x− y∥∞.

Hence, we have for Sν ⊂ O

sup
x,y∈Sν

x ̸=y

∥g(x)− g(y)∥∞
∥x− y∥∞

≤ n · max
i,j=1,2,...,n

z∈Sν

∣∣∣∣ ∂gi∂xj
(z)

∣∣∣∣ ≤ Gν . (19)

Now let Sν ⊂ F . In particular, since g(0) = 0, we have for every x ∈ Sν ⊂ F ,
x ̸= 0, that

∥g(x)∥∞
∥x∥∞

≤ Gν ≤ GF and ∥g(x)∥∞ ≤ GFF. (20)

Remark 7. Consider a simplex Sν = co(xν
0 ,x

ν
1 , · · · ,xν

n) in the triangulation T . The
components of the vector ∇Vν are linear in the variables Vxν

0
, Vxν

1
, . . . , Vxν

n
and by

introducing the auxiliary variables Cν
1 , C

ν
2 , . . . , C

ν
n it is easily seen that ∥∇Vν∥1 ≤ C

can be implemented by the constraints

Cν
1 + Cν

2 + . . .+ Cν
n ≤ C and − Cν

i ≤ (∇Vν)i ≤ Cν
i for i = 1, 2, . . . , n,

where (∇Vν)i is the i-th component of ∇Vν .

Remark 8. Consider the constraints (IV) in Definition 2.8. Clearly g(xi) can be in
more than one simplex of T . However, the representation

∑n
j=0 µjVyj in (17) and

(18) does not depend on the particular simplex Sµ = co(y0,y1, . . . ,yn) such that
g(xi) =

∑n
j=0 µjyj because T is a triangulation. Further, (18) cannot be fulfilled for

i = 0 because EF > 0.

We now prove that a feasible solution to the linear programming problem in Defi-
nition 2.8 parameterizes a CPA Lyapunov function for the system in question.

Theorem 2.10. If the linear programming problem from Definition 2.8 using sys-
tem (1) has a feasible solution, then the function V : D → R, parameterized using
the values Vx and the triangulation T as in Definition 2.4, is a Lyapunov function
in the sense of Definition 2.2 for the system (1).

Proof . We will show ii) and iii) in Definition 2.2 with certain norms, namely ∥ · ∥P
and ∥·∥Q. As all norms in Rn are equivalent, this implies the statement with different
constants a, b, c > 0.
For every x ∈ D there is a co(x0,x1, . . . ,xn) ∈ T such that x =

∑n
i=0 λixi. The

convexity of the norm ∥ · ∥P immediately delivers with (15)

V (x) = V

(
n∑

i=0

λixi

)
=

n∑
i=0

λiVxi ≥
n∑

i=0

λi∥xi∥P ≥

∥∥∥∥∥
n∑

i=0

λixi

∥∥∥∥∥
P

= ∥x∥P

and the definition of V as a piecewise affine function such that V (0) = 0 renders
the existence of a constant b > 0 such that V (x) ≤ b∥x∥P for all x ∈ D obvious.



March 19, 2014 14:45 disc˙revised˙web

12

The demanding part of the proof is to show that V (g(x))− V (x) ≤ −α∥x∥Q for all
x ∈ O.
To do this we first show the auxiliary result that |V (z) − V (y)| ≤ C∥z − y∥∞

for all y, z ∈ D. Define rµ := y + µ(z − y) for all µ ∈ [0, 1]. Since D is convex,
the line segment {rµ : µ ∈ [0, 1]} is contained in D and clearly there are numbers
0 = µ0 < µ1 < µ2 < . . . < µK = 1 and ν1, ν2, . . . , νK such that rµ ∈ Sνi for all
µ ∈ [µi−1, µi], i = 1, 2, . . . , K. Now r0 = y and r1 = z, and for every i = 1, 2, . . . , K
we have V (x) = ∇Vνi · (x− xνi

0 ) + Vxνi
0
for x ∈ Sνi = co

(
xνi
0 ,x

νi
1 , . . . ,x

νi
n

)
. Thus, by

(16),

|V (z)− V (y)| =

∣∣∣∣∣
K∑
i=1

[V (ri)− V (ri−1)]

∣∣∣∣∣ ≤
K∑
i=1

|∇Vνi · (ri − ri−1)|

≤
K∑
i=1

∥∇Vνi∥1∥ri − ri−1∥∞ ≤
K∑
i=1

C(µi − µi−1)∥z− y∥∞

= (µK − µ0)C∥z− y∥∞ = C∥z− y∥∞. (21)

A direct consequence is that if y, z ∈ Sν ⊂ O, then g(y),g(z) ∈ D and by (19)

|V (g(z))− V (g(y))| ≤ C∥g(z)− g(y)∥∞ ≤ CGν∥z− y∥∞ ≤ CGνhν . (22)

We now show that V (g(x))−V (x) ≤ −α∥x∥Q for all x ∈ O. We first show this for
all x ∈ O \ F◦ and then for all x ∈ F .

Case 1: Let x ∈ O \ F◦ be arbitrary. Then there is an Sν = co(x0,x1, . . . ,xn) ⊂
O \ F◦ such that x ∈ Sν , which in turn implies that x can be written as a convex
combination of the vertices of the simplex, x =

∑n
i=0 λixi. But then by (22) and the

constraints (17) we have

V (g(x))− V (x) = V (g(x))−
n∑

i=0

λiV (g(xi)) +

n∑
i=0

λiV (g(xi))−
n∑

i=0

λiV (xi)

=

n∑
i=0

λi [V (g(x))− V (g(xi)) + V (g(xi))− V (xi)]

≤
n∑

i=0

λi[CGνhν + V (g(xi))− V (xi)] (23)

≤ −α
n∑

i=0

λi∥xi∥Q ≤ −α∥x∥Q.

