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Abstract Lyapunov functions for general systems are difficult to construct. How-
ever, for autonomous linear systems with exponentially stable equilibrium, there is
a classical way to construct a global Lyapunov function by solving a matrix equa-
tion. Consequently, the same function is a local Lyapunov function for a nonlinear
system.
In this paper, we generalise these results to time-periodic and, in particular, finite-
time systems with an exponentially attractive zero solution. We show the existence
of local Lyapunov functions for nonlinear systems. For finite-time systems, we con-
sider a generalised notion of a Lyapunov function, which is not necessarily con-
tinuously differentiable, but just locally Lipschitz continuous; the derivative is then
replaced by the Dini derivative.

Dedicated to Jürgen Scheurle on the occasion of his 60th birthday.

1 Introduction

Lyapunov functions were introduced by Lyapunov in 1892 [22] to study stability
of equilibria or other invariant sets. They can also be used to study the basin of
attraction of attractors by their sublevel sets. For simplicity, we will in the following
focus on an equilibrium or the zero solution as an attractor. The main features of a
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Lyapunov function are that it (i) decreases (strictly) along solutions and (ii) attains
its minimum on the attractor.

Lyapunov functions characterise certain attractivity properties and the basin of
attraction; the necessity, i.e. the existence of Lyapunov functions, has been shown
in so-called converse theorems. However, the construction of a Lyapunov function
still remains a challenging problem. Recently, several algorithmic methods have
been proposed to construct a Lyapunov function for a given system. Many of these
methods face difficulties near the equilibrium or zero solution, since here the Lya-
punov function does not decrease, but is constant.

Let us consider three modern construction methods, the so-called SOS method
(sum of squares) [23, 24, 25], where a Lyapunov function that is presentable as a
sum of squares of polynomials is constructed by convex optimization, the CPA (con-
tinuous and piecewise affine) method [16, 10, 11, 12], where a Lyapunov function
that is continuous and locally affine on each simplex of a suitable triangulation is
constructed by linear programming, and the RBF (radial basis functions) method
using radial basis functions to numerically solve the Zubov equation [7]. All three
methods can compute Lyapunov functions on compact neighborhoods of exponen-
tially stable equilibria of autonomous systems and include the equilibrium in the
domain of the Lyapunov function computed, given that the equilibrium is exponen-
tially stable. These methods are, however, very different in nature. The SOS method
is basically a local method, where the domain of the Lyapunov function can be en-
hanced by increasing the order of the polynomial Lyapunov function at the cost of
greater computational complexity. The CPA and RBF methods are not local in na-
ture and have no problems computing Lyapunov functions with large domains, if an
arbitrary small neighborhood of the equilibrium is excluded [16], [7], respectively.

The problem of including the equilibrium at the origin in the domain of Lyapunov
functions for CPA and RBF for the nonlinear system ẋ = f (x) can be overcome
by studying the linearised problem ẋ = Ax, where A = D f (0). For such a linear
equation, there is a classical method to construct a Lyapunov function v(x) = xT Qx.
This function is a local Lyapunov function for the nonlinear system ẋ = f (x), i.e. v
decreases along solutions only in a (small) neighborhood of the origin. Hence, the
local Lyapunov function can be used to determine a local basin of attraction and
close the gap between the implications of the nonlocal Lyapunov function and the
local behaviour. Moreover, it can be combined with a global construction method
to construct a Lyapunov function which is a true Lyapunov function even near the
equilibrium. For the RBF method this was done in [8].

For the CPA method it was shown that a modified CPA method can always com-
pute a CPA Lyapunov function including the equilibrium in its domain, first for
planar systems [10, 11] and then for general n-dimensional systems [12, 13]. The
key to the existence of a CPA Lyapunov function close to the equilibrium was to
use the Lyapunov function W (x) =

√
xT Qx, which satisfies A‖x‖2 ≤ W (x) and

W ′(x) ≤ −B‖x‖2, and to interpolate this function on the edges of a suitably fine
triangulation around the origin.

This paper generalises these ideas to time-periodic systems of the form ẋ =
f (t,x), where f (t,x) is a T -periodic function, i.e. f (t + T,x) = f (t,x), as well as
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to finite-time systems of the form ẋ = f (t,x), considered over the finite-time inter-
val [0,T ]. The reason why we are enhancing the Lyapunov stability theory in this
direction is because the CPA method has some nice properties like only assuming
f ∈C2 and is extendable to switched systems [17] and differential inclusions [1] in a
straight forward manner. Hence, the results of this paper will, besides the theoretical
insight into Lyapunov functions, provide the starting point to develop a CPA con-
struction method for Lyapunov functions for time-periodic and finite-time systems
on domains, which include the attractive solution.

Lyapunov functions for periodic systems are functions v(t,x) where the orbital
derivative v′(t,x) =∇xv(t,x) · f (t,x)+vt(t,x) is negative. Such a Lyapunov function
can be considered to be T -periodic without loss of generality.

Finite-time systems consider a nonautonomous equation ẋ = f (t,x) over a finite-
time interval I = [0,T ]. Finite-time dynamics were first studied in applications,
in particular in fluid dynamics. The first mathematical theory was introduced by
George Haller, who defined a Lagrangian coherent structure [20], i.e. time-evolving
surfaces which can serve as boundaries of attraction areas. The relation of La-
grangian coherent structures to finite-time Lyapunov exponents as well as computa-
tional aspects are studied in [18, 19]. Furthermore, hyperbolicity and stable/unstable
cones, which adapt the classical, infinite-time concepts of hyperbolicity and sta-
ble/unstable manifolds to the finite-time case, have been studied in [2, 6, 5].

While in the definition of hyperbolicity, attractivity is supposed to occur at ev-
ery instance within the time domain under consideration, in [26, 14], a concept of
attraction has been introduced, which allows that trajectories near an attracting so-
lution move away from it, provided they return before the end of the time period.
In this paper, we will use this notion of attractivity, where the distance of a solution
x(t) to the zero solution at time T is smaller than the distance of the solution at
time 0, i.e. ‖x(T )‖ < ‖x(0)‖. Note that for finite-time stability, the chosen norm is
crucial, since different norms lead to different notions of attractivity; this is not the
case for autonomous or periodic systems with infinite time because all norms on Rn

are equivalent. Lyapunov functions for general nonautonomous systems have been
studied in [21, 15], whereas Lyapunov functions for finite-time systems have been
considered in [14, 9].

To characterise stability of zero solutions in periodic systems, one can use Flo-
quet theory. We will show that Floquet theory is also helpful in the finite-time case,
however, similar results to the periodic case can only be obtained under conditions
that are stronger than assuming the attractivity of the zero solution and only for
a specific type of vector norm. It turns out, that in the general case a finite-time
Lyapunov function can be constructed by a different approach.

An autonomous system can be regarded as a periodic system, and a periodic
system can also be considered over a finite-time interval; hence, we can compare the
different notions of attractivity in these cases. It turns out that finite-time attractivity
implies periodic-time attractivity, whereas the notions for autonomous and periodic-
time are equivalent.

The paper is structured in the following way: In Sections 2-4 we study au-
tonomous, periodic and finite-time systems, respectively. In each section, we start
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with linear systems, characterise exponential stability of the zero solution (equilib-
rium in the autonomous case), and show the existence of global Lyapunov functions.
Furthermore, we consider nonlinear systems and prove similar results for local Lya-
punov functions. While the results in the autonomous case are classical, parts of the
periodic case are new. The main advance of the paper is the study of the finite-time
case. In Section 5, we compare the notion of attractivity in periodic systems with the
same system regarded as a finite-time system, and then we compare all three notions
for an autonomous system. We end the paper with conclusions and an outlook for
further work and applications of the results.

