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Abstract

Lyapunov functions are an important tool to determine the basin of attrac-
tion of exponentially stable equilibria in dynamical systems. In Marinosson
(2002), a method to construct Lyapunov functions was presented, using finite
differences on finite elements and thus transforming the construction problem
into a linear programming problem. In Hafstein (2004), it was shown that
this method always succeeds in constructing a Lyapunov function, except for a
small, given neighbourhood of the equilibrium.

For two-dimensional systems, this local problem was overcome by choosing a
fan-like triangulation around the equilibrium. In Giesl/Hafstein (2010) the exis-
tence of a piecewise linear Lyapunov function was shown, and in Giesl/Hafstein
(subm.) it was shown that the above method with a fan-like triangulation
always succeeds in constructing a Lyapunov function, without any local excep-
tion. However, the previous papers only considered two-dimensional systems.
This paper generalises the existence of piecewise linear Lyapunov functions to
arbitrary dimensions.

1 Introduction

In this paper we study the autonomous system of differential equations ẋ = f(x),
f ∈ C1(Rn,Rn), and assume that the origin is an exponentially stable equilibrium
with basin of attraction denoted by A. A Lyapunov function w : Rn → R is a
function which decreases along solutions of the differential equation. This can be
expressed by a negative orbital derivative w′(x) < 0, where the orbital derivative
is the derivative along solutions and is given by w′(x) = ∇w(x) · f(x). Lyapunov
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functions can be used to determine subsets of the basin of attraction A through
their sublevel sets.

The standard method to obtain a local Lyapunov function and thus a subset
of the basin of attraction is to solve the Lyapunov equation, i.e. to find a positive
definite matrix Q ∈ Rn×n which is the solution to JTQ + QJ = −P , where J :=
Df(0) is the Jacobian of f at the origin and P ∈ Rn×n is an arbitrary positive definite
matrix. Then the quadratic function x 7→ xTQx is a local Lyapunov function for the
system ẋ = f(x), i.e. it is a Lyapunov function for the system in some neighborhood
of the origin. The size of this neighborhood is a priori not known and is, except for
linear f , in general a poor estimate of A (see, for example, [8] for more details).
This method to compute local Lyapunov functions is constructive because there is
an algorithm to solve the Lyapunov equation that succeeds whenever it possesses a
solution, cf. Bartels and Stewart [2].

In the last decades there have been several proposals to construct Lyapunov func-
tions numerically. To name a few, Johansson and Rantzer proposed a construction
method in [12] for piecewise quadratic Lyapunov functions for piecewise affine au-
tonomous systems. Julian, Guivant, and Desages in [14] and Julian in [13] presented
a linear programming problem to construct piecewise affine Lyapunov functions for
autonomous piecewise affine systems. This method can be used for autonomous,
nonlinear systems if some a posteriori analysis of the generated Lyapunov function
is done. Garcia and Agamennoni [4] recently published a paper based on similar
ideas. In [11], Johansen uses linear programming to parameterise Lyapunov func-
tions for autonomous nonlinear systems, but does not give error estimates. Parrilo in
[19] and Papachristodoulou and Prajna in [18] consider the numerical construction
of Lyapunov functions that are presentable as sums of squares for autonomous poly-
nomial systems under polynomial constraints. These ideas have been taken further
by a recent publications of Peet [20], where he proves the existence of a polynomial
Lyapunov function on bounded regions for exponentially stable systems.

Giesl proposed in [5] a method to construct Lyapunov functions for autonomous
systems with an exponentially stable equilibrium by solving numerically a gener-
alised Zubov equation, cf. [21],

∇V (x) · f(x) = −p(x), (1.1)

where usually p(x) = ∥x∥22 for the equilibrium at the origin. A solution to the partial
differential equation (1.1) is a Lyapunov function for the system. He uses radial basis
functions to find a numerical solution to (1.1) and there are error estimates given.

