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Abstract. We present a numerical algorithm for computing Lyapunov func-
tions for a class of strongly asymptotically stable nonlinear differential inclu-
sions which includes spatially switched systems and systems with uncertain
parameters. The method relies on techniques from nonsmooth analysis and
linear programming and constructs a piecewise affine Lyapunov function. We
provide necessary background material from nonsmooth analysis and a thor-
ough analysis of the method which in particular shows that whenever a Lya-
punov function exists then the algorithm is in principle able to compute it.
Two numerical examples illustrate our method.

1. Introduction. Differential inclusions are a versatile tool to model various dy-
namical phenomena. They can be used, e.g., in order to describe systems under
parametric uncertainties which are ubiquitous in many applications. Via the Filip-
pov regularization they also provide a mathematially rigorous way to handle systems
with discontinuities, like spatially switched systems. When analyzing the dynamical
behavior of the solutions of differential inclusions, the determination of the stability
properties of an equilibrium and — in case of asymptotic stability — its domain
of attraction is one of the fundamental problems. In this paper we will investi-
gate this problem for the case of robust or strong asymptotic stability for nonlinear
differential inclusions, i.e., when all solutions of the inclusion are asymptotically
stable.

Lyapunov functions play an important role in this analysis since their knowledge
allows to verify asymptotic stability of an equilibrium and at the same time to
estimate its domain of attraction. However, Lyapunov functions are often difficult
if not impossible to obtain analytically. Hence, numerical methods may be the only
feasible way for computing such functions.
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Numerical computations of Lyapunov functions have been extensively studied in
recent years. In the literature, two main approaches can be identified. The first
approach uses the fact that Lyapunov functions can be characterized by partial
differential equations which can then be solved numerically. For nonlinear control
systems, which can be seen as a parametrized version of the differential inclusions
considered in this paper, such a numerical approach has been presented in [2] us-
ing the Zubov equation, a particular Hamilton-Jacobi-Bellman equation. However,
this method computes a numerical approximation of a Lyapunov function rather
than a Lyapunov function itself. A related method for numerically computing true
Lyapunov functions — even smooth ones — has been presented in detail in [8].
However, this method is designed for differential equations and does not directly
extend to differential inclusions.

The second main approach uses numerical optimization techniques for comput-
ing Lyapunov functions. In [13], a convex optimization approach using linear or
quadratic programming has been presented which is, however, only applicable to
differential equations. In [15] the authors develop a linear programming method
which is based on piecewise linear approximations of the original nonlinear vector
field. This approach extends to nonlinear inclusions provided they are generated
by piecewise linear and sector bounded uncertainties. Finally, LMI (linear matrix
inequalities) optimization techniques have been succesfully applied to the problem,
see, e.g., [3] and the references therein, however, this approach is restricted to dif-
ferential inclusions with polynomial right hand sides.

The contribution of the present paper is the extension of the linear program-
ming based algorithm for computing Lyapunov functions first presented in [19]
for ordinary differential equations and further developed in [11] for systems with
switching in time. We extend the method to nonlinear differential inclusions de-
fined by polytopes of general nonlinear vector fields on different — overlapping or
non-overlapping — domains. This class includes, e.g., Filippov regularizations of
discontinuous nonlinear systems like spatially switched systems as well as nonlinear
differential equations with polytopic parametric uncertainty. Like in [8] we directly
work with the nonlinear vector fields (i.e., we do not use piecewise affine or poly-
nomial approximations) and by means of a thorough analysis of the discretization
error we can guarantee that the resulting numerically computed function is a true
Lyapunov function of the system, except possibly for a small neighborhood of the
origin. Apart from the fact that we use a different type of discretization, the cen-
tral difference to [8] is that instead of solving the linear partial differential equation
〈∇V (x), f(x)〉 = −α(‖x‖) for one vector field f(x), here a feasible solution to the
linear partial differential inequality 〈∇V (x), fµ(x)〉 ≤ −α(‖x‖) is found for all vec-
tors fµ(x) defining our differential inclusion. For a fixed V this inequality may be
fulfilled for several different functions fµ, whereas the equation is in general not.
Proceeding this way, we are in particular able to prove that for sufficiently fine and
regular discretization our algorithm is always able to compute a Lyapunov function
if one exists.

The Lyapunov functions computed by our algorithm are piecewise affine and thus
nonsmooth, hence we exploit methods from nonsmooth analysis. Since the results
needed for a rigorous treatment of such functions are scattered in different areas in
the literature, a second contribution of our paper is a rigorous and self contained
presentation of the necessary background results for nonsmooth Lyapunov functions.



LINEAR PROGRAMMING BASED LYAPUNOV FUNCTION COMPUTATION 3

The paper is organized as follows. After introducing the setting and several
definitions in Section 2, in Section 3 we provide the necessary background results
from nonsmooth analysis and precisely define the concept of nonsmooth Lyapunov
functions needed for our method. The algorithm along with its detailed analysis
can be found in Section 4. Finally, we illustrate the algorithm by two numerical
examples in Section 5.

2. Notation and preliminaries. In order to introduce the class of differential
inclusions to be investigated in this paper, we consider a compact set G ⊂ R

n which
is divided into M closed subregions G = {Gµ |µ = 1, . . . , M} with

⋃
µ=1,...,M Gµ =

G. For each x ∈ G we define the active index set IG(x) := {µ ∈ {1, . . . , M} |x ∈
Gµ}.

On each subregion Gµ we consider a Lipschitz continuous vector field fµ : Gµ →
R

n. Our differential inclusion on G is then given by

ẋ ∈ F (x) := co {fµ(x) |µ ∈ IG(x)}, (1)

where “co” denotes the convex hull. A solution of (1) is an absolutely continuous
function x : I → G satisfying ẋ(t) ∈ F (x(t)) for almost all t ∈ I, where I is the
maximal existence interval. This interval I is of the form I = [0, T ] or I = [0,∞).
Since G is compact and x(t) is continuous in t, the maximal existence interval is
of the form I = [0,∞) if and only if x(t) ∈ G for all t ≥ 0. Note that we do not
impose any invariance properties of G.

To guarantee the existence of a solution of the differential inclusion (1), upper
semicontinuity of the right-hand side is an essential assumption, see [7, § 2.7].

Definition 2.1. A set valued map F : G ⇒ R
n is called upper semicontinuous if

for any x ∈ G and any ǫ > 0 there exists δ > 0 such that

x′ ∈ Bδ(x) ∩ G implies F (x′) ⊆ F (x) + Bǫ(0).

The following lemma shows that F from (1) is upper semicontinuous. For pair-
wise disjoint subregions the proof follows from [7, Lemma 3 in § 2.6]. Here we
provide an alternative proof idea which also covers overlapping regions.

Lemma 2.2. The set valued map F (x) = co {fµ(x)|µ ∈ IG(x)} from (1) is upper
semicontinuous in the sense of Definition 2.1.

Proof. Pick x ∈ G. We have to show that for every y′ ∈ F (x′) there exists y ∈ F (x)
such that ‖y′ − y‖ < ε.

To this end let A =
⋃

µ/∈IG(x) Gµ. This set is compact as a finite union of compact

sets. Since x /∈ A, x has a positive distance from A, i.e., there exists an open ball
Bδ1

(x) with Bδ1
(x) ∩ A = ∅ and by definition of A we get IG(x′) ⊆ IG(x) for all

x′ ∈ Bδ1
(x).

Since each fµ is continuous, for any ǫ > 0 we find a positive δ ≤ δ1 such that
‖fµ(x′) − fµ(x)‖ < ǫ holds for all µ ∈ IG(x′) ⊆ IG(x) and all x′ ∈ Bδ(x). Now each
y′ ∈ F (x′) can be written as a convex combination y′ =

∑
µ∈IG(x′) λµfµ(x′). Since

IG(x′) ⊆ IG(x) we can define y =
∑

µ∈IG(x′) λµfµ(x) ∈ F (x) in order to obtain

‖y′ − y‖ =

∥∥∥∥∥∥

∑

µ∈IG(x′)

λµ(fµ(x′) − fµ(x))

∥∥∥∥∥∥
≤

∑

µ∈IG(x′)

λµ

︸ ︷︷ ︸
=1

‖fµ(x′) − fµ(x)‖︸ ︷︷ ︸
<ǫ

< ǫ.