Case 2: We now come to the more involved case x ∈ F . Let x ∈ F be arbitrary.
Then there is a simplex Sν = co(x0,x1, . . . ,xn) ⊂ F such that x ∈ Sν and x can be
written as a convex sum of its vertices, x =

∑n
i=0 λixi. However, now x0 = 0, which
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also implies g(x0) = 0 and V (g(x0)) = 0. Therefore

V (x) =

n∑
i=0

λiV (xi) =

n∑
i=1

λiV (xi), (24)

n∑
i=0

λig(xi) =

n∑
i=1

λig(xi), and (25)

n∑
i=0

λiV (g(xi)) =

n∑
i=1

λiV (g(xi)). (26)

We extend V (g(x))− V (x) to three differences a), b), and c), namely

V (g(x))− V (x) = V (g(x))− V

(
n∑

i=1

λig(xi)

)
︸ ︷︷ ︸

a)

+V

(
n∑

i=1

λig(xi)

)
−

n∑
i=1

λiV (g(xi))︸ ︷︷ ︸
b)

+

n∑
i=1

λiV (g(xi))−
n∑

i=1

λiV (xi)︸ ︷︷ ︸
c)

, (27)

and then we find upper bounds for a), b), and c) separately.
a) By (25), (22), and Proposition 2.9 we get∣∣∣∣∣V (g(x))− V

(
n∑

i=1

λig(xi)

)∣∣∣∣∣ ≤ C

∥∥∥∥∥g(x)−
n∑

i=1

λig(xi)

∥∥∥∥∥
∞

(28)

= C

∥∥∥∥∥g(x)−
n∑

i=0

λig(xi)

∥∥∥∥∥
∞

≤ C

n∑
i=0

λiBνhν∥xi − x0∥2

= CBνhν

n∑
i=1

λi∥xi∥2.

b) Set zi := g(xi) for i = 0, 1, . . . , n and z =
∑n

i=0 λizi =
∑n

i=1 λizi. We show that

V (z)−
n∑

i=1

λiV (zi) ≤ V (z)− VP (z) ≤ EF

n∑
i=1

λi. (29)

A norm is a convex function, so VP , cf. (5), is convex. Using (25) and (26) we get by
Jensen’s inequality that

VP (z) = VP

(
n∑

i=1

λizi

)
= VP

(
n∑

i=0

λizi

)
≤

n∑
i=0

λiVP (zi) =

n∑
i=1

λiVP (zi). (30)

For i = 1, 2, . . . , n we have zi = g(xi) ∈ Sνi = co
(
yνi
0 ,y

νi
1 , . . . ,y

νi
n

)
⊂ I since xi ∈ F .

Thus we can write zi as a convex combination of the vertices ofSνi , zi =
∑n

j=0 γjy
νi
j ,
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and by the definition of V on I (constraint (I)) and Jensen’s inequality we get

VP (zi) = VP

(
n∑

j=0

γjy
νi
j

)
≤

n∑
j=0

γj VP
(
yνi
j

)︸ ︷︷ ︸
=V (yνi

j )

= V

(
n∑

j=0

γjy
νi
j

)
= V (zi) (31)

Together, (30) and (31) imply

V (z)−
n∑

i=1

λiV (zi) ≤ V (z)− VP (z) +

n∑
i=1

λi[VP (zi)− V (zi)]

≤ V (z)− VP (z) ,

i.e. the first inequality in (29) holds true.
To prove the second inequality in (29) we first show two auxiliary inequalities, (34)

and (36). If z ∈ I \ F , then we can use Proposition 2.9 to gain upper bounds on
V (z)− VP (z). The Hessian matrix of VP at z is given by

H(z) =
1

∥z∥P
P − 1

∥z∥3P
(Pz)(Pz)T , (32)

from which, with Hmax from (7),

∥H(z)∥2 ≤
Hmax

∥z∥2
≤ Hmax

F
, (33)

follows. There is an Sµ = co(y0,y1, . . . ,yn) ⊂ I \ F◦ such that z ∈ Sµ and we can
write z as a convex combination of the vertices of Sµ, z =

∑n
j=0 µjyj . Hence, by

Proposition 2.9, z ∈ I \ F implies

V (z)− VP (z) = V

(
n∑

j=0

µjyj

)
− VP (z) (34)

=

n∑
j=0

µjVP (yj)− VP

(
n∑

j=0

µjyj

)

≤ Hmax

F
(hI\F )

2.

If z ∈ F , then there is an Sµ = co(y0,y1, . . . ,yn) ⊂ F such that z ∈ Sµ. Define
ui := yi − y1 for i = 1, 2, . . . , n. We can write z as a convex combination of the
vertices of Sµ and since y0 = 0 this now implies

z =

n∑
i=0

µiyi =

n∑
i=1

µiyi =

n∑
i=1

µi(y1 + ui). (35)

Now

V (z) =

n∑
i=1

µi∥y1 + ui∥P ≤
n∑

i=1

µi (∥y1∥P + ∥ui∥P ) ≤
n∑

i=1

µi
(
∥y1∥P + h∂F ,P

)
and

VP (z) =

∥∥∥∥∥
n∑

i=1

µi(y1 + ui)

∥∥∥∥∥
P

≥

∥∥∥∥∥
n∑

i=1

µiy1

∥∥∥∥∥
P

−

∥∥∥∥∥
n∑

i=1

µiui

∥∥∥∥∥
P

≥
n∑

i=1

µi
(
∥y1∥P − h∂F ,P

)
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Hence, z ∈ F implies

V (z)− VP (z) ≤ 2h∂F ,P

n∑
i=1

µi ≤ 2h∂F ,P . (36)

We now prove the second inequality in (29), considering two complementary cases:∑n
i=1 λi > G−1

F and
∑n

i=1 λi ≤ G−1
F . If

∑n
i=1 λi > G−1

F , then by (34), (36),∑n
i=1 µi ≤ 1, and the definition of EF we have

V (z)− VP (z) ≤ max

{
Hmax

F
(hI\F )