In [17], Hafstein (alias Marinosson) presented a method to compute piecewise
affine Lyapunov function. In this method one first triangulates a compact neigh-
borhood C ⊂ A of the origin and then constructs a linear programming problem
with the property, that a continuous Lyapunov function V , affine on each triangle
of the triangulation, can be constructed from any feasible solution to it. In [8] it
was proved that for exponentially stable equilibria this method is always capable
of generating a Lyapunov function V : C \ N −→ R, where N ⊂ C is an arbitrary
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small, a priori determined neighborhood of the origin. In [9] these results were gen-
eralised to asymptotically stable systems, in [10] to asymptotically stable, arbitrary
switched, non-autonomous systems, and in [1] to asymptotically stable differential
inclusions.

In [6], we have shown that the triangulation scheme used in [17, 8, 9, 10] in
general does not allow for piecewise affine Lyapunov functions near the equilibrium.
However, in the same paper we have proposed a new, fan-like triangulation around
the equilibrium, and we have proved that a piecewise affine Lyapunov function with
respect to this new triangulation always exists. In the above mentioned paper,
however, we have only dealt with the two-dimensional case.

In this paper, we obtain a similar result for arbitrary dimensions, but using a
different approach. In particular, we show that for any system with an exponentially
stable equilibrium, there exists a local, piecewise linear Lyapunov function. We give
a constructive proof of this fact by first describing the triangulation. The piecewise
linear Lyapunov function w is then constructed by the values of the function v(x) :=√

xTQx on all vertices, where Q satisfies the Lyapunov equation JTQ+QJ = −I,
J := Df(0). For all other points the function w is uniquely defined by the fact that
it is linear on all simplices.

The main part of this paper is the proof of the existence of this piecewise linear
Lyapunov function w(x). The main step is the characterisation of ∇w(x) as a
multiple of the vector c, which satisfies a system of (n − 1) linear equations. We
then estimate the difference of ∇w(x) to ∇v(x) and show that it tends to zero as
the triangulation becomes finer. Hence, we show that a piecewise linear Lyapunov
function exists if the triangulation is fine enough.

In the two-dimensional case, the existence of a piecewise affine Lyapunov func-
tion led to an improvement of the algorithm in [17, 8, 9, 10]: using the advanced
triangulation scheme with a fan-like triangulation around the equilibrium, one can
construct and compute a piecewise affine Lyapunov function V : C −→ R for any sys-
tem with an exponentially stable equilibrium, cf. [7]. We are confident that, based
on the results of this paper, a similar construction method for arbitrary dimensions
will be possible.

Notations

For vectors x,y ∈ Rn we denote the Euclidean scalar product by x · y =
∑n

i=1 xiyi
and the Euclidean norm by ∥x∥2 =

√
x · x. We further use the maximum norm

∥x∥∞ = max |xi|. The induced matrix norm for a matrix A ∈ Rn×n is given by
∥A∥2 = max∥x∥2=1 ∥Ax∥2. The convex hull of the vectors x0, . . . ,xk ∈ Rn is denoted
by

co{x0, . . . ,xk} :=

{
k∑
i=0

λixi :

k∑
i=0

λi = 1, 0 ≤ λi ≤ 1 for i = 0, . . . , k

}
.

Note that if the vectors x0, . . . ,xk ∈ Rn are affinely independent, i.e. x1−x0, . . . ,xk−
x0 are linearly independent, then co{x0, . . . ,xk} is polyhedron with a positive k-
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dimensional volume, i.e. a k-simplex. A vector x ∈ Rn is assumed to be a column
vector and xT is the corresponding row vector.

2 Preliminaries

2.1 A Lyapunov function v

We consider the differential equation

ẋ = f(x), (2.1)

where f ∈ C1(Rn,Rn). We denote the solution x(t) of ẋ = f(x) at time t with initial
condition x(0) = ξ by ϕ(t, ξ).