This shows the assertion.
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Note that the differential inclusion (1) is upper semicontinuous due to Lemma 2.2.
However, weaker conditions are available in the literature, e.g. almost upper semi-
continuity for one-sided Lipschitz differential inclusions in [6]. Two important spe-
cial cases of (1) are outlined in the following examples.

Example 2.3 (switched ordinary differential equations). We consider a par-
tition of G into pairwise disjoint but not necessarily closed sets Hµ and a piecewise
defined ordinary differential equations of the form

ẋ(t) = fµ(x(t)), x(t) ∈ Hµ (2)

in which fµ : Hµ → R
n is continuous and can be continuously extended to the

closures clHµ.
If the ordinary differential equation ẋ(t) = f(x(t)) with f : G → R

n defined by
f(x) := fµ(x) for x ∈ Gµ is discontinuous, then in order to obtain well defined
solutions the concept of Filippov solutions, cf. [7, § 2.7], is often used. To this end
(2) is replaced by its Filippov regularization, i.e. by the differential inclusion

ẋ(t) ∈ F (x(t)) =
⋂

δ>0

⋂

µ(N)=0

co{f((Bδ(x(t)) ∩ G) \ N)} (3)

where µ is the Lebesgue measure, N ⊂ R
n an arbitrary set of measure zero and co

denotes the closure of the convex hull. A straightforward computation shows that
if the number of the sets Hµ is finite and each Hµ satisfies clHµ = cl intHµ, then
the inclusion (3) coincides with (1) if we define Gµ := cl Hµ and extend each fµ

continuously to Gµ. This fact is collected, e.g. in [7, § 2.7] and [23].
An important subclass of switched systems are piecewise affine systems in which

each fµ in (2) is given by an affine map, i.e.,

fµ(x) = Aµx + bµ,

see, e.g., [14, 18].

Example 2.4 (polytopic inclusions). Consider a differential inclusion ẋ(t) ∈
F (x(t)) in which F (x) ⊂ R

n is a closed polytope F (x) = co {fµ(x) |µ = 1, . . . , M}
with a finite number of vertices fµ(x) for each x ∈ G. If the vertex maps fµ : G →
R

n are Lipschitz continuous, then the resulting inclusion

ẋ(t) ∈ F (x(t)) = co {fµ(x(t)) |µ = 1, . . . , M}

is of type (1) with Gµ = G for all µ = 1, . . . , M .

The aim of this paper is to present an algorithm for the computation of Lyapunov
functions for asymptotically stable differential inclusions of the type (1). Here
asymptotic stability is defined in the following strong sense.

Definition 2.5. The differential inclusion (1) is called (strongly) asymptotically
stable (at the origin) if the following two properties hold:

(i) For each ε > 0 there exists δ > 0 such that each solution x(t) of (1) with
‖x(0)‖ ≤ δ satisfies ‖x(t)‖ ≤ ε for all t ≥ 0.

(ii) There exists a neighborhood N of the origin such that for each solution x(t)
of (1) with x(0) ∈ N the convergence x(t) → 0 holds as t → ∞.
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Assuming the properties (i) and (ii), the domain of attraction w.r.t. G is defined as
the maximal subset of R

n for which convergence holds, i.e.

D := {x0 ∈ R
n | every solution with x(0) = x0 is defined on [0,∞),

i.e., it stays in G, and satisfies lim
t→∞

x(t) = 0}. (4)

Note that if a solution x(·) leaves the region G for some t, then its starting
value will not be contained in D. The numerical algorithm we propose will com-
pute a continuous and piecewise affine function V : G → R. In order to formally
introduce this class of functions, we divide G into N n-simplices T = {Tν | ν =
1, . . . , N}, i.e. each Tν is the convex hull of n + 1 affinely independent vectors with⋃

ν=1,...,N Tν = G. The intersection Tν1
∩ Tν2

is either empty or a common face of

Tν1
and Tν2

, i.e. Tν1
∩ Tν2

= co {y | y is a vertex of Tνi
, i=1,2}. For each x ∈ G we

define the active index set IT (x) := {ν ∈ {1, . . . , N} |x ∈ Tν}. Let us denote by
diam(Tν) := maxx,y∈Tν

‖x − y‖ the diameter of a simplex.
Then, by PL(T ) we denote the space of continuous functions V : G → R which

are affine on each simplex, i.e.

∇Vν := ∇V |int Tν
≡ const for all Tν ∈ T .

For the algorithm to work properly we need the following compatibility between the
subregions Gµ and the simplices Tν : for every µ and every ν that

either Gµ ∩ Tν is empty or of the form co {xj0 , xj1 , . . . , xjk
}, (5)

where xj0 , xj1 , . . . , xjk
are pairwise disjoint vertices of Tν and 0 ≤ k ≤ n, i.e.,

Gµ ∩ Tν is a k-face of Tν .
Since the functions in PL(T ) computed by the proposed algorithm are in general

nonsmooth, we need a generalized concept for derivatives. In this paper we use
Clarks’s generalized gradient which we introduce for arbitrary Lipschitz continuous
functions. Following [4] we first introduce the corresponding directional derivative.

Definition 2.6. (i) For a given function W : R
n → R and l, x ∈ R

n, we will denote
the directional derivative

W ′(x; l) = lim
h↓0

W (x + hl) − W (x)

h

as directional derivative of W at x in direction l (if the limit exists).
(ii) Clarke’s directional derivative (cf. [4, Section 2.1]) is defined as

W ′
Cl(x; l) = lim sup

y→x
h↓0

W (y + hl) − W (y)

h
.

Using Clarke’s directional derivative as support function, we can state the defi-
nition of Clarke’s subdifferential (see [4, Section 2.1]).

Definition 2.7. For a locally Lipschitz function W : R
n → R and x ∈ R

n Clarke’s
subdifferential is defined as

∂ClW (x) = {d ∈ R
n | ∀l ∈ R

n : 〈d, l〉 ≤ W ′
Cl(x; l)}.

In [4, Theorem 2.5.1] the following alternative representation of ∂Cl via limits of
gradients is shown.
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Proposition 2.8. For a Lipschitz continuous function W : G → R Clarke’s sub-
differential satisfies

∂ClW (x) = co
{

lim
i→∞

∇W (xi) | xi → x, ∇W (xi) exists

and lim
i→∞

∇W (xi) exists
}

.

3. Lyapunov functions. There is a variety of possibilities of defining Lyapunov
functions for differential inclusions. While it is known that asymptotic stability
of (1) with domain of attraction D implies the existence of a smooth Lyapunov
function defined on D, see Theorem 3.7, below, for our computational purpose we
make use of piecewise affine and thus in general nonsmooth functions. Hence, we
need a definition of a Lyapunov function which does not require smoothness. It
turns out that Clarke’s subgradient introduced above is just the right tool for this
purpose.

Definition 3.1. A positive definite1 and Lipschitz continuous function V : G → R

is called a Lyapunov function of (1) if the inequality

max 〈∂ClV (x), F (x)〉 ≤ −α(‖x‖) (6)

holds for all x ∈ G, where α : R
+
0 → R

+
0 is continuous with α(0) = 0 and α(r) > 0

for r > 0 and we define the set valued scalar product as

〈∂ClV (x), F (x)〉 := {〈d, v〉 | d ∈ ∂ClV (x), v ∈ F (x)}. (7)

Given ε > 0, since G is compact, changing V to γV for γ ∈ R sufficiently large
we can always assume without loss of generality that

max 〈∂ClV (x), F (x)〉 ≤ −‖x‖ (8)

holds for all x ∈ G with ‖x‖ ≥ ε. Note, however, that even with a nonlinear
rescaling of V it may not be possible to obtain (8) for all x ∈ G.