Notations

Definition 1. Consider a matrix A ∈ Cn×n.

1. A is called Hurwitz if all its eigenvalues have a strictly negative real part.
2. A is called Hermitian if A is equal to its conjugate transpose A∗ := AT .
3. A is called positive definite if all its eigenvalues are real-valued and strictly

positive.

Note that a Hermitian matrix A has real eigenvalues and vT Av is a real number
for all v ∈ Rn.

We denote by ‖ ·‖2:Cn→R the Euclidean norm ‖v‖2 =
√
〈v,v〉, where 〈v,w〉=

vT w, and by ‖ · ‖:Cn→ R an arbitrary vector norm on Cn. As usual, for A ∈ Cn×n,
we denote by ‖A‖ the induced matrix norm

‖A‖ := max
x∈Cn,‖x‖=1

‖Ax‖,

so that ‖Ax‖ ≤ ‖A‖‖x‖ holds for all x ∈ Cn. For x0 ∈ Rn and η > 0, we define the
open ball with respect to a norm on Rn by Bη(x0) := {x ∈ Rn | ‖x− x0‖< η}.

2 Autonomous system

The section about autonomous systems does not contain any new results, but collects
classical results that are needed for the periodic and finite-time case. It is included
for the convenience of the reader, and for comparison with the other two cases.

Lemma 1. Let C ∈ Cn×n be a Hermitian, positive definite matrix, and L ∈ Cn×n be
Hurwitz. Then there is a unique solution Q ∈ Cn×n of the matrix equation

QL+L∗Q =−C

and Q is Hermitian and positive definite. If C and L are real-valued, then so is Q.
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The proof is similar to the real case, cf. [21, Theorem 4.6].

Definition 2. A (strict) local Lyapunov function for the equilibrium at the origin of
system ẋ = f (x), where f ∈C1(Rn,Rn) with f (0) = 0 is a function V ∈C(U,R)∩
C1(U \{0},R), where U ⊂ Rn is an open neighborhood of 0, which satisfies

1. V (x)> 0 for all x ∈U \{0} and V (0) = 0 and
2. V ′(x)< 0 for all x ∈U \{0}

where the orbital derivative is defined by V ′(x) = ∇V (x) · f (x). If U = Rn, then the
Lyapunov function is called global.

Note that the condition on differentiability of V can be dropped if the orbital deriva-
tive is replaced by the Dini derivative; this will be considered in Section 4.1. A
Lyapunov function gives important information about the stability and the basin of
attraction of the equilibrium 0.

Theorem 1. Let V be a local Lyapunov function. Then the equilibrium 0 is asymp-
totically stable and any compact set V−1([0,c]) with c > 0, contained in U, is a
subset of the basin of attraction of 0.

Theorem 2. Consider the autonomous, linear system

ẋ = Ax, where A ∈ Rn×n. (1)

Every fundamental matrix solution Φ(t) of (1) can be expressed in the form

Φ(t) = etAP0

where P0 ∈ Rn×n and the zero solution of (1) is globally exponentially stable if and
only if A is Hurwitz.

Let C ∈ Rn×n be a symmetric, positive definite matrix and Q ∈ Rn×n be the so-
lution of the matrix equation QA+AT Q = −C given by Lemma 1; note that this
implies that Q is also symmetric and positive definite.

Then V :Rn → R, V (x) := xT Qx, and W :Rn → R, W (x) :=
√

V (x) =
√

xT Qx,
are both global Lyapunov functions for (1), satisfying

a1‖x‖2
2 ≤ V (x)≤ b1‖x‖2

2, V ′(x)≤−c1‖x‖2
2,

a2‖x‖2 ≤W (x)≤ b2‖x‖2, W ′(x)≤−c2‖x‖2.

for all x ∈ Rn \{0} with constants a1,b1,c1,a2,b2,c2 > 0.

In the nonlinear case, we have the following theorem, cf. [21, Corollary 4.3,
Proof of Theorem 4.7].

Theorem 3. Consider the autonomous, nonlinear system

ẋ = f (x) (2)
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with f ∈C1(Rn,Rn), f (0) = 0 and A := D f (0).
The equilibrium 0 of (2) is locally exponentially stable if and only if the equilib-

rium 0 of (1) is globally exponentially stable, i.e. by Theorem 2 if A is Hurwitz. The
functions V and W from Theorem 2 are local Lyapunov functions for (2) in some
open neighborhood U of 0 and satisfy the same inequalities as in Theorem 2.

3 Periodic time

Most results of this section are classical, however, the explicit form of the Lyapunov
functions in Theorems 6, 7 using Floquet theory is, to the best of our knowledge,
new. We start with a fundamental lemma, concerning the matrix logarithm, cf. [3,
Theorem 2.47].

Lemma 2. Let M ∈ Rn×n be invertible. Then the matrix equation

eX = M (3)

has a solution X ∈ Cn×n.

It is important to notice that, in general, even if the matrix M is real-valued,
the matrix X can be complex-valued. Moreover, the solution X is not unique. A
characterisation of all real-valued matrices M for which the matrix equation (3) has
a real solution is given in [4].

3.1 Linear systems

The classical Floquet Theorem gives a representation of the fundamental solution in
terms of complex matrices, even if A(t) is real, cf. [3, Theorem 2.48].

Theorem 4. Consider the T -periodic system

ẋ = A(t)x (4)

where A(t) ∈C(R,Rn×n) is T -periodic.
Then every fundamental matrix solution Φ(t) of (4) can be expressed in the form

Φ(t) = P(t)etL (5)

where P(t) is continuously differentiable and T -periodic, P(t) ∈ Cn×n is invertible
for all t ∈ R and L ∈ Cn×n.

Definition 3. A T -periodic (strict) local Lyapunov function for the zero solution of
system ẋ = f (t,x), where f ∈ C1(R×Rn,Rn) with f (t,0) = 0 for all t ∈ R and
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f (t +T,x) = f (t,x) for all (t,x) ∈ R×Rn, is a function V ∈C(R×U,R)∩C1(R×
U \{0},R), where U ⊂ Rn is an open neighborhood of 0, which satisfies

1. V (t +T,x) =V (t,x) for all x ∈U and t ∈ R, i.e. V is T -periodic,
2. V (t,x)> 0 for all x ∈U \{0} and V (t,0) = 0 for all t ∈ R and
3. V ′(t,x)< 0 for all x ∈U \{0} for all t ∈ R

where the orbital derivative is defined by

V ′(t,x) = ∇xV (t,x) · f (t,x)+Vt(t,x).

If U = Rn, then the Lyapunov function is called global.

Theorem 5. Let V be a T -periodic local Lyapunov function. Then the zero solu-
tion is asymptotically stable and any compact set V−1([0,c])

∣∣
[0,T ]×Rn with c > 0,

contained in [0,T ]×U, is a subset of the basin of attraction of the zero solution.

In the following theorem we construct a T -periodic Lyapunov function for the
linear system (4). Note that this Lyapunov function is the same as the one con-
structed in [21, Theorem 4.12] for the general nonautonomous case. In the periodic
case, to which we restrict ourselves here, however, one can drop some assumptions
on the uniformity with respect to t and, moreover, we can give a more explicit ex-
pression for V , using Floquet theory.

Theorem 6. Consider the T -periodic linear equation

ẋ = A(t)x (6)

where A(t) ∈ C(R,Rn×n) is T -periodic. Then the zero solution of (6) is globally
exponentially stable if and only if L is Hurwitz, where L is defined in Theorem 4.