Furthermore, we assume that x0 = 0 is an exponentially stable equilibrium,
i.e. that the rate of convergence of solutions to it is exponential. An equilibrium
is exponentially stable if and only if it is linearly asymptotically stable, i.e. the
linearised system ẋ = Df(0)x is asymptotically stable, which is also equivalent to
the linearised system being exponentially asymptotically stable [15, Theorem 4.15].
This is again equivalent to the condition that all eigenvalues of Df(0) have strictly
negative real part [15, Corollary 4.3].

We consider n ≥ 3, since the two-dimensional case has already been solved in
[6]. The Lyapunov equation

JTQ+QJ = −I, where J := Df(0),

has a unique solution Q ∈ Rn×n which is symmetric and positive definite. Hence,
the square root Q

1
2 exists and is also symmetric and positive definite. Define the

norm
∥x∥Q := ∥Q

1
2x∥2 =

√
xTQx.

Note that we also have ∥Q
1
2 ∥22 = ∥Q∥2 since Q is symmetric and positive definite.

A (strict) Lyapunov function V for the equilibrium 0 of (2.1) is a positive definite
function of the state space which is decreasing along the solution trajectories of the
system. More precisely, V is a continuous function V : C → R, where C ̸= ∅ is an
open neighborhood of the origin, the closure of which is compact, fulfilling V (0) = 0
and V (x) > 0 for all x ∈ C \ {0}, as well as

D+V (x) := lim sup
h→0+

V (ϕ(h,x))− V (x)

h
< 0 for all x ∈ C \ {0}, (2.2)

where D+ denotes the Dini derivative, cf. e.g. [16, Part I]. Note that if V is con-
tinuously differentiable, then the Dini derivative is equal to the orbital derivative,
i.e.

D+V (x) =
d

dt
V (ϕ(t,x))

∣∣∣∣
t=0

= ∇V (x) · f(x) = V ′(x).
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The following proposition is taken from [6, Proposition 4.1] with r = 1 and a
slightly different set Bδ(0). The proposition shows that the function v(x) := ∥x∥Q
is a Lyapunov function in a neighborhood of the equilibrium. This function will be
interpolated at the vertices of each simplex of a certain triangulation, and thus we
will construct a piecewise linear Lyapunov function w in the next section.

Proposition 2.1 Consider ẋ = f(x), where f ∈ C1(Rn,Rn) and assume that x0 =
0 is an exponentially stable equilibrium. Let the positive definite matrix Q ∈ Rn×n
be the unique solution of the Lyapunov equation JTQ+QJ = −I, J := Df(0).

Then there is a number δ > 0, such that the function v ∈ C∞(Rn \ {0},R) ∩
C0(Rn,R), given by

v(x) := ∥x∥Q =
√

xTQx, (2.3)

satisfies

v(x) ≥ C∥x∥2 for all x ∈ Bδ(0) and

v′(x) = ∇v(x) · f(x) ≤ −2c∥x∥2 for all x ∈ Bδ(0) \ {0},

where

c :=
1

8
∥∥∥Q 1

2

∥∥∥
2

, C :=
1∥∥∥Q− 1
2

∥∥∥
2

and Bδ(0) := {x ∈ Rn | ∥x∥2 < δ} .

2.2 Triangulation

To construct a piecewise linear Lyapunov function from the Lyapunov function in
Proposition 2.1 we need to fix our triangulation, i.e. a subdivision of Rn into n-
simplices, such that the intersection of two different simplices in the subdivision is
either empty or a k-simplex, 0 ≤ k < n, and its vertices are the common vertices
of the two different n-simplices. Such a structure is often referred to as a simplicial
n-complex.