It is well known that the existence of a Lyapunov function in the sense of Defini-
tion 3.1 guarantees asymptotic stability of (1), see, e.g., [21]. For the convenience
of the reader we include a proof of this fact. To this end, we first need the following
preparatory proposition.

Proposition 3.2. Let x(t) be a solution of (1) and V : G → R be a Lipschitz
continuous function. Then the mapping t 7→ (V ◦ x)(t) is absolutely continuous and
satisfies

d

dt
(V ◦ x)(t) ≤ max 〈∂ClV (x(t)), F (x(t))〉

for almost all t ≥ 0 with x(τ) ∈ G for all τ ∈ [0, t].

Proof. We will start with the proof as in [7, Chapter 3, § 15, (8)]. The complete
proof is included for the reader’s convenience.

The functions t 7→ x(t) and t 7→ (V ◦ x)(t) are absolutely continuous as a com-
position, see [17, remarks after Corollary 3.52].

Let us consider a set N of measure zero such that for every t /∈ N :

• The derivative d
dt(V ◦ x) exists at time t.

• The derivative ẋ exists at time t and ẋ(t) ∈ F (x(t)).

1i.e., V (0) = 0 and V (x) > 0 for all x ∈ G \ {0}
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• t is a Lebesgue point of ẋ, i.e.

lim
h→0

1

h

∫ t+h

t

‖ẋ(s) − ẋ(t)‖ds = 0

(see [20, Chapter IX, § 4, Theorem 5]).

Hence,

lim
h→0

‖x(t + h) − x(t)

h
− ẋ(t)‖ = lim

h→0
‖ 1

h

∫ t+h

t

ẋ(s)ds − ẋ(t)‖

≤ lim
h→0

1

h

∫ t+h

t

‖ẋ(s) − ẋ(t)‖ds = 0

and we have proved the following error estimate of the abbreviated Taylor expansion
for x(·) as stated in [7, Chapter 3, § 15, (8)]:

x(t + h) = x(t) + hẋ(t) + O(h),

‖V (x(t + h)) − V (x(t) + hẋ(t))‖ ≤ L · ‖x(t + h) − x(t) − hẋ(t)‖ = O(h).

We will use this to prove that the time derivative coincides with the usual (right)
directional derivative:

d

dt
(V ◦ x)(t) = lim

h→0

V (x(t + h)) − V (x(t))

h
= lim

h↓0

V (x(t + h)) − V (x(t))

h

= lim
h↓0

V (x(t) + hẋ(t)) − V (x(t))

h
= V ′(x(t); ẋ(t))

By considering the sequence yn = x(t) in the definition of Clarke’s directional
derivative, it is clear that

V ′(x(t); ẋ(t)) ≤ V ′
Cl(x(t); ẋ(t)) = max

d∈∂ClV (x(t))
〈d, ẋ(t)〉

≤ max
d∈∂ClV (x(t))

max
v∈F (x(t))

〈d, v〉 = max 〈∂ClV (x(t)), F (x(t))〉 ,

where we used Definition 2.6, ẋ(t) ∈ F (x(t)) and (7).

Now we can prove asymptotic stability.

Theorem 3.3. Consider a Lipschitz continuous function V : G → R and F from
(1) satisfying (6) and let x(t) be a solution of (1). Then the inequality

V (x(t)) ≤ V (x(0)) −
∫ t

0

α(‖x(τ)‖)dτ (9)

holds for all t ≥ 0 satisfying x(τ) ∈ G for all τ ∈ [0, t].
In particular, if V is positive definite then (1) is asymptotically stable and its

domain of attraction w.r.t. G defined in (4) contains every connected component
C ⊆ V −1([0, c]) of a sublevel set

V −1([0, c]) := {x ∈ G |V (x) ∈ [0, c]}
for some c > 0 which satisfies 0 ∈ intC and C ⊂ intG.

Proof. Proposition 3.2 shows that that t 7→ (V ◦ x)(t) is absolutely continuous and
satisfies

d

dt
(V ◦ x)(t) ≤ −α(‖x(t)‖)

for almost all t ≥ 0 with x(t) ∈ G. Under the assumption that x(τ) ∈ G for all
τ ∈ [0, t] we can integrate this inequality from 0 to t which yields (9).
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By the following classical arguments for Lyapunov functions (see also [5, Theo-
rem 1.2] and [12, Theorem 3.2.7]), the asymptotic stability, i.e., properties (i) and
(ii) of Definition 2.5, can now be concluded.

step 1: Before showing (i) and (ii), we prove by contradiction that every solution
starting in a connected component C ⊆ V −1([0, c]) for some c > 0 with 0 ∈ intC
and C ⊂ intG stays in C for all t ≥ 0 and is hence defined on I = [0,∞). To
this end, pick any solution x(t) with x(0) ∈ C and assume that x(t1) 6∈ C holds
for some t1 > 0. Then by continuity of the solution there exists a time t2 ≥ 0
such that x(t2) ∈ ∂C and x(τ) ∈ C for all τ ∈ [0, t2]. Note that this implies
x(τ) ∈ G for all τ ∈ [0, t2]. Hence, the integral inequality (9) is valid for t = t2
and implies V (x(t2)) ≤ V (x(0)) where equality holds if and only if x(τ) = 0 for
all τ ∈ [0, t2]. In this case we get x(t2) = 0 which contradicts x(t2) ∈ ∂C because
0 ∈ intC. If x(t2) 6= 0 we get the strict inequality V (x(t2)) < V (x(0)) ≤ c which
again contradicts x(t2) ∈ ∂C because by definition of C we have V (x) = c for all
x ∈ ∂C.

step 2: Now we prove Definition 2.5 (i) and (ii). In order to show (i), first
observe that it is sufficient to prove (i) for all sufficiently small ε > 0. Hence,
we can restrict ourselves to those ε > 0 for which the closed ball cl Bε(0) satisfies
clBε(0) ⊂ intG. Since V : G → R is continuous and positive definite, for each
such ε > 0 we get cε := min{V (x) | ‖x‖ ≥ ε} > 0. The corresponding sublevel
set V −1([0, cε]) is contained in the closed ball clBε(0). Since V is continuous with
V (0) = 0 we can furthermore conclude that V −1([0, cε]) contains a ball cl Bδ(0)
for some δ > 0. Clearly, this ball must be contained in the connected component
C ⊆ V −1([0, cε]) with 0 ∈ intC. By our choice of sufficiently small ε we get
C ⊆ cl Bε(0) ⊂ intG. Thus, any solution with ‖x(0)‖ ≤ δ starts in C and hence
satisfies x(t) ∈ C ⊆ V −1([0, cε]) for all t ≥ 0. By choice of cε we obtain ‖x(t)‖ ≤ ε
and thus (i).

In order to show (ii), pick an arbitrary solution x(t) with x(0) ∈ C with C from
the assumption. Then the solution remains in C for all t ≥ 0 and we can thus use
the integral inequality (9) for all t ≥ 0. We claim that this implies V (x(t)) → 0.
Indeed, since V (x(t)) is monotone decreasing and bounded from below by 0 we
obtain V (x(t)) ց c∗ ≥ 0. Assuming c∗ > 0 yields x(t) /∈ V −1([0, c∗]). Then, since
V is continuous with V (0) = 0 and α is continuous with α(r) > 0 for r > 0 this
implies the existence of δ > 0 with α(‖x(t)‖) ≥ δ for all t ≥ 0. Thus, the right hand
side of (9) and consequently also V (x(t)) decreases unboundedly which contradicts
V (x(t)) ց c∗ > 0. Thus, V (x(t)) ց 0 as t → ∞.