2, 2h∂F ,P

}
< EF

n∑
i=1

λi (37)

If
∑n

i=1 λi ≤ G−1
F , it follows from

∥z∥∞ =

∥∥∥∥∥
n∑

i=1

λig(xi)

∥∥∥∥∥
∞

≤
n∑

i=1

λi∥g(xi)∥∞ ≤
n∑

i=1

λiGFF (38)

by (20) that ∥z∥∞ ≤ F , i.e. z ∈ F . Thus, we can write z as in formula (35). Note
that the vertices y1,y2, . . . ,yn in that formula are not only in the boundary of F =
[−F, F ]n, a paraxial hypercube, but are also all points at the same side, i.e. there is
an n∗ ∈ {1, 2, . . . , n} such that (yi)n∗ = F for all i = 1, 2, . . . , n or (yi)n∗ = −F for
all i = 1, 2, . . . , n. Therefore,

∥z∥∞ =

∥∥∥∥∥
n∑

i=1

µiyi

∥∥∥∥∥
∞

=

n∑
i=1

µi∥yi∥∞ =

n∑
i=1

µiF,

which together with (38) implies

n∑
i=1

µi ≤ GF

n∑
i=1

λi.

Hence, by (36) and the definition of EF we get

V (z)− VP (z) ≤ 2h∂F ,P

n∑
i=1

µi ≤ 2h∂F ,PGF

n∑
i=1

λi ≤ EF

n∑
i=1

λi.

This inequality and (37) prove the second inequality in (29).
c) The constraints (18) imply

n∑
i=1

λiV (g(xi))−
n∑

i=1

λiV (xi) =

n∑
i=1

λi [V (g(xi))− V (xi)] (39)

≤ −
n∑

i=1

λi
[
CBνhν∥xi∥2 + EF + α∥xi∥Q

]
.

We now finish the proof by applying the results from a), b), and c), i.e. (28), (29),
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and (39), to (27) and obtain

V (g(x))− V (x) ≤ CBνhν

n∑
i=1

λi∥xi∥2︸ ︷︷ ︸
a)

+EF

n∑
i=1

λi︸ ︷︷ ︸
b)

(40)

−
n∑

i=1

λi
[
CBνhν∥xi∥2 + EF + α∥xi∥Q

]
︸ ︷︷ ︸

c)

≤ −α
n∑

i=1

λi∥xi∥Q ≤ −α

∥∥∥∥∥
n∑

i=1

λixi

∥∥∥∥∥
Q

= −α∥x∥Q

�

Remark 9. One might be tempted to assume that the CPA approximation of a
convex function is also convex. As this would imply that the term b) in (27) was
negative, the factor EF in the constraints (18) would not be necessary and the proof
of Theorem 2.10 would be much shorter. However, in general this is not true as shown
by the following counterexample :
Consider the convex function

P (x, y) 7→
(
x y
)(3 0

0 1

)(
x

y

)
and triangles with the vertices (0, 2), (−1, 1), (1, 1) and (0, 0), (−1, 1), (1, 1). For the
CPA approximation P̃ of P on these triangles we have P̃ (0, 2) = P (0, 2) = 4,
P̃ (0, 0) = P (0, 0) = 0 but P̃ (0, 1) = 0.5 · P (−1, 1) + 0.5 · P (1, 1) = 4. Thus

2 = 0.5 · P̃ (0, 2) + 0.5 · P̃ (0, 0) < P̃ (0.5 · 0 + 0.5 · 0, 0.5 · 2 + 0.5 · 0) = P̃ (0, 1) = 4

and P̃ is not convex.

Remark 10. A practical note for the implementation of the linear programming
problem: Theorem 2.10 still holds true if the constants in (7), (8), (11), (12), (13),
(14) and are replaced by upper bounds rather than the exact maxima. Similarly, (6)

can be replaced by 0 < α < 1
8

√
λQmin/λ

P
max.

3. The Algorithm

In the next definition we present an algorithm that generates linear programming
problems as in Definition 2.8 for the system (1). It starts with a fixed triangulation of
a hypercube D ∈ N and refines the triangulation whenever the linear programming
problem does not possess a feasible solution. The refinement is such that eventu-
ally a linear programming problem is generated, which possesses a feasible solution,
whenever the origin is an exponentially stable equilibrium of the system and D is in
its basin of attraction. This is proved in Theorem 4.2 in the next section, the main
contribution of this paper.
The main idea of the algorithm is to define a sequence of finer and finer grids,

indexed by K. They become finer both near the origin, so a finer and smaller fan,
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as well as outside. Hence, O and D will not depend on K, whereas FK and IK do
depend on K.
For the algorithm we must first fix some parameters. Let Q ∈ Rn×n be an arbitrary,

positive definite matrix and let P ∈ Rn×n be the unique solution to the discrete
Lyapunov equation (4). We fix a real number F0 > 0 and positive integers NI,0, NO,0,

and ND,0. Define

I0 := NI,0F0, O0 := NO,0F0, D0 := ND,0F0,

F0 := [−F0, F0]
n, I0 := [−I0, I0]n, O := [−O0, O0]

n, D := [−D0, D0]
n.

The number NI,0 must be chosen such that NO,0 > NI,0 ≥ 2 and

NI,0 ≥ n · max
i,j=1,2,...,n
∥z∥∞≤F0

∣∣∣∣ ∂gi∂xj
(z)

∣∣∣∣ .
This last inequality implies

I0 = F0NI,0 ≥ max
∥x∥∞≤F0

∥g(x)∥∞,

cf. Remark 6.
The numbers NO,0 and ND,0 must be chosen such that ND,0 > NO,0 and g(O) ⊂ D,

i.e.,

max
∥x∥∞≤O0

∥g(x)∥∞ ≤ D0. (41)

For all K ∈ N0 we define

FK := 2−KF0,

NI,K := NI,0, IK := NI,KFK ,

NO,K := 2KNO,0, OK := NO,KFK = NO,0F0,

ND,K := 2KND,0, DK := ND,KFK = ND,0F0,

FK := [−FK , FK ]n, IK := [−IK , IK ]n.