We do this by modifying the simplicial n-complex used in [10] locally at the
origin in a similar way as we did in [6], adapted to n and not only two dimensions.
The main idea is to take the intersection of the boundary of a box [−b, b]n, b > 0,
with the simplices in a simplicial n-complex as in [10], such that the boundary
is subdivided into a simplicial (n − 1)-complex. To all the simplices in this new
simplicial (n−1)-complex we then add the origin as a vertex to get a new simplicial
n-complex locally at the origin, cf. Figure 1, where this is depicted for n = 3, and
Figure 2, where four exemplary simplices of such a triangulation are shown.

For the construction we use the set Sn of all permutations of the numbers
1, 2, . . . , n, the characteristic functions χJ (i) equal to one if i ∈ J and equal to
zero if i /∈ J , and the standard orthonormal basis e1, e2, . . . , en of Rn. Further, we
use the functions RJ : Rn → Rn, defined for every J ⊂ {1, 2, . . . , n} by

RJ (x) :=

n∑
i=1

(−1)χJ (i)xiei.
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(a) The triangulation T1,b for n = 3. (b) The triangulation T2,b for n = 3.

Figure 1: Schematic pictures of the local triangulations for n = 3. Note that for
n = 3 the elements of TK,b, K ∈ N, are tetrahedra with the origin as a vertex. The
intersection of the boundary of a box [−b, b]3 with a suitable simplicial 3-complex
from [10] delivers a simplicial 2-complex (triangles). By adding the origin as a
vertex to all the simplices in the simplicial 2-complex, we get a simplicial 3-complex
(tetrahedra) locally at the origin.

Figure 2: A few exemplary simplices from the triangulation T1,b for n = 3. The
simplices depicted are, from left to right, co{(0, 0, 0), (−b/2, b, 0), (0, b, 0), (0, b, b/2)},
co{(0, 0, 0), (0, b, 0), (0, b, b/2), (b/2, b, 0)}, co{(0, 0, 0), (b/2, b/2, b), (b/2, b, b), (b, b, b)},
and co{(0, 0, 0), (b/2, b/2, b), (b, b/2, b), (b, b, b)}.

Thus RJ (x) puts a minus in front of the coordinate xi of x if i ∈ J .
Note that the two parameters b and K of the triangulation TK,b refer to the size

of the box [−b, b]n covered by it and to the fineness, respectively.

Definition 2.2 To construct the triangulation TK,b, we first define the triangula-
tions T and TK as intermediate steps.
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1. The triangulation T consists of the simplices

Tz,J ,σ := co

{
RJ

(
z+

j∑
i=1

eσ(i)

)
: j = 0, 1, 2, . . . , n

}

for all z ∈ Zn≥0, all J ⊂ {1, 2, . . . , n}, and all σ ∈ Sn.

2. Choose a positive integer K and consider the (n − 1)-simplices obtained by
taking the intersection of the n-simplices Tz,J ,σ in T and the boundary of the
cube [−2K , 2K ]n. A new triangulation TK , local at the origin, is now obtained
by taking every such (n− 1)-simplex and adding the origin as a vertex to it.

3. The final step is now to choose a constant b > 0 and scale the triangulation
TK , such that the vertices of the n-simplices in TK , with the exception of the
origin, are in the boundary of the cube [−b, b]n. Thus, transform every simplex
T ∈ TK with the mapping x 7→ ρx, where ρ := 2−Kb. The set of the resulting
simplices is denoted by TK,b.

We will refer to TK,b as the standard triangulation of [−b, b]n with fineness ρ = 2−Kb.
We have four remarks on this triangulation:

Remark 2.3 The triangulation T is studied in more detail in [16, Sections
4.1 and 4.2]. A sometimes more intuitive description of Tz,J ,σ is the simplex
{x : 0 ≤ xσ(1) ≤ . . . ≤ xσ(n) ≤ 1} translated by x 7→ x+ z and then a minus-sign is
put in front of the i-th entry of the resulting vector whenever i ∈ J .