Now, the positive definiteness of V implies that V (x(t)) → 0 is only possible if
x(t) → 0. This shows (ii) and hence finishes the proof.

In step 1 of the proof, the condition ”C ⊂ intG” on C and the property x(t) ∈ C
guarantees that the values of x(·) remain in G.

Remark 3.4. A different concept of nonsmooth Lyapunov functions was presented
in [1]. In this reference, in addition to Lipschitz continuity, the function V is also
assumed to be regular in the sense of [4, Definition 2.3.4], i.e. the usual directional
derivative in Definition 2.6 exists for every direction l and coincides with Clarke’s
directional derivative. Under this additional condition, inequality (6) can be relaxed
to

max V̇ (x) ≤ −α(‖x‖) (10)
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with

V̇ (x) := {a ∈ R | there exists v ∈ F (x) with 〈p, v〉 = a for all p ∈ ∂ClV (x)}.
Here the right hand side −α(‖x‖) in (10) could be replaced by “0” in case of a
LaSalle type invariance principle as in [1]. Note that this is indeed a relaxation
of (6), cf. Example 5.1, below. While for theoretical constructions this variant is
appealing, both the relaxed inequality (10) as well as the regularity assumption on
V are difficult to be implemented algorithmically, which is why we use (6). Note,
however, that this does not limit the applicability of our algorithm because asymptotic
stability of (1) implies the existence of a smooth Lyapunov function, cf. Theorem 3.7
below. This in turn implies that both a regular Lyapunov function satisfying (10)
and a not necessarily regular Lyapunov function satisfying (6) exist. Thus, in terms
of existence, neither concept is stronger or weaker than the other.

For computational purposes in our algorithm we now derive a simpler sufficient
condition for (6) using the particular structure of F (x) in (1). This sufficient condi-
tion requires the evaluation of Clarke’s subdifferential of a piecewise linear function.
To this end we first need the following lemma which is proved in [16, Proposition 4]
and [22, Proposition A.4.1]. We again provide an independent proof in order to
keep this paper self contained.

Lemma 3.5. Clarke’s generalized gradient of V ∈ PL(T ) is given by

∂ClV (x) = co {∇Vν | ν ∈ IT (x)}.
Proof. Fix x ∈ G. Since the simplices Tν ∈ T are closed we have

d(x, Tν) = inf
y∈Tν

‖x − y‖ = 0

if and only if x ∈ Tν , i.e., if and only if ν ∈ IT (x). Hence, since there are only
finitely many Tν we find ε > 0 such that d(x, Tν) > ε for all ν 6∈ IT (x).

Now consider an arbitrary sequence xi → x with xi ∈ G such that ∇V (xi) exists
for all i and limi→∞ ∇V (xi) exists. Since xi → x we know ‖x − xi‖ < ε for all
sufficiently large i which implies ∇V (xi) = ∇Vν for some ν ∈ IT (x). Since there
are only finitely many different indices ν ∈ IT (x),

lim
i→∞

∇V (xi) = ∇Vν ∈ co {∇Vν | ν ∈ IT (x)}

follows. By definition of ∂ClV (x) as the convex hull of all such limits this implies

∂ClV (x) ⊆ co {∇Vν | ν ∈ IT (x)}.
In order to prove the converse inclusion, let ν ∈ IT (x). Then, since cl intTν = Tν ,
we find a sequence xi → x with xi ∈ intTν implying ∇Vν ∈ ∂ClV (x). Now convexity
of ∂ClV (x) implies

co {∇Vν | ν ∈ IT (x)} ⊆ ∂ClV (x)

and thus the assertion.

Now we can simplify the sufficient condition (6) for the particular structure of F
in (1).

Proposition 3.6. Consider V ∈ PL(T ) and F from (1). Then for any x ∈ G the
inequality

〈∇Vν , fµ(x)〉 ≤ −α(‖x‖) for all µ ∈ IG(x) and ν ∈ IT (x) (11)

implies (6).
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Proof. From Lemma 3.5 we know that each d ∈ ∂ClV (x) can be written as a convex
combination

d =
∑

ν∈IT (x)

αν∇Vν

for coefficients αν ≥ 0 with
∑

ν∈IT (x) αν = 1.

Moreover, by the definition of F in (1) each v ∈ F (x) can be written as a convex
combination

v =
∑

µ∈IG(x)

λµfµ(x)

for coefficients λµ ≥ 0 with
∑

µ∈IG(x) λµ = 1. Thus from (11) we get

〈d, v〉 =

〈
∑

ν∈IT (x)

αν∇Vν ,
∑

µ∈IG(x)

λµfµ(x)

〉

=
∑

ν∈IT (x)

αν

︸ ︷︷ ︸
=1

∑

µ∈IG(x)

λµ

︸ ︷︷ ︸
=1

〈∇Vν , fµ(x)〉︸ ︷︷ ︸
≤−α(‖x‖)

≤ −α(‖x‖).

We end this section by stating a theorem which ensures that Lyapunov functions
— even smooth ones — always exist for asymptotically stable inclusions. Its proof
relies on [5, Theorem 1.2] or [24, Theorem 1].

Theorem 3.7. If the differential inclusion (1) is asymptotically stable with domain
of attraction D w.r.t. G, then there exists a C∞-Lyapunov function V : D → R.

Proof. From [24, Theorem 1] applied with G = D we obtain the existence of a
positive definite C∞ Lyapunov function V : D → R satisfying max〈∇V (x), F (x)〉 ≤
−V (x) for all x ∈ D. Setting α(r) := min{V (x) | ‖x‖ = r} yields the assertion.

Often we can expect the existence of a Lyapunov function on a larger set than
D. The reason for this is that the set G on which we consider (1) is typically a

computational domain for our algorithm which is a subset G ⊂ G̃ of a larger domain

G̃ on which (1) is defined. In this case, the domain of attraction D̃ for (1) considered

on G̃ may be strictly larger than the domain of attraction D for the restriction of

(1) to G. Thus, Theorem 3.7 ensures the existence of a Lyapunov function on D̃

whose restriction to G ∩ D̃ is still a Lyapunov function in our sense. In particular,

if G ⊆ D̃, then V is defined on the whole set G. We will use this observation in
Corollary 4.8, below. Note, however, that the domain of attraction D of (1) with

respect to G is in general smaller than D̃ ∩ G.

4. The algorithm. In this section we present an algorithm for computing Lya-
punov functions in the sense of Definition 3.1 on G \ Bε(0), where ε > 0 is an
arbitrary small positive parameter. To this end, we use an extension of an algo-
rithm first presented in [19] and further developed in [11]. The basic idea of this
algorithm is to impose suitable conditions on V on the vertices xi of the simplices
Tν ∈ T which together with suitable error bounds in the points x ∈ G, x 6= xi,
ensures that the resulting V has the desired properties for all x ∈ G \ Bε(0).
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In order to ensure positive definiteness of V , for every vertex xi of our simplices
we demand

V (xi) ≥ ‖xi‖. (12)

In order to ensure (6), we demand that for every k-face T = co {xj0 , xj1 , . . . , xjk
},

0 ≤ k ≤ n, of a simplex Tν = co {x0, x1, . . . , xn} ∈ T and every vector field fµ that
is defined on this k-face, the inequalities

〈∇Vν , fµ(xji
)〉 + Aνµ‖∇Vν‖1 ≤ −‖xji

‖ for i = 0, 1, . . . , k, (13)

hold true. Here, Aνµ ≥ 0 is an appropriate constant which is chosen in order to
compensate for the interpolation error in the points x ∈ T with x 6= xji

, i = 0, . . . , k.
Corollary 4.3, below, will show that the constants Aνµ can be chosen such that the
condition (13) for xj0 , xj1 , . . . , xjk

ensures

〈∇Vν , fµ(x)〉 ≤ −‖x‖ for every x ∈ T = co {xj0 , xj1 , . . . , xjk
}. (14)

Let us illustrate the condition (13) with the 2D-example in Figure 1, where
for simplicity of notation we set Aνµ = 0. Assume that T1 = co {x1, x2, x3} and
T2 = co {x2, x3, x4} as well as Tν ⊂ Gν and Tν 6= Gν , ν = 1, 2.

x4

∇V1

∇V2

x1 x2

x3

G2G1

Figure 1. Gradient conditions (13) for two adjacent simplices

Since T1 and T2 have the common 1-face T1 ∩ T2 = co {x2, x3}, (13) leads to the
following inequalities:

−‖x‖ ≥ 〈∇V1, f1(x)〉 for every x ∈ {x1, x2, x3} ⊂ T1,

−‖x‖ ≥ 〈∇V2, f2(x)〉 for every x ∈ {x2, x3, x4} ⊂ T2,

−‖x‖ ≥ 〈∇V1, f2(x)〉 for every x ∈ {x2, x3} ⊂ T1 ∩ T2,

−‖x‖ ≥ 〈∇V2, f1(x)〉 for every x ∈ {x2, x3} ⊂ T1 ∩ T2.