Let C ∈ Cn×n be a Hermitian, positive definite matrix and Q ∈ Cn×n be the so-
lution of the matrix equation QL+ L∗Q = −C, see Lemma 1; note that also Q is
Hermitian and positive definite.

Then V,W :R×Rn→ R,

V (t,x) := xT (P−1(t))∗QP−1(t)x

W (t,x) :=
√

V (t,x) =
√

xT (P−1(t))∗QP−1(t)x

are both T -periodic global Lyapunov functions for (6), satisfying

a1‖x‖2
2 ≤ V (t,x)≤ b1‖x‖2

2, V ′(t,x)≤−c1‖x‖2
2,

a2‖x‖2 ≤W (t,x)≤ b2‖x‖2, W ′(t,x)≤−c2‖x‖2,

for all x ∈ Rn \{0} and t ∈ R with constants a1,b1,c1,a2,b2,c2 > 0.

Proof. Using the transformation y = P−1(t)x, the system is transformed into the
autonomous system ẏ= Ly; the characterisation of exponential stability now follows
from Theorem 2.
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Using Theorem 4 we express the fundamental matrix solution with initial condi-
tion Φ(0) = I by

Φ(t) = P(t)etL

where P(0) = P(T ) = I, P(t +T ) = P(t) and P(t),L ∈ Cn×n. Note that since Φ(t)
is a solution, we have

Φ̇(t) = A(t)Φ(t) = A(t)P(t)etL

On the other hand,

Φ̇(t) = Ṗ(t)etL +P(t)LetL,

which yields Ṗ(t) = −P(t)L+A(t)P(t).

Moreover, since 0 = d
dt

(
P(t)P−1(t)

)
= Ṗ(t)P−1(t)+P(t)Ṗ−1(t), we have

Ṗ−1(t) =−P−1(t)Ṗ(t)P−1(t) = LP−1(t)−P−1(t)A(t). (7)

Note that
V (t,x) = xT (P−1(t))∗QP−1(t)x

is T -periodic and real-valued since (P−1(t))∗QP−1(t) is Hermitian. Moreover, since
Q is positive definite and P−1(t) is non-singular and T -periodic, there are constants
a1,b1 > 0 such that a1‖x‖2

2 ≤V (t,x)≤ b1‖x‖2
2 for all x ∈ Rn and t ∈ R.

We show the statement for V ′(t,x). Using (7), we have

V ′(t,x) = xT (A(t))T (P−1(t))∗QP−1(t)x+ xT (Ṗ−1(t))∗QP−1(t)x

+xT (P−1(t))∗QṖ−1(t)x+ xT (P−1(t))∗QP−1(t)A(t)x

= xT [(A(t))T (P−1(t))∗+(P−1(t))∗L∗− (A(t))∗(P−1(t))∗]QP−1(t)x

+xT (P−1(t))∗Q[LP−1(t)−P−1(t)A(t)+P−1(t)A(t)]x

= xT (P−1(t))∗[L∗Q+QL]P−1(t)x

= −(P−1(t)x)∗CP−1(t)x

≤ −c1‖x‖2
2

for a suitable c1 > 0, since C is positive definite. For the function W , we use

W ′(t,x) =
1

2W (t,x)
V ′(t,x) ≤ 1

2
√

b1‖x‖2
(−c1‖x‖2

2) = −
c1

2
√

b1
‖x‖2.

3.2 Nonlinear systems

Theorem 7. Consider the T -periodic nonlinear equation

ẋ = f (t,x) (8)
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where f ∈C1(R×Rn,Rn), f (t+T,x) = f (t,x), f (t,0) = 0 for all t ∈R and A(t) :=
Dx f (t,0).

Consider (6) with the same A(t). The zero solution of (8) is locally exponentially
stable if and only if the zero solution of (6) is globally exponentially stable, i.e. L is
Hurwitz, where L is defined in Theorem 6.

The functions V and W defined in Theorem 6 are local Lyapunov functions for
(8) and satisfy the same inequalities as in Theorem 6.

Proof. The zero solution is exponentially stable if and only if L is Hurwitz, cf.
e.g. [21, Theorem 4.15] – note that the assumptions of that theorem, which holds
in the more general nonautonomous case, can be relaxed, since we are focussing
on the periodic case. In particular, Dx f (t,x) is bounded uniformly in t, since it is
periodic in t, and the Lipschitz continuity, which was used in Taylor’s Theorem,
can be dropped by the following argument: Using Taylor’s Theorem, we can write
f (t,x) = A(t)x + ψ(t,x), where ψ(t,x) = (Dx f (t,θx)−Dx f (t,0))x by the mean
value theorem, where θ ∈ [0,1], i.e. ψ(t,x) = o(‖x‖) as x→ 0, uniformly in t, since
Dx f (t,x) is continuous and T -periodic. Hence, for all ε > 0 there is a r > 0 such
that ‖ψ(t,x)‖2 ≤ ε‖x‖2 holds for all ‖x‖2 < r and all t ∈ R.

We show that V is a local Lyapunov function, fulfilling the inequalities. Note
that the inequalities on V (t,x) are clear, by Theorem 6, so that we only have to
prove V ′(t,x)≤−c1‖x‖2

2; note that in the nonlinear case, V ′(t,x) is different to the
linear case.

Since C is Hermitian and positive definite, there is a smallest eigenvalue λ > 0
of C such that yTCy ≥ λ‖y‖2

2 for all y ∈ Rn. Set ε := λ

4‖Q‖2 maxt∈[0,T ](‖P−1(t)‖2‖P(t)‖2)
and choose r > 0 as above such that ‖ψ(t,x)‖2 ≤ ε‖x‖2 holds for all ‖x‖2 < r and
all t ∈ R. Then, similar to the theorem in the linear case, we have, using (7)

V ′(t,x) = xT (A(t))T (P−1(t))∗QP−1(t)x+ψ(t,x)T (P−1(t))∗QP−1(t)x

+xT (Ṗ−1(t))∗QP−1(t)x+ xT (P−1(t))∗QṖ−1(t)x

+xT (P−1(t))∗QP−1(t)A(t)x+ xT (P−1(t))∗QP−1(t)ψ(t,x)

≤ xT [(A(t))T (P−1(t))∗+(P−1(t))∗L∗− (A(t))∗(P−1(t))∗]QP−1(t)x

+xT (P−1(t))∗Q[LP−1(t)−P−1(t)A(t)+P−1(t)A(t)]x

+2‖Q‖2‖P−1(t)‖2‖P−1(t)x‖2‖ψ(t,x)‖2

= xT (P−1(t))∗[L∗Q+QL]P−1(t)x

+2ε‖Q‖2‖P−1(t)‖2‖P−1(t)x‖2‖x‖2

= −(P−1(t)x)∗CP−1(t)x

+2ε‖Q‖2 max
t∈[0,T ]

(‖P−1(t)‖2‖P(t)‖2)‖P−1(t)x‖2
2

≤
(
−λ +

λ

2

)
‖P−1(t)x‖2

2

≤ −c1‖x‖2
2

for all ‖x‖2 < r with a suitable c1 > 0. The argumentation for W is as in Theorem 6.
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4 Finite time

For this section, we fix an arbitrary norm ‖ · ‖ on Rn. We consider the nonau-
tonomous ODE

ẋ = f (t,x) (9)

where f ∈C1([0,T ]×Rn,Rn) over the finite-time interval I= [0,T ]. We denote the
solution of (9) with initial value x(t0) = x0 by ϕ(t, t0,x0) := x(t) and assume that it
exists in the whole interval [0,T ]. This is e.g. the case if Dx f (t,x) is bounded. We
will later assume that µ(t) = 0 is a solution, i.e. f (t,0) = 0 for all t ∈ I. We use the
following definition of finite-time attractivity from [26, 14].