We fix constants B and G such that

B ≥ n · max
m,r,s=1,2,...,n

z∈D

∣∣∣∣ ∂2gm
∂xr∂xs

(z)

∣∣∣∣ and

G ≥ n · max
i,j=1,2,...,n

z∈D

∣∣∣∣ ∂gi∂xj
(z)

∣∣∣∣ .
Now, for any K ∈ N0 we can construct a linear programming problem as in Definition
2.8 by giving the following values to the parameters of the problem:

F := FK , NI := NI,K , NO := NO,K and ND := ND,K .

Denote by LK such a linear programming problem using these parameter values, the
triangulation TK := T std

K,FK
, and Bν := B and Gν := G for all simplices Sν in the

triangulation of D as defined in (3).
For LK the constants I, O, and D in Definition 2.8 are given by I := IK , O :=

OK = O0, and D := DK = D0. Note especially that F := FK and I := IK change
with K, but O and D do not. Thus, (41) holds true with O0 replaced by OK and D0

replaced by DK .
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Further, for all K ∈ N0 we have g(FK) ⊂ IK because FK ≤ F0 and therefore

max
∥x∥∞≤FK

∥g(x)∥∞ ≤ FK · n · max
i,j=1,2,...,n
∥z∥∞≤FK

∣∣∣∣ ∂gi∂xj
(z)

∣∣∣∣ ≤ FKNI,0 = IK .

Hence, the matrices Q and P and the parameters F := FK , NI := NI,K , NO :=
NO,K , andND := ND,K are suitable for the linear programming problem in Definition
2.8, i.e. LK is properly defined.
The algorithm is as follows :

Definition 3.1 (The algorithm).

1. Set K = 0.
2. Construct the linear programming problem LK as described above.
3. If the linear programming problem LK has a feasible solution, then use it to pa-

rameterize a CPA Lyapunov function V : D → R for the system (1) as in Theorem
2.10. If the linear programming problem LK does not have a feasible solution, then
increase K by one, i.e. K ← K + 1, and repeat step 2.

Note, that if better estimates for the Bν ’s and Gν ’s than the uniform bounds B
and G in the algorithm are available, then these can be used.

Remark 11. Note that the scaling factor ρ from item (3) in Definition 2.3 for the
simplicial complex TK = T std

K,FK
is ρ = 2−KFK = 2−2KF0.

The number of simplices in the simplicial fan at the origin grows exponentially.
Indeed, it is not difficult to see that the simplicial fan of TK+1 contains 2n−1-times
the number of simplices in the simplicial fan of TK .

4. Main result

First, we state a fundamental lemma, the results of which are used in the proof
of Theorem 4.2, which is the main contribution of this paper. Lemma 4.1 ensures
the existence of a certain Lyapunov function for the system (1) if the origin is an
exponentially stable equilibrium. It states results similar to Theorem 5 in [16] for
continuous time systems, adapted to discrete time systems.

Lemma 4.1. Consider the system (1) and assume that the origin is an exponentially
stable equilibrium of the system with basin of attraction A, which is an open set. Let
Q ∈ Rn×n be an arbitrary positive definite matrix, A := Dg(0) be the Jacobi matrix
of g at the origin, and P ∈ Rn×n be the unique (positive definite) solution to the
discrete Lyapunov equation ATPA − P = −Q. Let D ∈ N be a subset of A. Then
there exists a function W : A → R that satisfies the following conditions :

a) W ∈ C2 (A \ {0},R)
b) There is a constant C∗ < +∞ such that

sup
x∈D\{0}

∥∇W (x)∥2 ≤ C∗. (42)

c) Set ε∗ := minx∈∂D ∥x∥2. For all 0 < ε < ε∗ define

Aε := max
i,j=1,2,...,n

{∣∣∣∣ ∂2W

∂xi∂xj
(x)

∣∣∣∣ : x ∈ D \ Bε} . (43)
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Then there is a constant A < +∞ such that

Aε ≤
A

ε
for all 0 < ε < ε∗. (44)

d)

W (x) ≥ ∥x∥P and W (g(x))−W (x) ≤ −2α∥x∥Q (45)

for all x ∈ D. Here α := 1/8 ·
√

λQmin/λ
P
max, i.e. the α from (6).

e) There is a constant δ > 0 such that

W (x) = ∥x∥P for all x ∈ Bδ. (46)

Proof . For completeness we show that A is open: Since the equilibrium at the origin
is exponentially stable, there is an ϵ > 0 such that Bϵ ⊂ A. Take an arbitrary x ∈ A.
There is a k ∈ N such that g◦k(x) ∈ Bϵ/2. By the continuity of g◦k there is a δ > 0

such that for all y ∈ x+ Bδ we have g◦k(y) ∈ g◦k(x) + Bϵ/2 ⊂ Bϵ ⊂ A, i.e. y ∈ A.
The idea of how to construct the function W is as follows : Locally, at the

origin, W is given by the formula (46) and away from the origin by the formula

W (x) := β

+∞∑
k=0

∥g◦k(x)∥Q, β > 0 a constant. In between, W is a smooth interpola-

tion of these two. First we work this construction out and then we show that the
constructed function fulfills the claimed properties a), b), c), d), and e).

Definition of W : Since P is a solution to the discrete Lyapunov equation (4), it
follows immediately that ṼP (x) = ∥x∥2P is a Lyapunov function for the linear system
xk+1 = Axk, satisfying

ṼP (Ax)− ṼP (x) = −∥x∥2Q.