Remark 2.4 For dimension n = 2, this construction is the same as the one in [6].
While the construction above only defines the local part of the triangulation around
0, it can be expanded to a global triangulation of Rn by using the simplices from T
scaled with ρ outside of [−b, b]n. This will be needed in a subsequent paper to derive
an algorithm for the construction of a local and global piecewise affine Lyapunov
function.

Remark 2.5 For every T ∈ TK,b and every vertex x ̸= 0 of T we have ∥x∥∞ = b,
i.e. there is at least one k ∈ {1, . . . , n} such that |xk| = b. Further, if T ∈ TK,b and
x ̸= 0 is an arbitrary vertex of T , then the other nonzero vertices of T are given by

x+ ρ

j−1∑
i=1

ui, j = 2, . . . , n, (2.4)

where u1,u2, . . . ,un−1 is a suitable paraxial orthonormal basis of the hyperplane
{z ∈ Rn : zk = 0}, where k is such that |xk| = b. By defining un := ek, there
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is a permutation σ ∈ Sn such that ui = ±eσ(i) for every i = 1, 2, . . . , n, where
e1, e2, . . . , en is the standard orthonormal basis for Rn. In particular σ(n) = k and
|x · un| = |x · ek| = b.

Remark 2.6 TK,b is indeed a simplicial n-complex as shown in Lemma 2.7.

Lemma 2.7 Consider the set of simplices TK,b from Definition 2.2 and let T1 =
co{0,x1, . . . ,xn} and T2 = co{0,y1, . . . ,yn} be two of its simplices. Then

T1 ∩ T2 = T3 := co{0, z1, . . . , zm},

where z1, . . . , zm are the vertices ̸= 0 that are common to T1 and T2, i.e. zi = xα(i) =
yβ(i) for α, β ∈ Sn and i = 1, . . . ,m.

Proof: The inclusion “⊇ ” is obvious so we only show the inclusion “⊆ ”. Let
x ∈ T1∩T2. If x = 0 then clearly x ∈ T3 so we assume that x ̸= 0. By the definition
of a convex hull we can write x as a convex combination of the vertices of T1 and as
a convex combination of the vertices of T2, i.e., with x0 = y0 = 0,

x =

n∑
i=1

λixi =

n∑
i=1

µiyi,

where the numbers λi and µi are all non-negative and
∑n

i=0 λi =
∑n

i=0 µi = 1.
Consider the vector x̃ := (b/∥x∥∞)x. We claim that

x̃ ∈ co{x1, . . . ,xn} ∩ co{y1, . . . ,yn}.

By construction

∥xi + xj∥∞ = ∥xi∥∞ + ∥xj∥∞ = 2b i, j = 1, . . . , n,

so

∥x∥∞ =

∥∥∥∥∥
n∑
i=1

λixi

∥∥∥∥∥
∞

=
n∑
i=1

λi∥xi∥∞ = b
n∑
i=1

λi.

Hence,

x̃ =
n∑
i=1

(
λib

∥x∥∞

)
xi,

where
n∑
i=1

(
λib

∥x∥∞

)
= 1 and 0 ≤ λib

∥x∥∞
≤ 1 for i = 1, . . . , n,

i.e. x̃ ∈ co{x1, . . . ,xn}. By symmetry x̃ ∈ co{y1, . . . ,yn} follows. This proves the
claim.

8



Hence
x̃/ρ ∈ co{x1/ρ, . . . ,xn/ρ} ∩ co{y1/ρ, . . . ,yn/ρ},

where both simplices on the right are in T . By Theorem 4.11 in [16] x̃/ρ can be
written as a convex combination of the vertices common to these simplices

x̃/ρ ∈ co{z1/ρ, . . . , zm/ρ}, zi = xα(i) = yβ(i)

and it follows that x̃ has a unique representation as a convex sum of the vertices
z1, . . . , zm,

x̃ =

m∑
i=1

νizi.