Definition 4 (Finite-time attractivity, domain of attraction). Let µ : I→ Rn be a
solution of (9).

1. µ is called attractive on I with respect to the norm ‖ · ‖ if there exists an η > 0
such that

‖ϕ(T,0,ξ )−µ(T )‖< ‖ξ −µ(0)‖ ∀ξ ∈ Bη(µ(0))\{µ(0)} .

2. µ is called exponentially attractive on I with respect to the norm ‖ · ‖ if

limsup
η↘0

1
η

sup
ξ∈Bη (0)

(‖ϕ (T,0,ξ )−µ(T )‖)< 1 ,

and the negative number

1
T

ln

(
limsup

η↘0

1
η

sup
ξ∈Bη (0)

(‖ϕ (T,0,ξ )−µ(T )‖)

)

is called rate of exponential attraction.
3. Let µ : I→ Rn be an attractive solution on I. Then a connected and invariant

nonautonomous (i.e. Gµ(t) := {x ∈ Rn | (t,x) ∈ Gµ} is nonempty for all t ∈ I)
set Gµ ⊂ I×Rn is called domain of attraction of µ if

‖ϕ(T,0,x)−µ(T )‖< ‖x−µ(0)‖ holds for all x ∈ Gµ(0)\{µ(0)} ,

and Gµ is the maximal set containing graph(µ) with this property.

In order to study the local properties of linear and nonlinear systems, we can use
a Floquet-like theorem to define a local Lyapunov function. The following theorem
is similar to the classical Floquet Theorem, but does not require A(t) to be periodic.
Thus, P(t) is not periodic either, but we can still show that P(0) = P(T ) holds.

Theorem 8. Consider the nonautonomous linear system

ẋ = A(t)x (10)
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where A ∈C(I,Rn×n). The principal solution, i.e. satisfying Φ(0) = I, of (10) can
be expressed in the form

Φ(t) = P(t)etL

where P(t) is continuously differentiable, P(t) ∈ Cn×n is invertible for all t ∈ I,
P(0) = P(T ) = I and L ∈ Cn×n.

Proof. Define M := Φ−1(0)Φ(T ). By Lemma 2, there is a matrix L ∈ Cn×n such
that eT L = M. With P(t) := Φ(t)e−tL we have

P(T ) = Φ(T )e−T L = Φ(T )M−1 = Φ(0) = P(0) = I

using Φ(0) = I, and P(t) fulfills all the stated properties.

We will first reprove the characterisation of finite-time exponential stability
which was given in [14] for the Euclidean norm, now for a general norm ‖ · ‖.

Theorem 9. Denote by FT :Rn → Rn the time–T map of (9), which is defined by
FT (x) := ϕ(T,0,x). Moreover, let µ : I→ Rn, µ(t) = 0 be a solution of (9). Then
µ is exponentially attractive on I if and only if ‖DFT (0)‖ < 1, where DFT is the
Jacobian of FT with respect to x. The rate of exponential attraction is given by

1
T

ln‖DFT (0)‖.

If the principal solution Φ(t) of the linearised equation

ẋ = Dx f (t,0)x

with Φ(0) = I is expressed Φ(t) = P(t)etL as in Theorem 8, we have DFT (0) = eT L.
In particular the zero solution µ is exponentially attractive on I if and only if

‖eT L‖< 1.

Proof. We consider µ(t) = 0 and the solution ϕ(t,0,w) starting in w ∈ Rn. Using
Taylor’s Theorem, we obtain

ϕ(T,0,w)−0 = FT (w)−FT (0) = DFT (0)w+ψ(w),

where lim‖w‖→0
ψ(w)
‖w‖ = 0. Thus,

limsup
‖w‖→0

‖ϕ(T,0,w)‖
‖w‖

= limsup
‖w‖→0

‖DFT (0)w‖
‖w‖

= ‖DFT (0)‖ . (11)

Now
1
η

sup
ξ∈Bη (0)

‖ϕ (T,0,ξ )‖ = sup
‖w‖<η

‖ϕ(T,0,w)‖
‖w‖

‖w‖
η

. (12)

From (12) we can conclude

1
η

sup
ξ∈Bη (0)

‖ϕ (T,0,ξ )‖ ≤ sup
‖w‖<η

‖ϕ(T,0,w)‖
‖w‖
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which implies with (11) that

limsup
η↘0

1
η

sup
ξ∈Bη (0)

‖ϕ (T,0,ξ )‖ ≤ limsup
‖w‖→0

‖ϕ(T,0,w)‖
‖w‖

= ‖DFT (0)‖ .

Furthermore, (12) and (11) yield for all fixed θ ∈ (0,1)

1
η

sup
ξ∈Bη (0)

‖ϕ (T,0,ξ )‖ ≥ sup
‖w‖=θη

‖ϕ(T,0,w)‖
‖w‖

θ

and

limsup
η↘0

1
η

sup
ξ∈Bη (0)

‖ϕ (T,0,ξ )‖ ≥ limsup
‖w‖→0

‖ϕ(T,0,w)‖
‖w‖

θ = θ‖DFT (0)‖.

Since this inequality holds for all θ ∈ (0,1), we have

limsup
η↘0

1
η

sup
ξ∈Bη (0)

‖ϕ (T,0,ξ )‖ ≥ ‖DFT (0)‖.

This shows limsupη↘0
1
η

supξ∈Bη (0) ‖ϕ (T,0,ξ )‖= ‖DFT (0)‖.
Furthermore, we can relate DFT to the solution of the linearised equation. Denote

by Ft :Rn→ Rn the time–t map of (9), which is defined by Ft(x) := ϕ(t,0,x). Then
Φ(t,x) = DFt(x) solves the first variation equation

Φ̇(t,x) = Dx f (t,ϕ(t,0,x))Φ(t,x).

In particular, as µ(t) = 0 is a solution of (9), we obtain

Φ̇(t,0) = Dx f (t,0)Φ(t,0) = A(t)Φ(t,0)

with solution Φ(t,0) = P(t)etL. Thus, DFT (0) = Φ(T,0) = P(T )eT L = eT L. Hence,
the zero solution of the nonlinear equation is exponentially stable if and only if
‖eT L‖< 1.

4.1 Dini derivative

Due to the general norm ‖ · ‖, the assumption that a Lyapunov function V (t,x) is
C1 is too restrictive. For example, for the system ẋ = −x, x ∈ R and ‖x‖ := |x|, the
function V (t,x) = |x| is not C1 at 0, but it is a Lyapunov function in the sense that
it is decreasing along trajectories. We will give a precise definition in Definition 5.
We only assume that a Lyapunov function is continuous and locally Lipschitz in x,
and we have to replace the orbital derivative by a weaker notion, the Dini derivative.
Note that this can also be done in the autonomous and periodic case.
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We define a finite-time Lyapunov function. The definition is similar to the peri-
odic case, but V is fixed at times 0 and T by the norm.

Definition 5. A finite-time (strict) local Lyapunov function for the zero solution of
the system (9) is a continuous function V :I×U → Rn, where U ⊂ Rn is an open
neighborhood of 0, which satisfies the following properties:

1. V (t,x) is locally Lipschitz in x.
2. V (0,x) = ‖x‖p and V (T,x) = ‖x‖p for all x ∈U , where p≥ 1.
3. V (t,x)> 0 for all x ∈U \{0} and V (t,0) = 0 for all t ∈ I.
4. V+(t,x)< 0 for all x ∈U \{0} and all t ∈ I\{T}= [0,T ).