Now we turn to the investigation of the interpolation error on our simplicid grids.
In the following proposition and lemma we derive bounds for the interpolation error
for the linear interpolation of C2-vector fields which follow immediately from the
Taylor expansion. These are standard but are provided here in a form which is
suitable for Corollary 4.3, in which we derive an expression for Aνµ in (13) which
ensures that (14) holds.
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Proposition 4.1. Let x0, x1, . . . , xk ∈ R
n be affinely independent vectors, de-

fine T := co {x0, x1, . . . , xk}, h := diam(T ) and consider a convex combination∑k
i=0 λixi ∈ T .

a) If g : G → R is Lipschitz with constant L, then

∣∣∣∣∣g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∣∣∣∣∣ ≤ Lh.

b) If g ∈ C2(U , R) with U ⊆ R
n is an open set with T ⊂ U , then

∣∣∣∣∣g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∣∣∣∣∣

≤ 1

2

k∑

i=0

λiBH‖xi − x0‖2

(
max
z∈T

‖z − x0‖2 + ‖xi − x0‖2

)
≤ BHh2,

where BH := max
z∈T

‖H(z)‖2 and H(z) is the Hessian of g at z.

Proof. a) The Lipschitz continuity of g and the convex combination yield the im-
mediate estimate

|g
(

k∑

i=0

λixi

)
− g(x0)| ≤ L‖

k∑

i=0

λixi − x0‖ ≤ L
k∑

i=0

λi‖xi − x0‖ ≤ Lh.

b) By Taylor’s theorem

g

(
k∑

i=0

λixi

)

= g(x0) + ∇g(x0) ·
k∑

i=0

λi(xi − x0) +
1

2

k∑

i=0

λi(xi − x0)
T H(z)

k∑

j=0

λj(xj − x0)

=

k∑

i=0

λi



g(x0) + ∇g(x0) · (xi − x0) +
1

2
(xi − x0)

T H(z)

k∑

j=0

λj(xj − x0)





for some z on the line segment between x0 and

k∑

i=0

λixi. Further, again by Taylor’s

theorem, we have for every i = 0, 1, . . . , k that

g(xi) = g(x0) + ∇g(x0) · (xi − x0) +
1

2
(xi − x0)

T H(zi)(xi − x0)
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for some zi on the line segment between x0 and xi. Hence,
∣∣∣∣∣g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∣∣∣∣∣

=
1

2

∣∣∣∣∣∣

k∑

i=0

λi(xi − x0)
T


H(z)

k∑

j=0

λj(xj − x0) − H(zi)(xi − x0)




∣∣∣∣∣∣

≤ 1

2
‖

k∑

i=0

λi(xi − x0)‖2


‖H(z)‖2 ‖

k∑

j=0

λjxj − x0‖2 + ‖H(zi)‖2 ‖xi − x0‖2




≤ 1

2

k∑

i=0

λiBH‖xi − x0‖2

(
max
z∈T

‖z − x0‖2 + ‖xi − x0‖2

)
.

Since each norm difference ‖z − x0‖ for z ∈ T and ‖xi − x0‖ for i = 0, 1, . . . , k is
bounded by h = diam(T ), this finishes the proof.

This proposition shows that when a point x ∈ T is written as a convex com-
bination of the vertices xi of the simplex T , then the difference between g(x) and
the same convex combination of the function values g(xi) of g at the vertices xi is
bounded by the corresponding convex combination of error terms, which are small
if the simplex is small. In the following lemma we prove an observation which allows
us in case b) to derive a simpler expression for the error term in the subsequent
corollary. The proof uses standard estimates of the operator norm of H(z) and the
bound B on the second derivatives.

Lemma 4.2. Let T ⊂ U ⊂ R
n, where U is open and T is compact, and let g ∈

C2(U , R). Denote the Hessian of g by H and let B be a constant, such that

max
z∈T

r,s=1,2,...,n

∣∣∣∣
∂2g

∂xr∂xs
(z)

∣∣∣∣ ≤ B . (15)

Then

max
z∈T

‖H(z)‖2 ≤ nB .

Proof. The proof follows from the simple calculation

max
z∈T

‖H(z)‖2 = max
z∈T

‖u‖2=1

‖H(z)u‖2 = max
z∈T

‖u‖2=1

√√√√√
n∑

i=1




n∑

j=1

hij(z)uj




2

≤ max
‖u‖2=1

√√√√√
n∑

i=1




n∑

j=1

B|uj|




2

≤ max
‖u‖2=1

√√√√
n∑

i=1

nB2

n∑

j=1

|uj|2

=
√

n2B2 = nB.

Using Proposition 4.1 and Lemma 4.2 we arrive at the following corollary.

Corollary 4.3. Let x0, x1, . . . , xk ∈ R
n be affinely independent vectors, define T :=

co {x0, x1, . . . , xk}, h := diam(T ) and consider a convex combination

k∑

i=0

λixi ∈ T .
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Consider a function g : G → R
n with components g = (g1, . . . , gn).

(i) If g ∈ C2(U , Rn) with U ⊆ R
n is an open set with T ⊂ U . Let B be a constant

satisfying (15) for every g = gi, i = 1, . . . , n, i.e.

max
z∈T

i,r,s=1,2,...,n

∣∣∣∣
∂2gi

∂xr∂xs
(z)

∣∣∣∣ ≤ B .

Then ∥∥∥∥∥g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∥∥∥∥∥
∞

≤ nBh2 .

(ii) Let L be the common Lipschitz constant of gi, i = 1, . . . , n, in case a) of
Proposition 4.1 and B the common bound (15) for the second derivatives gi in
case b). If (13) holds and h satisfies

Lh ≤ Aνµ resp. nBh2 ≤ Aνµ (16)

in case a) resp. b), then (14) holds.

Proof. (i) For every convex combination z =
∑k

i=0 λixi with z ∈ T and z =
(z1, . . . , zn), there is an m ∈ {1, . . . , n} with ‖z‖∞ = |zm| such that

∥∥∥∥∥g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∥∥∥∥∥
∞

≤ BHmh2,

where we used Proposition 4.1 b) and defined

BHm := max
z∈T

‖Hm(z)‖2.

Here, Hm(z) =
(
hm

ij (z)
)
i,j=1,2,...,n

is the Hessian of the m-th component gm of the

vector field g at point z. Then, by Lemma 4.2 and the assumption on B, BHm is
bounded by nB.