Since g is differentiable at the origin, the function ψ(x) := (g(x)−Ax)/∥x∥2 fulfills
limx→0ψ(x) = 0. Simple calculations give, with ψ∗(x) := g(x) − Ax = ∥x∥2ψ(x),
that

ṼP (g(x))− ṼP (x)

= [g(x)]TP [g(x)]− xTPx (47)

= [ψ∗(x) + Ax]TP [ψ∗(x) + Ax]− xTPx

= ψ∗T (x)Pψ∗(x) +ψ∗T (x)PAx+ xTATPψ∗(x) + xTATPAx− xTPx︸ ︷︷ ︸
=−∥x∥2Q

≤ −∥x∥2Q + ∥ψ∗(x)∥2∥P∥2 (∥ψ∗(x)∥2 + 2∥A∥2∥x∥2)

= −∥x∥2Q + ∥x∥22 · ∥ψ(x)∥2∥P∥2 (∥ψ(x)∥2 + 2∥A∥2)

and it follows that there is a δ∗ > 0 such that ṼP (g(x)) − ṼP (x) ≤ −1
2∥x∥

2
Q for all

x ∈ Bδ∗ . Hence, with VP (x) =

√
ṼP (x) = ∥x∥P we have, because ṼP (g(x)) < ṼP (x)
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and ∥x∥Q/∥x∥P ≥
√

λQmin/λ
P
max = 8α for all x ∈ Bδ∗ \ {0}, that

VP (g(x))− VP (x) =
ṼP (g(x))− ṼP (x)√
ṼP (g(x)) +

√
ṼP (x)

≤
−∥x∥2Q/2

2

√
ṼP (x)

=
−∥x∥2Q
4∥x∥P

≤ −2α∥x∥Q

for all x ∈ Bδ∗ \ {0}. Thus
VP (g(x))− VP (x) ≤ −2α∥x∥Q (48)

for all x ∈ Bδ∗ .
Consider the function W̃ : A → R,

W̃ (x) :=

+∞∑
k=0

∥g◦k(x)∥2Q. (49)

It follows from the exponential stability of the equilibrium that the series on the
right-hand side is convergent and in the proof of Theorem 2.8 in [11] it is shown that
g ∈ C2(Rn,Rn) implies W̃ ∈ C2(A,R). By the definition of W̃ clearly

W̃ (x) =

+∞∑
k=0

∥g◦k(x)∥2Q = ∥x∥2Q +

+∞∑
k=1

∥g◦k(x)∥2Q ≥ ∥x∥
2
Q (50)

and

W̃ (g(x))− W̃ (x) =

+∞∑
k=0

(
∥g◦(k+1)(x)∥2Q − ∥g

◦k(x)∥2Q
)
= −∥x∥2Q (51)

for all x ∈ A.
Now choose an r > 0 such that {x ∈ Rn : VP (x) ≤ r} ⊂ Bδ∗ and define the sets

E1 := {x ∈ Rn : VP (x) < r/2} and

E2 := {x ∈ Rn : VP (x) > r} ∩ A.
See Figure 2 for a schematic picture of the sets E1, D \ (E1 ∪ E2), and E2 ∩D that we
will use in the rest of the proof.

Figure 2. Schematic figure of the sets E1, D \ (E1 ∪ E2), and E2 ∩ D.

Let ρ̃ ∈ C∞(R, [0, 1]) be a non-decreasing function, such that ρ̃(x) = 0 if x < r/2
and ρ̃(x) = 1 if x > r. Such a function can be constructed by standard methods of
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partitions of unity, cf. e.g. [40]. Then ρ(x) := ρ̃(VP (x)) fulfills ρ ∈ C2 (A \ {0},R),
0 ≤ ρ(x) ≤ 1 for all x ∈ Rn, ρ(x) = 0 for all x ∈ E1, and ρ(x) = 1 for all x ∈ E2.
Define

β := max
x∈D\E1

max

{
VP (x)

W̃ (x)
,

2α

∥x∥Q
,
4α∥x∥Q + r

2W̃ (x)

}
and W̃β(x) := βW̃ (x).

Note that this definition of β and W̃β implies for all x ∈ D \ E1 that

W̃β(x) ≥ VP (x) = ∥x∥P , (52)

W̃β(g(x))− W̃β(x) = −β∥x∥2Q ≤ −2α∥x∥Q, and (53)

r

2
− W̃β(x) ≤

r

2
−

4α∥x∥Q + r

2
= −2α∥x∥Q. (54)

We define for all x ∈ A the function W through

W (x) := ρ(x)W̃β(x) + (1− ρ(x))VP (x). (55)

We will now check that the function W (x) satisfies the properties a)–e).
a) Because ρ, VP , and W̃β are in C2(A \ {0},R) then so is W .

b) For every x ̸= 0 we have ∇VP (x) = Px/∥x∥P so for every x ̸= 0

∥∇VP (x)∥2 =
∥Px∥2
∥x∥P

≤ λPmax√
λPmin

< +∞.

Because ∇W is continuous on the compact set D \ E1 and W and VP coincide on E1

sup
x∈D\{0}

∥∇W (x)∥2 = max

{
max

x∈D\E1

∥∇W (x)∥2, sup
x∈E1\{0}

∥∇VP (x)∥2

}
< +∞

and there is a constant C∗ such that (42) holds true.

c) Denote by pmax the maximum absolute value of the entities of P , i.e. pmax :=
max

i,j=1,2,...,n
|pij |. Define

A := max

{
ε∗ · max

i,j=1,2,...,n
x∈D\E1

∣∣∣∣ ∂2W

∂xi∂xj
(x)

∣∣∣∣ , 1√
λPmin

(
pmax +

(λPmax)
2

λPmin

)}
.