Here the orbital derivative is defined by the Dini derivative

V+(t,x) = limsup
h↘0

V (t +h,x+h · f (t,x))−V (t,x)
h

. (13)

If U = Rn, then the function is a global finite-time Lyapunov function.

Remark 1. Locally Lipschitz in x in 1. is defined as follows: For every compact
C ⊂ I×U there exists a constant L > 0, such that |V (t,x)−V (t,y)| ≤ L‖x− y‖ for
all (t,x),(t,y) ∈C. It is needed to define the orbital derivative using f (t,x) in 4. by
(13) as shown on page 48 in [17]. Without this property

V+(t,x) = limsup
h↘0

V (t +h,ϕ(t +h, t,x))−V (t,x)
h

is not necessarily true and we would actually have to know the solution trajectories
t 7→ φ(t,0,x) to take the Dini derivative along orbits.

Remark 2. If V is differentiable along orbits, i.e. the limit

lim
h→0

V (t +h,ϕ(t +h, t,x))−V (t,x)
h

exists for all relevant t and x, then clearly V+(t,x) is equal to this limit. Note how-
ever, that this does not imply that ∇xV (t,x) or Vt(t,x) exist, e.g. consider the example
at the beginning of Section 4.1.

Theorem 10. Let V be a finite-time local Lyapunov function for the system (9). Then
the zero solution of (9) is attractive and any compact set V−1([0,C]) with C > 0,
contained in I×U is a subset of the domain of attraction of the zero solution.

Let V (t,x) additionally fulfill: There exist constants b≥ 1 and c > 0 such that

1. V (t,x)≤ b‖x‖p for all t ∈ I and all x ∈U, where p is the same as in Definition
5.

2. V+(t,x)≤−c‖x‖p for all t ∈ [0,T ) = I\{T} and all x ∈U.

Then the zero solution of (9) is exponentially attractive with rate of exponential
attraction ≤−c/(bp).
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Proof. Since x(t) = 0 is a solution, there is an open neighborhood U ′ ⊂U of 0 such
that x ∈U ′ implies ϕ(t,0,x) ∈U for all t ∈ I.

Because V is locally Lipschitz it follows by [17] (page 48 and Corollary 3.10)
that t 7→V (t,ϕ(t,0,x)) is a strictly decreasing function on I, if x 6= 0. Hence,

‖x‖p =V (0,x)>V (T,ϕ(T,0,x)) = ‖ϕ(T,0,x)‖p

for all x ∈U ′ \{0} and the zero solution is attractive.
The same argument shows that V−1([0,C]), if it is contained in I×U , is pos-

itively invariant. Now let (t0,x0) ∈ V−1([0,C]) with x0 6= 0. Then either the tra-
jectory ϕ(t, t0,x0) stays in V−1([0,C]) for all t ∈ I, or there is a τ ∈ I such that
ϕ(τ, t0,x0) 6∈ V−1([0,C]). In the first case, (t0,x0) is in the domain of attraction
by the fact that t 7→ V (t,ϕ(t, t0,x0)) is a strictly decreasing function. In the sec-
ond case, note that ϕ(τ, t0,x0) 6∈ V−1([0,C]) implies that ϕ(0, t0,x0) 6∈ V−1([0,C]),
since V−1([0,C]) is positively invariant. Again, by the positive invariance, we have
ϕ(T, t0,x0) ∈V−1([0,C]). Hence,

‖ϕ(T, t0,x0)‖p =V (T,ϕ(T, t0,x0))≤C <V (0,ϕ(0, t0,x0)) = ‖ϕ(0, t0,x0)‖p

which shows that also in this case (t0,x0) lies in the domain of attraction. This proves
the first claim of the theorem.

Now, assume that 1. and 2. are also fulfilled. Then V fulfills the Dini differential
inequality

V+(t,ϕ(t,0,x))≤− c
b

V (t,ϕ(t,0,x))

and by taking Lemma 6.10 in [17] into consideration, we get V (T,ϕ(T,0,x)) ≤
V (0,x)e−cT/b and thus ‖ϕ(T,0,x)‖p ≤ ‖x‖pe−cT/b so for x 6= 0

‖ϕ(T,0,x)‖
‖x‖

≤ e−cT/(bp) < 1

and by Definition 4, 2., the zero solution is exponentially attractive with rate of
exponential attraction ≤−c/(bp).

Remark 3. Note the obvious error in the statement of Lemma 6.10 in [17]. Of course
LC is a local Lipschitz constant for s and not y as should be clear from the text and
from the proof. y does not have to be locally Lipschitz. This is an important point
for otherwise V (t,x) would have to be locally Lipschitz in (t,x) and not only x.

Note that the Dini derivative does in general not obey the chain-rule. To see this
consider e.g. f (x) = |x|, g(x) =−x and h(x) = ( f ◦g)(x) = |− x|. Then

h+(0) = limsup
η↘0

|−η |− |0|
η

= 1 but

f+(g(0)) ·g+(0) = limsup
η↘0

|−0+η |− |−0|
η

· limsup
η↘0

−η− (−0)
η

= 1 · (−1) =−1.
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However, for our needs the following simple lemma suffices.

Lemma 3. Let f : R→ R be a function such that limsuph↘0 f (h) = S < 0. Then
there is a τ > 0 such that f (x) < 0 for all x ∈ (0,τ). If g : R→ R is a further
function such that limh↘0 g(h) = L 6= 0, then limsuph↘0 f (h)g(h) = SL.

Proof. Assume there is no such τ > 0. Then

limsup
h↘0

f (h) = lim
h↘0

[sup{ f (x) | x ∈ (0,h)}]≥ lim
h↘0

0 = 0,

which is a contradiction to limsuph↘0 f (h) = S < 0.
Now assume L > 0 and let 0 < ε < L/2 be arbitrary. Then, for all τ > h > 0

small enough, we have 0 < L− ε < g(h) < L+ ε , i.e. (L+ ε) f (h) ≤ g(h) f (h) ≤
(L− ε) f (h), and therefore

(L+ ε)S≤ limsup
h↘0

f (h)g(h)≤ (L− ε)S,

i.e. limsuph↘0 f (h)g(h) = SL by lack of alternatives. The case L < 0 follows simi-
larly.

4.2 Linear systems

Let us first focus on the linear case, i.e.

ẋ = A(t)x. (14)

We can use the construction method in [14], which uses linear interpolation along
a trajectory between the values at times 0 and T , to construct finite-time Lyapunov
functions in the following two theorems.

Theorem 11. Let the zero solution of

ẋ = A(t)x, (15)

where A ∈C(I,Rn×n), be exponentially stable.
Then there exists a finite-time Lyapunov function which satisfies

a1‖x‖2 ≤ V (t,x) ≤ b1‖x‖2, V+(t,x) ≤ −c1‖x‖2 (16)

for all x ∈ Rn and all t ∈ I\{T}, where a1,b1,c1 > 0.