(ii) If (13) holds and h satisfies (16), then we obtain with Hölder’s inequality and
(i) in case b)

〈∇Vν , g(x)〉 =

〈
∇Vν , g

(
k∑

i=0

λixi

)〉

=

〈
∇Vν ,

k∑

i=0

λig(xi)

〉
+

〈
∇Vν , g

(
k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

〉

≤
k∑

i=0

λi〈∇Vν , g(xi)〉 + ‖∇Vν‖1

∥∥∥∥∥g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∥∥∥∥∥
∞

≤
k∑

i=0

λi(−‖xi‖ − Aνµ‖∇Vν‖1) + ‖∇Vν‖1nBh2

=
k∑

i=0

λi(−‖xi‖) − Aνµ‖∇Vν‖1 + ‖∇Vν‖1nBh2

≤ −
k∑

i=0

λi‖xi‖ ≤ −
∥∥∥∥∥

k∑

i=0

λixi

∥∥∥∥∥ = −‖x‖.

Case a) is similar to prove.
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Before running the algorithm, one might want to remove some of the Tν ∈ T
close to the equilibrium at zero from T . The reason for this is that inequality (14)
and thus (13) may not be feasible near the origin, cf. also the discussion on α(‖x‖)
after Definition 3.1. This is also reflected in the proof of Theorem 4.6, below, in
which we will need a positive distance to the equilibrium at zero.

To accomplish this fact, we define the subset

T ε := {Tν ∈ T |Tν ∩ Bε(0) = ∅} ⊂ T
for ε > 0.

Furthermore, if fµ is defined on a simplex T := co {x0, x1, . . . , xk}, we assume in

case b) that fµ possesses a C2-extension fµ : U → R
n on an open set U ⊃ T . If T is

an n-simplex and fµ is C2 on T , then this follows by Whitney’s extension theorem
[25] and we have

max
z∈T

i,r,s=1,2,...,n

∣∣∣∣∣
∂2fµ,i

∂xr∂xs
(z)

∣∣∣∣∣ = max
i,r,s=1,2,...,n

sup
z∈intT

∣∣∣∣
∂2fµ,i

∂xr∂xs
(z)

∣∣∣∣ ,

where fµ,i and fµ,i are the i-th components of the vector fields fµ and fµ respec-
tively.

Algorithm 4.4.

(i) For all vertices xi of the simplices Tν ∈ T ε we introduce V (xi) as the variables
and ‖xi‖ as lower bounds in the constraints of the linear program and demand
V (xi) ≥ ‖xi‖. Note that every vertex xi only appears once here.

(ii) For every simplex Tν ∈ T ε we introduce the variables Cν,i, i = 1, . . . , n and
demand that for the i-th component ∇Vν,i of ∇Vν we have

|∇Vν,i| ≤ Cν,i, i = 1, . . . , n.

(iii) For every Tν := co {x0, x1, . . . , xn} ∈ T ε, every k-face T = co {xj0 , xj1 ,
. . . , xjk

} of Tν , 0 ≤ k ≤ n, and every µ with T ⊆ Gµ we demand one of
the two inequalities

a) 〈∇Vν , fµ(xji
)〉 + Lhν

n∑

j=1

Cν,j ≤ −‖xji
‖, if fµ L-Lipschitz on Tν , (17)

b) 〈∇Vν , fµ(xji
)〉 + nBµ,T h2

ν

n∑

j=1

Cν,j ≤ −‖xji
‖, if fµ ∈ C2(U), U ⊃ Tν , (18)

for i = 0, 1, . . . , k with hν := diam(Tν), Bµ,T ≥ max
i,r,s=1,2,...,n

sup
z∈T

∣∣∣∣∣
∂2fµ,i

∂xr∂xs
(z)

∣∣∣∣∣.

Note, that if fµ is defined on the face T ⊂ Tν , then fµ is also defined on
any face S ⊂ T of T . However, it is easily seen that the constraints (17)
resp. (18) for the simplex S are redundant, for they are automatically fulfilled
if the constraints for T are valid.

(iv) If the linear program with the constraints (i)–(iii) has a feasible solution, then
the values V (xi) from this feasible solution at all the vertices xi of all the
simplices Tν ∈ T ε and the condition V ∈ PL(T ε) uniquely define the function

V :
⋃

Tν∈T ε

Tν → R .
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The following theorem shows that V from (iv) defines a Lyapunov function on
the simplices Tν ∈ T ε.

Theorem 4.5. Assume that each fµ is Lipschitz on Gµ and the linear program
constructed by the algorithm has a feasible solution. Then, on each Tν ∈ T ε the
function V from (iv) is positive definite and for every x ∈ Tν ∈ T ε inequality (11)
holds with α(r) = r, i.e.,

〈∇Vν , fµ(x)〉 ≤ −‖x‖ for all µ ∈ IG(x) and ν ∈ IT (x).

Proof. Let fµ be defined on the k-face T = Tν ∩ Gµ with vertices xj0 , xj1 , . . ., xjk
,

0 ≤ k ≤ n. Then every x ∈ T is a convex combination x =

k∑

i=0

λixji
. Conditions (ii)

and (iii) of the algorithm imply that (13) holds on T with Aνµ = Lhν resp. Aνµ =
nBµ,T h2

ν , because

Aνµ

n∑

j=1

Cν,j = nBµ,T h2
ν

n∑

j=1

Cν,j ≥ nBµ,T h2
ν

n∑

j=1

|∇Vν,i| = nBµ,T h2
ν‖∇Vν‖1

in case b) (case a) is similar). Thus, Corollary 4.3(ii) yields the assertion.

Clearly, the Lipschitz assumption on fµ is weaker than the C2-assumption in
case b) of Proposition 4.1, but the triangulation in case a) must be finer to fulfil
the more demanding condition (17) in comparison with (18).

In the next theorem we will prove, that if (1) possesses a C2-Lyapunov function,
then Algorithm 4.4 succeeds in computing a Lyapunov function V ∈ PL(T ε) for a
suitable triangulation T ε. In the following Corollary 4.8, we will give a sufficient
condition for the existence of such a C2-Lyapunov function.

Theorem 4.6. Assume that each fµ is Lipschitz on Gµ and the system (1) possesses
a C2-Lyapunov function W ∗ : G → R and let ε > 0.

Then, there exists a triangulation T ε such that the linear programming problem
constructed by the algorithm has a feasible solution and thus delivers a Lyapunov
function V ∈ PL(T ε) for the system.

Remark 4.7. The precise conditions on the triangulation are given in the formulas
(25) resp. (24) of the proof for the two cases fµ being Lipschitz continuous resp. twice
continuously differentiable. The triangulation must ensure that each triangle has a
sufficiently small diameter and fulfills an angle condition to prevent too flat trian-
gles. If the simplices Tν ∈ T are all similar as in [11], then it suffices to assume
that maxν=1,2,...,N diam(Tν) is small enough, cf. [11, Theorem 8.2 and Theorem 8.4].
Here we are using more general triangulations T and therefore, we have to compro-
mise for triangulations that can lead to problems. Essentially, we still assume that
maxν=1,2,...,N diam(Tν) is small enough, but additionally we have to assume that
the simplices Tν ∈ T ε are regular in the sense that e.g. X∗

ν · diam(Tν) ≤ X∗h ≤ R,
for some constant R > 0 (cf. parts (ii),(v) and equation (19) of the proof). This
is a similar condition as in FEM methods. Note that for any triangulation T such
that T ε satisfies assumption (24) resp. (25), this inequality will also be satisfied for
the scaled down triangulation

(cT )ε :={cTν = co {cx0, . . . , cxn} |Tν = co {x0, . . . , xn} ∈ T , cTν ∩ Bε(0) = ∅}
for any c ∈ (0, 1], cf. also Remark 4.9, below.
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Proof of Theorem 4.6: We will split the proof into several steps.

(i) Since continuous functions take their maximum on compact sets and G\Bε(0)
is compact, we can define

c0 := max
x∈G\Bε(0)

‖x‖
W ∗(x)

and for every µ = 1, 2, . . . , M

cµ := max
Gµ\Bε(0)

−2‖x‖
〈∇W ∗(x), fµ(x)〉 .