For an arbitrary ε, 0 < ε < ε∗, let y ∈ D \ Bε and i, j ∈ {1, 2, . . . , n} be such that

Aε =

∣∣∣∣ ∂2W

∂xi∂xj
(y)

∣∣∣∣ .
To show (44), we distinguish between the two cases y ∈ D \ E1 and y ∈ E1. In the
first case, (44) clearly holds true because ε∗/ε > 1.
Now assume that y ∈ E1. In this case W (x) coincides with VP (x) = ∥x∥P in a

neighbourhood of y and we have the formula (32) for its Hessian matrix. By definition,
Aε is the maximum of the absolute values of the entities of the Hessian HW (x) for
x ∈ D \ Bε and because ∥y∥2 ≥ ε we have

Aε =

∣∣∣∣ ∂2W

∂xi∂xj
(y)

∣∣∣∣ ≤ 1√
λPmin

(
pmax

∥y∥2
+

(λPmax)
2∥y∥22

λPmin∥y∥32

)
≤ A

ε
. (56)

Hence, estimate (44) holds true for all 0 < ε < ε∗.
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d) For all x ∈ E1 we have W (x) = VP (x) = ∥x∥P . For all x ∈ D \E1 we have by (55)
that W is point-wise the convex combination of W̃β and VP . Hence, by (52) we have

W (x) ≥ min{W̃β(x), VP (x)} ≥ ∥x∥P for all x ∈ D \ E1
and the first estimate in (45) holds true.
To prove the second estimate in (45) we consider three complementary cases, x ∈ E1,

x ∈ D \ (E1 ∪ E2), and x ∈ E2 ∩ D, cf. Figure 2. The identity

W (g(x))−W (x)

= ρ(g(x))W̃β(g(x)) + (1− ρ(g(x)))VP (g(x))− ρ(x)W̃β(x)− (1− ρ(x))VP (x)
(57)

= ρ(g(x))
[
W̃β(g(x))− W̃β(x)

]
+ (1− ρ(g(x))) [VP (g(x))− VP (x)]

+ [ρ(g(x))− ρ(x)]
[
W̃β(x)− VP (x)

]
(58)

is useful for some of these cases. Further note that

∥g(x)∥P = VP (g(x)) ≤ VP (x) = ∥x∥P for all x ∈ D \ E2
because VP is a Lyapunov function for the system (1) on Bδ∗ ⊃ D \ E2. This implies,
because ρ̃ is monotonically increasing,

ρ(x) = ρ̃(VP (x)) ≥ ρ̃(VP (g(x))) = ρ(g(x)) for all x ∈ D \ E2 (59)

as well as

x ∈ E1 ⇒ g(x) ∈ E1 and x ∈ D \ E2 ⇒ g(x) ∈ D \ E2. (60)

Case 1: Assume x ∈ E1, then by (60) and the definition of ρ we have ρ(x) =
ρ(g(x)) = 0, and by (57) and (48) we get

W (g(x))−W (x) = VP (g(x))− VP (x) ≤ −2α∥x∥Q. (61)

Case 2: Assume x ∈ D \ (E1 ∪ E2). Then by (59) ρ(g(x)) − ρ(x) ≤ 0 and by (52)
W̃β(x)− VP (x) ≥ 0 so (58), (53), and (48) deliver

W (g(x))−W (x)

≤ ρ(g(x))
[
W̃β(g(x))− W̃β(x)

]
+ (1− ρ(g(x))) [VP (g(x))− VP (x)]

≤ max
{
W̃β(g(x))− W̃β(x), VP (g(x))− VP (x)

}
≤ −2α∥x∥Q.

Case 3: Assume that x ∈ E2 ∩ D until the end of this part of the proof. Here, we
consider the three cases g(x) ∈ E2∩D, g(x) ∈ D\(E1∪E2), and g(x) ∈ E1 separately.

• If g(x) ∈ E2 ∩ D, then ρ(x) = ρ(g(x)) = 1 and (57) and (53) imply

W (g(x))−W (x) = W̃β(g(x))− W̃β(x) ≤ −2α∥x∥Q.

• If g(x) ∈ D \ (E1 ∪ E2), then we have ρ(g(x)) − ρ(x) = ρ(g(x)) − 1 ≤ 0 and by
(52) W̃β(g(x)) ≥ VP (g(x)). We can use this to simplify (58) and then use (53) to
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estimate from above,

W (g(x))−W (x)

= ρ(g(x))
[
W̃β(g(x))− W̃β(x)

]
+ (1− ρ(g(x)))

[
VP (g(x))− W̃β(x)

]
≤ ρ(g(x))

[
W̃β(g(x))− W̃β(x)

]
+ (1− ρ(g(x)))

[
W̃β(g(x))− W̃β(x)

]
= W̃β(g(x))− W̃β(x) ≤ −2α∥x∥Q.

• If g(x) ∈ E1 then ρ(g(x)) = 0 and ρ(x) = 1 and (57) simplifies to

W (g(x))−W (x) = VP (g(x))− W̃β(x).

Now g(x) ∈ E1 implies VP (g(x)) = ∥g(x)∥P < r/2 and since x ∈ E2 ∩ D, we have
W (x) = W̃β(x). Thus, by (54)

W (g(x))−W (x) < r/2− W̃β(x) ≤ −2α∥x∥Q.

Thus, we have proved that the second estimate in (45) holds true.

e) By construction, W (x) = VP (x) = ∥x∥P for all x ∈ E1 and E1 is an open neigh-
bourhood of the origin. Thus, for small enough δ > 0 we have Bδ ⊂ E1 and (46)
follows. �

Remark 12. The second order derivatives of W will in general diverge at the origin,
but at a known rate as stated in (44).

The next theorem, the main result of this paper, is valid for more general sequences
(TK)K∈N0

of triangulations, where TK+1 is constructed from TK by scaling and tes-
sellating its simplices, than for the sequence (TK)K∈N0

in Definition 3.1. However, it
is quite difficult to get hold of the exact conditions that must be fulfilled in a simple
way so we restrict the theorem to this specific sequence.

Theorem 4.2. Consider the system (1) and assume that the origin is an expo-
nentially stable equilibrium of the system with basin of attraction A. Assume that D
in Definition 3.1 is a subset of A. Then, for every large enough K ∈ N0, the linear
programming problem LK in Definition 3.1 possesses a feasible solution. Especially,
the algorithm in the same definition succeeds in computing a CPA Lyapunov function
for the system in a finite number of steps.