Proof. We define V (t,ϕ(t,0,x)) by linear interpolation of the values at time T and
0. Note that the principal fundamental solution Φ(t) (with Φ(0) = I) of (15) can be,
by Theorem 8, expressed in the form Φ(t) = P(t)etL, where P(t) is continuously
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differentiable, P(t) ∈Cn×n is invertible for all t ∈ I, P(0) = P(T ) = I and L ∈Cn×n.
Hence, ϕ(t1, t2,x) = Φ(t1)Φ−1(t2)x = P(t1)eL(t1−t2)P−1(t2)x. We define

V (t,x) := [‖ϕ(T, t,x)‖2−‖ϕ(0, t,x)‖2]
t
T
+‖ϕ(0, t,x)‖2 (17)

=
t
T
‖ϕ(T, t,x)‖2 +

(
1− t

T

)
‖ϕ(0, t,x)‖2

=
t
T
‖eT L

Φ
−1(t)x‖2 +

(
1− t

T

)
‖Φ−1(t)x‖2 (18)

It is easy to see that V (0,x) = V (T,x) = ‖x‖2. Since eT L 6= 0, Φ−1(t) is non-
singular and continuous for t ∈ I and the norm ‖ · ‖ is continuous, the mappings
(t,x) 7→ ‖eT LΦ−1(t)x‖ and (t,x) 7→ ‖Φ−1(t)x‖ are both continuous functions from
the compact set I× {x ∈ Rn | ‖x‖ = 1} into the real numbers. Hence, there are
a1,b1 > 0 such that

a1‖x‖2 ≤ ‖eT LΦ−1(t)x‖2 ≤ b1‖x‖2 (19)
a1‖x‖2 ≤ ‖Φ−1(t)x‖2 ≤ b1‖x‖2 (20)

for all t ∈ I. Together with (18) this shows the first part of (16).
To show that V (t,x) is locally Lipschitz in x let η > 0 be an arbitrary constant

and x,y ∈ Bη(0) and t ∈ I. By (18), (19) and (20) we get

|V (t,x)−V (t,y)|

=
∣∣∣ t
T
(‖eT L

Φ
−1(t)x‖+‖eT L

Φ
−1(t)y‖)(‖eT L

Φ
−1(t)x‖−‖eT L

Φ
−1(t)y‖)

+
(

1− t
T

)
(‖Φ−1(t)x‖+‖Φ−1(t)y‖)(‖Φ−1(t)x‖−‖Φ−1(t)y‖)

∣∣∣
≤
√

b1(‖x‖+‖y‖)
[ t

T
‖eT L

Φ
−1(t)(x− y)‖+

(
1− t

T

)
‖Φ−1(t)(x− y)‖

]
≤
√

b1(‖x‖+‖y‖)
[ t

T

√
b1‖x− y‖+

(
1− t

T

)√
b1‖x− y‖

]
= b1(‖x‖+‖y‖)‖x− y‖ (21)
≤ 2ηb1‖x− y‖,

which proves that V (t,x) is locally Lipschitz in x.
Finally, we show the second part of (16). For every (t0,x0) ∈ I×Rn define the

function ψ(t0,x0)(t) :=V (t,ϕ(t, t0,x0)) on I\{T}. We claim that for every (t0,x0) ∈
I×Rn the function ψ(t0,x0)(t) is differentiable with respect to t. To see this note that
by (17) and the semigroup property ϕ(t1, t2,ϕ(t2, t3,x)) = ϕ(t1, t3,x)

ψ(t0,x0)(t) = [‖ϕ(T, t,ϕ(t, t0,x0))‖2−‖ϕ(0, t,ϕ(t, t0,x0))‖2]
t
T
+‖ϕ(0, t,ϕ(t, t0,x0))‖2

= [‖ϕ(T, t0,x0)‖2−‖ϕ(0, t0,x0)‖2]
t
T
+‖ϕ(0, t0,x0)‖2

so that
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ψ
′
(t0,x0)

(t) = [‖ϕ(T, t0,x0)‖2−‖ϕ(0, t0,x0)‖2]
1
T
.

By Theorem 9 we have ‖eT L‖ =: ν ∈ (0,1), since the zero solution is exponen-
tially stable. Since V (t,x) is locally Lipschitz in x we have by Remark 2, the product
rule for differentiation, (17) and (20) that

V+(t0,x0) = limsup
h↘0

V (t0 +h,ϕ(t0 +h, t0,x0))−V (t0,x0)

h

= limsup
h↘0

ψ(t0,x0)(t0 +h)−ψ(t0,x0)(t0)
h

= ψ
′
(t0,x0)

(t0)

=
1
T

(
‖ϕ(T, t0,x0)‖2−‖ϕ(0, t0,x0)‖2)

=
1
T

(
‖eT L

Φ
−1(t0)x0‖2−‖Φ−1(t0)x0‖2)

≤ ν2−1
T
‖Φ−1(t0)x0‖2

≤ −1−ν2

T
a1‖x0‖2

Hence, with c1 := (1−ν2)a1/T > 0, the rest of (16) is shown.

We will show the existence of another Lyapunov function; note that this is par-
ticularly useful if one wants to approximate it by a continuous piecewise affine
function. Indeed, the authors showed in [12] that such a function can be approxi-
mated by a continuous piecewise affine function so closely that the approximation
is a true CPA Lyapunov function for autonomous systems, even in a neighborhood
of the equilibrium.

Theorem 12. Let the zero solution of the system (15) be exponentially stable. Then
there exists a finite-time Lyapunov function W (t,x) which satisfies

a2‖x‖ ≤W (t,x) ≤ b2‖x‖, W+(t,x) ≤ −c2‖x‖ (22)

for all x ∈ Rn and t ∈ I\{T}, where a2,b2,c2 > 0. W is globally Lipschitz in x.

Proof. We define W (t,x) :=
√

V (t,x), where V (t,x) is the function from Theorem
11, and notice that immediately from (16)

√
a1‖x‖ ≤W (t,x) ≤

√
b1‖x‖ follows. It

is easy to see that W (0,x) = W (T,x) = ‖x‖. To show the second part of (22) fix
t ∈ [0,T ). The case x = 0 follows from√

V (t +h,0+h ·A(t)0)−
√

V (t,0)
h

=
0−0

h
= 0,

i.e. W+(t,0) = 0. If x 6= 0 we have by Lemma 3
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W+(t,x) = limsup
h↘0

√
V (t +h,x+h ·A(t)x)−

√
V (t,x)

h

= limsup
h↘0

V (t +h,x+h ·A(t)x)−V (t,x)

h · (
√

V (t,x+h ·A(t)x)+
√

V (t,x))

≤ −c1‖x‖2

2
√

V (t,x)
≤− c1

2
√

b1
‖x‖.

It remains to show that W (t,x) is globally Lipschitz in x. The case x = y = 0 is
trivial and otherwise, by (21) and (16), we have

|W (t,x)−W (t,y)| =
∣∣∣√V (t,x)−

√
V (t,y)

∣∣∣= |V (t,x)−V (t,y)|√
V (t,x)+

√
V (t,y)

≤ b1(‖x‖+‖y‖)√
a1 · (‖x‖+‖y‖)

· ‖x− y‖ ≤ b1√
a1
· ‖x− y‖.

Remark 4. A different function W with the properties as in Theorem 12 is

W2(t,x) := [‖ϕ(T, t,x)‖−‖ϕ(0, t,x)‖] t
T
+‖ϕ(0, t,x)‖.

One can prove the properties, following the proof of Theorem 12, dropping the
squares.

We give an example that these two definitions lead to two different functions W1
and W2. Consider ẋ =−x on the interval [0,1] with the Euclidean norm. Then

V (t,x) =
(

te2(t−1)+(1− t)e2t
)

x2,

W1(t,x) =
√

te2(t−1)+(1− t)e2t |x|,

W2(t,x) =
(
tet−1 +(1− t)et) |x|.