We set c = maxµ=0,1,...,M cµ and define W (x) := c · W ∗(x). Then, by con-
struction, W is a Lyapunov function for the system, W (x) ≥ ‖x‖ for every
x ∈ G\Bε(0), and for every µ = 1, 2, . . . , M we have 〈∇W (x), fµ(x)〉 ≤ −2‖x‖
for every x ∈ Gµ \ Bε(0).

(ii) For every Tν = co {x0, x1, . . . , xn} ∈ T ε pick out one of the vertices, say
y = x0, and define the n × n matrix Xν,y by writing the components of the
vectors x1 − x0, x2 − x0, . . . , xn − x0 as row vectors consecutively, i.e.

Xν,y =
(
x1 − x0, x2 − x0, . . . xn − x0

)T
.

Xν,y is invertible, since its rows are linearly independent. We are interested

in the quantity X∗
ν,y = ‖X−1

ν,y‖2 = λ
− 1

2

min, where λmin is the smallest eigenvalue

of XT
ν,yXν,y.

First, we show that X∗
ν,y is properly defined, i.e. is independent of the order

of the x0, x1, . . . , xn. Denote by Sn the permutations σ of {0, 1, . . . , n}. Then
the row permutating matrices by left multiplication are the matrices Eσ =
(δσ(i),σ(j))i,j=0,1,...,n, σ ∈ Sn. If we show that ‖(EσXν,y)−1‖2 = ‖X−1

ν,y‖2 =

λ
− 1

2

min for all σ ∈ Sn, then we have showed that X∗
ν,y is independent of the order

of x0, x1, . . . , xn. For every σ ∈ Sn

ET
σ Eσ =

(
n∑

k=0

δσ(k),σ(i) · δσ(k),σ(j)

)

i,j=0,1,...,n

= (δi,j)i,j=0,1,...,n = I.

Hence,

(EσXν,y)T EσXν,y = XT
ν,y ET

σ Eσ︸ ︷︷ ︸
=I

Xν,y = XT
ν,yXν,y.

This proves that X∗
ν,y is properly defined. Let us denote by

X∗
ν = max

y vertex of Tν

‖X−1
ν,y‖2 and X∗ = max

ν=1,2,...,N
X∗

ν . (19)

(iii) We consider an arbitrary but fixed Tν = co {x0, x1, . . . , xn} ∈ T ε and set
y = x0. By Whitney’s extension theorem [25] we can extend W to an open
set containing G so W is defined on an open set containing Tν ⊂ G. For every
i = 1, 2, . . . , n we have by Taylor’s theorem

W (xi) = W (x0) + 〈∇W (x0), xi − x0〉 +
1

2
〈xi − x0, HW (zi)(xi − x0)〉,
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where HW is the Hessian of W and zi = x0 + ϑi(xi − x0) for some ϑi ∈ ]0, 1[.
We define

wν,y :=




W (x1) − W (x0)
W (x2) − W (x0)

...
W (xn) − W (x0)




so that the following equality holds:

wν,y − Xν,y∇W (x0) =
1

2




〈x1 − x0, HW (z1)(x1 − x0)〉
〈x2 − x0, HW (z2)(x2 − x0)〉

...
〈xn − x0, HW (zn)(xn − x0)〉


=:

1

2
ξν,y (20)

Setting

A := max
z∈G

i,j=1,2,...,n

∣∣∣∣
∂2W

∂xi∂xj
(z)

∣∣∣∣

and

h := max
ν=1,2,...,N

diam(Tν)

we have by Lemma 4.2 that

‖(xi − x0)
T HW (zi)(xi − x0)‖2 ≤ h2‖HW (zi)‖2 ≤ nAh2

for i = 1, 2, . . . , n. Hence,

‖ξν,y‖2 =

∥∥∥∥∥∥∥∥∥




〈x1 − x0, HW (z1)(x1 − x0)〉
〈x2 − x0, HW (z2)(x2 − x0)〉

...
〈xn − x0, HW (zn)(xn − x0)〉




∥∥∥∥∥∥∥∥∥
2

≤ n
3
2 Ah2. (21)

Furthermore, for every i, j = 1, 2, . . . , n there is a z̃i on the line segment
between xi and y = x0, such that

∂jW (xi) − ∂jW (x0) = 〈∇∂jW (z̃i), xi − x0〉,
where ∂jW denotes the j-th component of ∇W . Hence, by Lemma 4.2

‖∇W (xi) −∇W (x0)‖2 ≤ nAh.

From this we obtain the inequality

‖X−1
ν,ywν,y −∇W (xi)‖2

≤ ‖X−1
ν,ywν,y −∇W (x0)‖2 + ‖∇W (xi) −∇W (x0)‖2

≤ 1

2
‖X−1

ν,y‖2n
3
2 Ah2 + nAh ≤ nAh

(
1

2
X∗n

1
2 h + 1

)
(22)

for every i = 0, 1, . . . , n. This last inequality is independent of the simplex
Tν = co {x0, x1, . . . , xn}.

(iv) Define

D := max
µ=1,2,...,M

sup
z∈Gµ\{0}

‖fµ(z)‖2

‖z‖ .

Note, that D < +∞ because all norms on R
n are equivalent and for every µ

the vector field fµ is Lipschitz on Gµ and, if defined, fµ(0) = 0. In this case,
D ≤ αL with ‖z‖2 ≤ α‖z‖.
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(v) In the final step we assign values to the variables V (xi), Cν,i of the linear
programming problem from the algorithm and show that they fulfill the con-
straints.

For every Tν ∈ T ε and every vertex xi of Tν set V (xi) = W (xi). Clearly,
by the construction of W and of the piecewise linear function V from the
variables V (xi), we have V (xi) ≥ ‖xi‖ for every Tν ∈ T ε and every vertex xi

of Tν .
Pick an arbitrary but fixed Tν = co {x0, x1, . . . , xn} ∈ T ε and set y = x0.

Then, by the definition of wν,y and Xν,y, cf. part (iii) of the proof, we have

∇Vν = X−1
ν,ywν,y ,

since V is piecewise linear and

V (x) = V (x0) + wT
ν,y

(
XT

ν,y

)−1
(x − x0) .

For every variable Cν,i in the linear programming problem from the algo-
rithm set

Cν,i = ‖∇Vν‖2 = ‖X−1
ν,ywν,y‖2.

Then evidently, Cν,i ≥ |∇Vν,i| for every Tν ∈ T ε. The boundedness of ∇W
on G assures that there is a constant C such that

‖X−1
ν,ywν,y‖2 ≤ ‖X−1

ν,y‖2 max
z∈G

‖∇W (z)‖2h ≤ R max
z∈G

‖∇W (z)‖2 =: C

with R from Remark 4.7. Thus, Cν,i ≤ C holds uniformly in ν and i.
Let fµ be an arbitrary vector field defined on the whole of Tν or one of

its faces, i.e. fµ is defined on T := co {xj0 , xj1 , . . . , xjk
}, 0 ≤ k ≤ n, where

the xji
are vertices of Tν. Then, by (ii) and (20)–(22), we have for every

i = 0, 1, . . . , k that

〈∇Vν , fµ(xji
)〉 = 〈∇W (xji

) + ∇Vν −∇W (xji
), fµ(xji

)〉
= 〈∇W (xji

), fµ(xji
)〉 + 〈X−1

ν,ywν,y −∇W (xji
), fµ(xji

)〉
≤ − 2‖xji

‖ + ‖X−1
ν,ywν,y −∇W (xji

)‖2 ‖fµ(xji
)‖2

≤ − 2‖xji
‖ + nAh

(
1

2
X∗n

1
2 h + 1

)
· D‖xji

‖.

In case b), i.e. fµ ∈ C2(U), U ⊃ Tν , the linear constraints

〈∇Vν , fµ(xji
)〉 + nBµ,T h2

ν

n∑

j=1

Cν,j ≤ −‖xji
‖

are fulfilled whenever h is so small that

− 2‖xji
‖ + n2Bh2C + nAh

(
1

2
X∗n

1
2 h + 1

)
D‖xji

‖ ≤ −‖xji
‖ (23)

with X∗ given by (19) and

max
µ=1,2,...,M

T face of simplex in T ε

Bµ,T ≤ B .