Proof . We show that for all large enough K ∈ N0 the linear programming problem
LK has a feasible solution. Let us first consider the matrices and constants that are
used to initialize the linear programming problem LK , K ∈ N0. The matrices P and
Q and then the constants λPmin, λ

P
max, and Hmax, are all independent of K. So are

the constants Bν and Gν because D = DK = D0 for all K ∈ N0. Indeed we set
Bν := B and Gν := G in the algorithm for all K ∈ N0, which implies that GF is also
independent of K ∈ N0 (since G is the same for all simplices). In contrast to this,
the constants hν , hI\F , h∂F ,P and EF do depend on K ∈ N0.
For a particular K ∈ N0 we have for these constants in the linear programming

problem LK that for an Sν ∈ TK = T std
K,FK

,

hν := max
x,y∈Sν

∥x− y∥2 =
√
n 2−2KF0 if Sν ⊂ D \ F◦

K , (62)
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which implies

hI\F := max
x,y∈Sν

∥x− y∥2 =
√
n 2−2KF0,

and

2−KF0 = FK ≤ hν ≤
√
nFK =

√
n 2−KF0 if Sν ⊂ FK .

Similarly

h∂F ,P := max {∥x− y∥P : x ̸= 0 and y ̸= 0 vertices of Sν ⊂ FK}

≤
√

λPmax(n− 1) · 2−2KF0 (63)

and

EF := GF ·max
{
Hmax · (hI\F )2/FK , 2h∂F ,P

}
≤ 2−2KF0GF max

{
Hmaxn2

−K , 2
√

λPmax(n− 1)
}

(64)

in LK .
Set Vxi = W (xi) for all vertices xi of all simplices S of the triangulation TK , where

W is the function from Lemma 4.1 for the system. Further, set the variable C equal to
nC∗, where C∗ is the constant from Lemma 4.1. We show that the linear constraints
(I)-(IV) in Definition 2.8 are fulfilled for LK , whenever K ∈ N0 is large enough.
For all K so large that IK ⊂ Bδ, the constraints (I) are fulfilled for LK by (46).

For all K ∈ N0, the constraints (II) for LK are fulfilled by (45). By the Mean Value
Theorem and (42) we have |(∇Vν)i| ≤ C∗ independent of i and ν and therefore the
constraints (III) are fulfilled for LK . We come to the constraints (IV).
Let xi ̸= 0 be an arbitrary vertex of an arbitrary simplex Sν ∈ TK , Sν ⊂ OK =
O0. Then g(xi) ∈ Sµ for some simplex Sµ = co(y0,y1, . . . ,yn) ∈ TK and we have
g(xi) =

∑n
j=0 µjyj . We have assigned Vx = W (x) for all vertices x of all simplices

S of the triangulation TK . Hence,
n∑

j=0

µjVyj − Vxi =

n∑
j=0

µjW (yj)−W (xi)

=

n∑
j=0

µjW (yj)−W

(
n∑

j=0

µjyj

)
+W (g(xi))−W (xi)︸ ︷︷ ︸

≤−2α∥xi∥Q by (45)

If Sµ ⊂ D \ F◦
K , then we can use Proposition 2.9, (44) with ϵ = FK and (62) to

get ∣∣∣∣∣
n∑

j=0

µjW (yj)−W

(
n∑

j=0

µjyj

)∣∣∣∣∣ ≤ nAϵh
2
ν ≤ n

A

FK
h2ν = n2AF02

−3K . (65)

Thus,
n∑

j=0

µjVyj − Vxi + CGνhν ≤ n2AF02
−3K − 2α∥xi∥Q + CG

√
n 2−2KF0

and the constraints (17) are fulfilled if

n2AF02
−3K − 2α∥xi∥Q + CG

√
n 2−2KF0 ≤ −α∥xi∥Q.
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Because

α∥xi∥Q ≥ αFK

√
λQmin = α2−KF0

√
λQmin

and

n2AF02
−3K + CG

√
n 2−2KF0 ≤ α2−KF0

√
λQmin

holds true for all large enough K ∈ N0, we get

n2AF02
−3K + CG

√
n 2−2KF0 ≤ α∥xi∥Q (66)

and the constraints (17) are fulfilled for all large enough K ∈ N0.
If Sµ ⊂ FK and K is so large that FK ⊂ Bδ, then we have W (yj) = ∥yj∥P for

j = 0, 1, . . . , n and we can use the estimate (36) in the proof of Theorem 2.10 to get
n∑

j=0

µjW (yj)−W

(
n∑

j=0

µjyj

)
≤ 2h∂F ,P ≤ F02

−2K+1
√

λPmax(n− 1), (67)

using (63). Thus, by (64) and hν , ∥xi∥2 ≤
√
nFK we have

n∑
j=0

µjVyj − Vxi +BνChν∥xi∥2 + EF

≤ −2α∥xi∥Q + F02
−2K+1

√
λPmax(n− 1) +BCn2−2KF 2

0

+2−2KF0GF max
{
Hmaxn2

−K , 2
√

λPmax(n− 1)
}
.

Since ∥xi∥Q ≥ FK

√
λQmin = 2−KF0

√
λQmin we get, similarly to (66), that the con-

straints (18) are fulfilled if

F02
−2K+1

√
λPmax(n− 1) +BCn2−2KF 2

0 + 2−2KF0GF max
{
Hmaxn2

−K , 2
√

λPmax(n− 1)
}

≤ α2−KF0

√
λQmin,

which again is clearly the case for all large enough K. �

5. Example

As a proof of concept, we compute a CPA Lyapunov function by the methods de-
scribed in this paper as an example. We consider the system

xk+1 =
1

2
xk + x2k − y2k, yk+1 = −

1

2
yk + x2k (68)

from [11]. That is, the system (1) with

g(x) = g(x, y) =

(
0.5x+ x2 − y2

−0.5y + x2

)
.