4.3 Nonlinear systems

Now we consider the nonlinear system

ẋ = f (t,x) (23)

over the finite-time interval I = [0,T ] and show the existence of local finite-time
Lyapunov functions.

Theorem 13. Consider the nonlinear system

ẋ = f (t,x) (24)



Local Lyapunov Functions for periodic and finite-time ODEs 19

where f ∈C1([0,T ]×Rn,Rn), f (t,0) = 0 for all t ∈ [0,T ] over the finite-time inter-
val I= [0,T ]. Define A(t) := Dx f (t,0).

Consider (15) with the same A(t). Then the Lyapunov functions V and W in
Theorems 11 and 12 respectively are also finite-time Lyapunov functions for (24)
satisfying V+(t,x)≤−cv‖x‖2 and W+(t,x)≤−cw‖x‖, cv,cw > 0, for all t ∈ I\{T}
and all x in some open neighborhood U ⊂ Rn of 0.

Proof. It suffices to show that V+(t,x) ≤ −cv‖x‖2 and W+(t,x) ≤ −cw‖x‖ for all
t ∈ I\{T} and all x in some open neighborhood U ⊂ Rn of 0.

We first show W+(t,x) ≤ −cw‖x‖. By Taylor’s Theorem we can write f (t,x) =
A(t)x+ψ(t,x), where for all ε > 0 there is a η > 0 such that ‖ψ(t,x)‖ ≤ ε‖x‖
holds for all ‖x‖ < η and all t ∈ I, cf. the proof of Theorem 7. Because W (t,x) is
globally Lipschitz in x by Theorem 12, there is a constant L > 0 such that |W (t,x)−
W (t,y)| ≤ L‖x− y‖ for all t ∈ I and x,y ∈ Rn. Hence by (22)

W+(t,x) = limsup
h↘0

W (t +h,x+h · f (t,x))−W (t,x)
h

≤ limsup
h↘0

W (t +h,x+h · [A(t)x+ψ(t,x)])−W (t +h,x+h ·A(t)x)
h

+ limsup
h↘0

W (t +h,x+h ·A(t)x)−W (t,x)
h

≤ limsup
h↘0

L‖hψ(t,x)‖
h

− c2‖x‖

≤ L‖ψ(t,x)‖− c2‖x‖.

With ε := c2/(2L) and cw := c2/2 it follows that there exists an η > 0 such that
W+(t,x)≤−cw‖x‖ for all t ∈ I\{T} and all x ∈ Bη(0) =: U .

Now consider V (t,x) = [W (t,x)]2. The case x = 0 is trivial. For x 6= 0 we have by
Lemma 3 and the above estimate

V+(t,x) = limsup
h↘0

W 2(t +h,x+h · f (t,x))−W 2(t,x)
h

≤ limsup
h↘0

[W (t +h,x+h · f (t,x))+W (t,x)]
W (t +h,x+h · f (t,x))−W (t,x)

h

= 2W (t,x) · [−cw‖x‖]≤−a2cw‖x‖2

for all t ∈ I \ {T} and all x ∈ Bη(0) =: U . That is V+(t,x) ≤ −cv‖x‖2 with cv =
a2cw > 0.
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4.4 Norm ‖x‖2 = xT Nx

In this section we restrict ourselves to the class of norms ‖x‖2 = xT Nx, where N ∈
Rn×n is a symmetric, positive definite matrix.

In the following Theorem 14 we consider a nonlinear system and give a sufficient
condition for the exponential stability of the zero solution. The construction of the
Lyapunov function is similar to the periodic-time case. Note that the assumptions
of Theorem 14 are sufficient, but not necessary for the exponential attraction of the
zero solution, see Theorem 15, 2.

Theorem 14. Consider

ẋ = f (t,x), (25)

where f ∈C1([0,T ]×Rn,Rn), f (t,0) = 0 for all t ∈ [0,T ] over the finite-time inter-
val I= [0,T ]. Define A(t) := Dx f (t,0). Let L be defined as in Theorem 8.

Let the norm ‖ · ‖ be defined by

‖x‖2 = xT Nx,

where N ∈ Rn×n is a symmetric, positive definite matrix.
If the Hermitian matrix L∗N +NL is Hurwitz, then the zero solution of (25) is

exponentially stable. In this case,

V (t,x) := xT (P−1(t))∗NP−1(t)x and W (t,x) =
√

V (t,x)

are finite-time local Lyapunov function, satisfying

a1‖x‖2 ≤ V (t,x)≤ b1‖x‖2, V ′(t,x)≤−c1‖x‖2,

a2‖x‖ ≤ W (t,x)≤ b2‖x‖, W ′(t,x)≤−c2‖x‖,

for all x ∈ U \ {0} and t ∈ I \ {T}, where U is an open neighborhood of 0, with
constants a1,b1,c1,a2,b2,c2 > 0.

Proof. Using Theorem 8, we express the fundamental matrix solution with initial
condition Φ(0) = I by

Φ(t) = P(t)etL

where P(0) = P(T ) = I and P(t),L ∈ Cn×n. The Hermetian matrix (L∗N +NL) is
negative definite. Denote the maximal eigenvalue by −ν < 0, which gives us

zT (L∗N +NL)z ≤ −ν‖z‖2
2 (26)

for all z ∈ Cn.
We define the functions V and W as in the theorem. The inequalities for V (t,x)

and W (t,x) follow from the fact that P−1(t) is non-singular and N is positive
definite. As P(0) = P(T ) = I, we have V (0,x) = V (T,x) = ‖x‖2 and W (0,x) =
W (T,x) = ‖x‖.
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Now we show the inequality for V ′(t,x). We us Ṗ−1(t) = LP−1(t)−P−1(t)A(t),
which is shown as in the periodic case (see (7) in the proof of Theorem 6) and
(A(t))∗= (A(t))T since A(t)∈Rn×n. Furthermore, by Taylor f (t,x) =A(t)x+ψ(x),

where for ε := ν

2‖N‖2
there is r > 0 such that ‖P

−1(t)ψ(t,x)‖2
‖P−1(t)x‖2

< ε for all t ∈ I and
‖x‖2 < r. Hence, we obtain

V ′(t,x) = xT (A(t))T (P−1(t))∗NP−1(t)x+(ψ(t,x))∗(P−1(t))∗NP−1(t)x

+xT (Ṗ−1(t))∗NP−1(t)x+ xT (P−1(t))∗NṖ−1(t)x

+xT (P−1(t))∗NP−1(t)A(t)x+ xT (P−1(t))∗NP−1(t)ψ(t,x)

= xT [(A(t))T (P−1(t))∗N +(P−1(t))∗L∗N− (A(t))∗(P−1(t))∗N]P−1(t)x

+xT (P−1(t))∗[NLP−1(t)−NP−1(t)A(t)+NP−1(t)A(t)]x

+2‖P−1(t)x‖2‖N‖2‖P−1(t)ψ(t,x)‖2

= ((P−1(t))x)∗[L∗N +NL]P−1(t)x+
ν

2
‖P−1(t)x‖2

2

≤ −ν

2
‖P−1(t)x‖2

2

≤ −c1‖x‖2

for a suitable c1 > 0 and for all t ∈ I and 0 < ‖x‖2 < r by (26). The proof for W
follows as in Theorem 6.

5 Relations between autonomous, periodic and finite-time
systems

5.1 Periodic systems as finite-time systems

If we consider a time-periodic system

ẋ = f (t,x),

then we can also regard this system as a finite-time system. We discuss the stability
of the zero solution with respect to the different notions.

Theorem 15. Consider a T -periodic system ẋ = f (t,x) with f ∈ C1(R×Rn,Rn),
f (t,0) = 0 for all t ∈ R. We can also consider the system as a finite-time system
over the interval I= [0,T ].