Because ‖xji
‖ ≥ ε inequality (23) is satisfied if

n2B
h2

ε
C + nAh

(
1

2
X∗n

1
2 h + 1

)
D ≤ 1 . (24)
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Again, case a) follows similarly for fµ being Lipschitz, if

nL
h

ε
C + nAh

(
1

2
X∗n

1
2 h + 1

)
D ≤ 1 . (25)

Since Tν and fµ were arbitrary, this proves the theorem.

Corollary 4.8. Consider a differential inclusion F of type (1) defined on a set

G̃ ⊆ R
n. Assume that F is strongly asymptotically stable with domain of attraction

D̃ w.r.t. G̃ and that each fµ is Lipschitz. Consider a computational domain G ⊆ D̃
such that the restriction F |G is again of the form (1) and the assumptions from
Section 2 hold for F |G and G.

Then, for each ε > 0 there exists a triangulation T ε such that the linear program-
ming problem constructed by the algorithm has a feasible solution and thus delivers
a Lyapunov function V ∈ PL(T ε) for the system.

Proof. By Theorem 3.7 there exists a C∞ Lyapunov function W ∗ : D̃ → R whose
restriction to G is a C∞ Lyapunov function on G. Hence, the assertion follows from
Theorem 4.6.

Remark 4.9. Note that in assumption (24) resp. (25) the parameter ε does not
only appear explicitly but also implicitly. This is because the value A defined in part
(iii) depends on W defined in part (i) which in turn depends on ε via c0 and cµ.
In particular, the value A will become larger if ε becomes smaller. Hence, given a
triangulation T such that T ε satisfies assumption (24) resp. (25), this inequality
may not be satisfied for the triangulation

c(T ε) := {cTν = co {cx0, . . . , cxn} |Tν = co {x0, . . . , xn} ∈ T ε}
= {cTν = co {cx0, . . . , cxn} |Tν = co {x0, . . . , xn} ∈ T , cTν ∩ Bcε(0) = ∅}

for c ∈ (0, 1), because here we do not only shrink the triangles by the factor c but
also the size of the neighborhood Bcε(0). Hence, the growth of A when passing
from ε to cε < ε may make (24) resp. (25) invalid. The corresponding assumption
will, however, always be satisfied for the triangulation (cT )ε defined in Remark 4.7
because for this triangulation ε remains fixed.

5. Examples. We illustrate our algorithm by two examples, the first one is taken
from [1].

Example 5.1 (Nonsmooth harmonic oscillator with nonsmooth friction).
Let f : R

2 → R
2 be given by

f(x1, x2) =

(
− sgnx2 −

1

2
sgnx1, sgnx1

)T

with sgnxi = 1, xi ≥ 0 and sgnxi = −1, xi < 0. This vector field is piecewise
constant on the four regions

G1 = [0,∞) × [0,∞), G2 = (−∞, 0] × [0,∞),
G3 = (−∞, 0] × (−∞, 0], G4 = [0,∞) × (−∞, 0],

hence its Filippov regularization is of type (1) and the triangulation could be chosen
such that the compatibility condition (5) holds. In [1] it is shown that the func-
tion V (x) = |x1| + |x2| with x = (x1, x2)

T is a Lyapunov function in the sense of
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Remark 3.4. It is, however, not a Lyapunov function in the sense of our Defini-
tion 3.1. For instance, if we pick x with x1 = 0 and x2 > 0 then IG(x) = {1, 2} and
the Filippov regularization F of f is

F (x) = co

{(
−3/2

1

)
,

(
−1/2
−1

)}

and for ∂ClV we get

∂ClV (x) = co

{(
1
1

)
,

(
−1

1

)}
.

This implies

max 〈∂ClV (x), F (x)〉 ≥
〈(

−1
1

)
,

(
−3/2

1

)〉
= 5/2 > 0

which shows that (6) does not hold.
Despite the fact that V (x) = |x1|+ |x2| is not a Lyapunov function in our sense,

our algorithm produces a Lyapunov function (see Fig. 2) which is — up to rescaling
— rather similar to this V .

In the x1, x2-plane a subset of the domain of attraction secured by the Lyapunov
function is depicted in Figure 2.
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Figure 2. Lyapunov function and level set for Example 5.1

There are two facts worth noting. First, we can set the error terms Bµ,T = 0
for any triangulation fulfilling the conditions of Theorem 4.6 because the second-
order derivatives of the fµ vanish in the interiors of the simplices. Second, for a
sufficiently fine but fixed grid we can take ε > 0 arbitrary small, but we cannot set
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ε = 0 because the Lyapunov function cannot fulfill the inequality (8) at the origin.
This is because

F (0, 0) = co

{(
−3/2

1

)
,

(
−1/2
−1

)
,

(
3/2
−1

)
,

(
1/2

1

)}

is a quadrilateral containing (0, 0) as an inner point and thus contains vectors of all
directions. Hence, our condition at 0 would require ∇V (0, 0) = (0, 0)T but this is
not possible because of condition (i) of our algorithm and the definition of the Clarke
generalized gradient. This is a property of the algorithm for differential inclusions
and does not happen if F (0) = {0} as is the case when we are considering ordinary
differential equations (and using less strict bounds, cf. Example 5.2). Second, it is
interesting to compare the level sets of the Lyapunov function on Fig. 2 to the level
sets of the Lyapunov function V (x) = |x1| + |x2| from [1]. The fact that the level
set in Fig. 2 is not a perfect rhombus (as it is for V (x) = |x1| + |x2|) is not due
to numerical inaccuracies. Rather, the small deviations are necessary because, as
shown above, V (x) = |x1| + |x2| is not a Lyapunov function in our sense.

The following example extends the one in [10] by adding the uncertainty in the
friction.

Example 5.2 (pendulum with uncertain friction). Let f : R
2 → R

2 be given
with

f(x1, x2) = (x2,−kx2 − g sin(x1))
T ,

where g is the earth gravitation and equals approximately 9.81m/s2 and k is a
nonnegative parameter modelling the friction of the pendulum.
It is known that the system is asymptotic stable for k > 0, e.g. in the interval [0.2, 1].

If the friction k is unknown and time-varying, we obtain an inclusion of the
type (1) with

ẋ(t) ∈ F (x(t)) = co {fµ(x(t)) |µ = 1, 2}.
where G1 = G2 and f1(x) = (x2,−0.2x2−g sin(x1))

T , f2(x) = (x2,−x2−g sin(x1))
T .

This is a system of the type of Example 2.4 where the right-hand side of the
differential inclusion is multivalued on the whole domain. Trivially, the subregions
Gµ satisfy the compatibility condition (5) for any triangulation of G. Algorithm 4.4
succeeds in computing a Lyapunov function (see Fig. 3), even with ε = 0. This
seems contradictory for the constant Bµ,T cannot be set to zero. The reason why
this is possible is that we took advantage of our system vanishing at the origin and
our triangulation of G having the origin as a central vertex of a triangle fan, cf. [9].

The constraint (18) in (iii) in the algorithm can obviously not be fulfilled for
xji

= 0 if Bµ,T > 0. By a more careful analysis and using the special structure of the
triangulation around the origin as well as F (0) = {0}, the simple, but conservative
estimate from Corollary 4.3 can be improved via the inequality

∣∣∣∣∣g
(

k∑

i=0

λixi

)
−

k∑

i=0

λig(xi)

∣∣∣∣∣

≤ 1

2

k∑

i=0

λiBH‖xi − x0‖2

(
max
z∈T

‖z − x0‖2 + ‖xi − x0‖2

)

from Proposition 4.1, see [9] for details.
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Figure 3. Lyapunov function for Example 5.2

As a consequence for this particular example the computed Lyapunov function is
valid even for a neighborhood of the origin.
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