With

xν := max
(x,y)∈Sν

|x|, yν := max
(x,y)∈Sν

|y|

we can assign

Gν := 2 ·max{0.5 + 2xν , 2yν} and Bν := 2 · 2 = 4
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for all Sν ∈ T in the linear programming problem from Definition 2.8. The Jacobian
matrix of g at the origin is given by

A := Dg(0) =

(
1
2 0

0 −1
2

)
.

We set Q := I, i.e. the identity matrix, which results in P := 4/3 ·I being the solution
to the discrete Lyapunov equation (4). We take

max
Sν∈T

∥∇Vν∥∞

as the objective function of our linear programming problem and we minimize it.
This objective function has the advantage that it, to our experience, usually leads to
the level sets of the Lyapunov function being rather equally distributed.
We solve the linear programming problem from Definition 2.8, constructed for the

system (68) with the triangulation T std
K,F , where the parameters areK = 4, F := 0.033,

NI := 2, NO := 10, and ND := 12. For these parameters the linear programming
problem has a feasible solution, which was computed using the Gnu Linear Pro-
gramming Kit (http://www.gnu.org/software/glpk/) from Andrew Makhorin. The
computed CPA Lyapunov function is depicted in Figure 4. As described in Defini-
tion 2.5, a simplicial fan is used to triangulate F = [−0.033, 0.033]2. This simplicial
fan is depicted in Figure 5. The domain of the computed CPA Lyapunov function is
D = [−ND · F,ND · F ]2 = [−0.396, 0.396]2. The largest connected component of a
sublevel set compact in O = [−NI ·F,NI ·F ]2 = [−0.33, 0.33]2 is assured to be in the
basin of attraction of the equilibrium at the origin, cf. Remark 2. This set is depicted
in Figure 3.
Let us compare these result with the quadratic Lyapunov function ṼP (x) := xTPx,

obtained by solving the discrete Lyapunov equation. By equation (47), ṼP (g(x)) −
ṼP (x) < 0 for all x such that

∥ψ(x)∥2∥P∥2 (∥ψ(x)∥2 + 2∥A∥2) =
4

3
· ∥ψ(x)∥2 (∥ψ(x)∥2 + 1) < 1

where ψ(x) = (g(x) − Ax)/∥x∥2; note that ∥x∥2 = ∥x∥Q. By using the general
estimate derived directly above inequality (4.6) in [17], we get for all ∥x∥2 = r > 0
that

∥ψ(x)∥2 ≤
r2

2∥x∥2

√√√√√ 2∑
i=1

 2∑
k,j=1

max
ξ∈[−r,r]2

∣∣∣∣ ∂2gi
∂xj∂xk

(ξ)

∣∣∣∣
2

= r
√
5

and ṼP is a Lyapunov function for the system in the set {x : ∥x∥2 <
√
5/10} ≈

B0.224.
In Figure 3 we compare this estimate of the basin of attraction with the inner

approximation delivered by the CPA Lyapunov function from above. Note also that
there is an (unstable) equilibrium at (0.59, 0.23) which must lie outside the basin of
attraction.
For further comparison we solved the linear programming problem from Definition

2.8 for the same system with the parameters K = 5, F = 0.1, NI = 2, NO = 4, and
ND = 6. Moreover, we do not include the simplicial fan in the linear programming
problem, i.e. we exclude (18) with F = [−0.1, 0.1]2 from the constraints (IV). Note,
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that in this case the sublevel set in Figure 3 is a forward invariant set with the
property that for any ξ in the sublevel set, there exists a strictly increasing sequence
(tk)k∈N of natural numbers, such that g◦tk(ξ) ∈ F = [−0.1, 0.1]2 for all k ∈ N. Since
F = [−0.1, 0.1]2 is a subset of the basin of attraction, as shown by the quadratic
Lyapunov function, we can also conclude that the sublevel set is a subset of the basin
of attraction.

Figure 3. The figure shows three subsets of the basin of attraction. The smallest one is
obtained by the quadratic Lyapunov function, derived from the discrete Lyapunov equation,
the middle one is obtained by the CPA Lyapunov function with the simplicial fan at the
origin, and the largest one is obtained by the CPA Lyapunov function excluding the set
F = [−0.1, 0.1]2.

Figure 4. The CPA Lyapunov function without the fan computed for the system (68). The
CPA Lyapunov function computed with the fan looks very similar but is defined on a smaller
domain.
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Figure 5. The simplicial fan and its closest neighbourhood of the simplicial complex T std
4,0.033.

6. Conclusion and Future Directions

In this paper, we fully adapted the CPA method to compute Lyapunov functions to
autonomous discrete time systems. In Definition 2.8 we presented a linear program-
ming problem, of which a feasible solution parameterizes a CPA Lyapunov function
for the system in question. In Definition 3.1 we offered an algorithm that generates
linear programming problems as in Definition 2.8 for ever more refined triangulations
of a hypercube D containing the origin. In Theorem 4.2 we proved, that if the system
at hand has an exponentially stable equilibrium at the origin and D is a subset of
its region of attraction, then the algorithm succeeds in a finite number of steps in
computing a CPA Lyapunov function for the system. Finally, in Section 5, we applied
the method to compute a CPA Lyapunov function for a nonlinear system.
The CPA method for continuous time systems has been extended to compute CPA

Lyapunov functions for switched systems [19] and differential inclusions [2, 3]. It
seems very promising for further research in this direction to combine the theory on
the stability of difference inclusions and smooth Lyapunov functions given in [24–28]
with the theory developed in this paper to design an algorithm to compute CPA
Lyapunov functions for exponentially stable difference inclusions.
Further, the choice of an objective function in the linear programming problem,

optimal in some sense, remains an open problem. The one we choose for our exam-
ple in this paper usually leads to Lyapunov functions with rather good properties,
since it eliminates Lyapunov functions with extremely large local gradients. Different
objective functions should be systematically studied in the future.
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