If the zero solution is exponentially stable with respect to the finite-time case,
then it is exponentially stable with respect to the periodic-time case.

By Theorems 4 and 8 there is a matrix L ∈ Cn×n such that the principal solution
of the linearised equation with Φ(0) = I can be expressed as Φ(t) = P(t)etL, where
P(0) = P(T ) = I. Now the following statements hold true for L:
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1. Let ‖ · ‖ be a arbitrary norm on Rn. If ‖eT L‖< 1, then L is Hurwitz.
2. Let N ∈Rn×n be a symmetric, positive definite matrix and let ‖·‖ be the induced

matrix norm corresponding to the vector norm ‖x‖2 = xT Nx.
If L∗N +NL is Hurwitz, then ‖eT L‖< 1 for all T > 0.

Proof. Assume that the zero solution is exponentially stable with respect to the
finite-time case. Then, by Theorem 9 we have ‖DFT (0)‖ = µ ∈ (0,1). Since
FT (x) =DFT (0)x+ψ(x) with a function ψ(x) = o(‖x‖) as x→ 0, there exists η > 0
such that ‖ψ(x)‖ ≤ 1−µ

2 ‖x‖ for all x ∈ Bη(0). Thus,

‖FT (x)‖ ≤ ‖DFT (0)‖‖x‖+‖ψ(x)‖ ≤ µ‖x‖+ 1−µ

2
‖x‖ = 1+µ

2
‖x‖.

Denoting ν := 1+µ

2 ∈ (0,1), since µ ∈ (0,1), we have now

‖FT (x)‖ ≤ ν‖x‖

for all x ∈ Bη(x). This is also the Poincaré map P:Rn → Rn, x→ ϕ(T,0,x) of the
periodic system and thus

‖Pkx‖ ≤ ν
k‖x‖

for all k ∈ N, which implies the exponential stability with respect to the periodic
system as ν ∈ (0,1). Part 2. is a direct consequence of Theorems 14, 7 and 9.

5.2 Autonomous systems as periodic and finite-time systems

An autonomous system
ẋ = f (x)

can be considered as a periodic system with any period T , and also on a finite-
time interval [0,T ] with any T > 0. We discuss the relations between the different
notions of attractivity for such a system. We start with an example, and we later
prove a general theorem.

Example 1. Consider the linear system with f (x) = Ax, where A :=
(
−1 c
0 −1

)
with

c ∈ R and x ∈ R2. Then the principal solution can be written as Φ(t) = etL, where

in the previous notation we have P(t) = I and L =

(
−1 c
0 −1

)
. The eigenvalues of

L are −1 and have negative real part. Thus, as an autonomous example, the origin
is exponentially asymptotically stable for all c ∈ R and so is the zero solution if we
regard it as a periodic system.

Now we consider the system as a finite-time system on the interval I = [0,T ]
with the Euclidean norm ‖x‖2 = xT x, i.e. N = I. In this case, ‖eT L‖2 is given by the
maximal eigenvalue of eT L∗eT L. We have
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eT L = e−T
(

1 T c
0 1

)
and thus eT L∗eT L = e−2T

(
1 T c

T c T 2c2 +1

)
.

The eigenvalues are

λ1,2 = e−2T

(
1+

T 2c2

2
±
√

T 2c2 +
T 4c4

4

)
.

Both eigenvalues are < 1 if and only if

|c|< 2
sinhT

T
=: c∗(T ).

Note that limT→0 c∗(T ) = 2 and limT→∞ c∗(T ) = ∞. Hence, depending on the finite-
time interval [0,T ] under consideration, the zero solution is exponentially asymptot-
ically stable, if and only if |c|< c∗(T ). As T →∞, the zero solution is exponentially
attractive for all c.

Now we consider the condition that L∗N +NL is Hurwitz of Theorem 14, which
is sufficient for the exponential attractivity. In this example, L∗N +NL = L∗+L =(
−2 c

c −2

)
. The eigenvalues are µ1,2 =−2±c, and they are both negative if |c|< 2.

Hence, the condition that the zero solution is finite-time attractive for all T > 0
(|c| ≤ 2) is nearly equivalent to L∗N +NL being Hurwitz (|c|< 2).

We can prove the following general lemma.

Lemma 4. Consider the autonomous system

ẋ = f (x) (27)

with f ∈C1(Rn,Rn), f (0) = 0 and D f (0) =: A ∈ Rn×n.
The zero solution of this T -periodic system for any T > 0 is exponentially stable

if and only if the equilibrium 0 is exponentially stable for the autonomous system.
If the zero solution is finite-time exponentially attractive for a T > 0, then it is

exponentially stable both for the autonomous and periodic system.
Now consider the norm ‖x‖2 = xT Nx with symmetric positive definite matrix

N ∈ Rn×n. Then we have the following implications

(i)⇒ (ii)⇔ (iii)⇒ (iv).

(i) All eigenvalues λ of AT N +NA satisfy λ < 0.
(ii) The zero solution of (27) is exponentially stable over the finite-time interval

[0,T ] for all T > 0.
(iii) For all T > 0, ‖eTA‖< 1.
(iv) All eigenvalues λ of AT N +NA satisfy λ ≤ 0.
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Proof. The first parts follows from the fact that L = A and Theorems 3 and 7 as well
as Theorem 15.

For the second part, note that (i)⇒(ii) follows from Theorem 14 and (ii)⇔(iii)
follows from Theorem 9. It is left to show (iii)⇒(iv).

Let us assume that for all T > 0, we have ‖eTA‖< 1 and, in contradiction to the
statement, that there is an eigenvalue λ > 0 and v ∈ Rn \{0} such that

(AT N +NA)v = λv.

Since ‖eTA‖< 1, we have

‖v‖2 > vT eTAT
NeTAv

= vT
(

I +TAT +
1
2

T 2(AT )2 + . . .

)
N
(

I +TA+
1
2

T 2A2 + . . .

)
v

= vT (N +T (AT N +NA)+ϕ(T )
)

v

= ‖v‖2 +‖v‖2
2(T λ +ϕ(T ))

where ϕ(T ) = o(T ) as T → 0. Hence, there is a T > 0 such that |ϕ(T )| ≤ T λ/2 and
0 > ‖v‖2

2T λ/2 > 0 due to λ > 0, which is a contradiction.

6 Conclusions and Outlook

In this article, we have generalised the construction of local Lyapunov functions
for general nonlinear systems to periodic-time and finite-time systems. As in the
classical autonomous case, we have constructed two types of Lyapunov functions V
and W , satisfying

a1‖x‖2 ≤ V (t,x)≤ b1‖x‖2, V ′(t,x)≤−c1‖x‖2,

a2‖x‖ ≤ W (t,x)≤ b2‖x‖, W ′(t,x)≤−c2‖x‖.

They are global Lyapunov functions for linear systems, and local Lyapunov func-
tions for nonlinear ones.

Although we give explicit formulas for V and W , we are using the Floquet rep-
resentation of solutions, so that in explicit examples their calculation requires the
solution of the first variation equation. The practical use of the results, besides the
theoretical existence, is to derive an algorithm for the construction of CPA Lyapunov
functions for periodic and finite-time systems, where the results of this paper will
be important to close the gap between the local and the global part of the Lyapunov
function. We envisage that, as in the autonomous case [11, 13], where we have used
similar results to show the existence and to algorithmically construct a CPA Lya-
punov function, we can use the results of this paper for similar algorithms in the
time-periodic and finite-time cases.
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