But then

x =
∥x∥∞
b

x̃ =

(
1− ∥x∥∞

b

)
z0︸︷︷︸
=0

+

m∑
i=1

νi∥x∥∞
b

zi

so x can be represented as a convex combination of vertices common to T1 and T2,
i.e. x ∈ T3 which proves the lemma. �

3 Main result

We prove the existence of a piecewise linear Lyapunov function w : [−b, b]n → R
for any C1 system with an exponentially stable equilibrium at the origin. This is
achieved by defining w through the properties: for every T ∈ TK,b

w is linear on T and for every vertex x of T we have w(x) = v(x), (3.1)

where v is the Lyapunov function from Proposition 2.1. The function w is continuous
but not differentiable, however, it is C∞ except for the intersections of simplices in
T ∈ TK,b.

Remark 3.1 Denote by VT,b be the set of all nonzero vertices of all the simplices in
TK,b. A main part of the proof is to show, with ∇w appropriately interpreted, that

max
x∈VK,b

∥∇w(x)−∇v(x)∥2 → 0 (3.2)

as K → ∞. With b > 0 fixed this is equivalent to ρ = 2−Kb → 0. We quantify this
convergence in (3.30) as

max
x∈VK,b

∥∇w(x)−∇v(x)∥2 ≤
ρ

b
C0 = 2−KC0. (3.3)

To convince the reader that this is a nontrivial problem, let us consider two examples.
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1. The limit b → 0 does in general not imply the limit (3.2). For example, in
R2 we consider the cube [−b, b]2 and the simplex (triangle) with the vertices
x0 = (0, 0), x1 = (0, b) and x2 = (b, b). Then for v(x) = ∥x∥ we have w(x) =
wTx with w = (

√
2 − 1, 1)T as then v(xi) = w(xi) for all i = 0, 1, 2. Since

∇v(x) = x
∥x∥ , we have ∇v(x1) = (0, 1)T , whereas ∇w(x1) = w = (

√
2−1, 1)T .

Thus, ∥∇w(xj)−∇v(xj)∥2 =
√
2− 1, independent of b.

2. If we define the fineness of a simplex to be the maximal distance between two
vertices, not including the origin, then the fineness may tend to zero without
∇w converging to ∇v as in (3.2).

As a counterexample consider the three-dimensional simplex in [−b, b]3 given
by x0 = (0, 0, 0)T , x1 = (r, 0, b)T , x2 = (r cosα, r sinα, b)T and x3 =
(r cosα,−r sinα, b)T where 0 < r < b is fixed and α > 0. The maximal
distance between two vertices excluding the origin is r| sinα|

√
2 for small α,

and tends to 0 if α → 0. For v(x) = ∥x∥ we have w(x) =
√
r2+b2

b (0, 0, 1)Tx.

Thus at x1 we have ∇v(x1) =
1√

r2+b2
(r, 0, b)T and ∇w(x1) =

√
r2+b2

b (0, 0, 1)T ,

which is independent of α. Note that

∥∇v(x1)−∇w(x1)∥2 =
r

b

does not tend to 0 as α → 0. Thus, we have to ensure a certain regularity of
the simplices as the fineness tends to zero, which is done by the definition of
TK,b in Section 2.2.

Theorem 3.2 Consider ẋ = f(x), f ∈ C1(Rn,Rn), n ≥ 3 and assume that x0 = 0
is an exponentially stable equilibrium. Let v(x) := ∥x∥Q be the Lyapunov function
from Proposition 2.1.

Then for the standard triangulation TK,b of [−b, b]n with fineness ρ := 2−Kb, the
function w : Rn → R defined as in (3.1) is a continuous Lyapunov function for the
system, whenever b > 0 is small enough and K ∈ N is large enough. In particular,
we have for every x ∈ ]− b, b[n that

w(x) ≥ C∥x∥2 and D+w(x) ≤ −c∥x∥2,

where c := 1

8
∥∥∥Q 1

2

∥∥∥
2

, C := 1∥∥∥Q− 1
2

∥∥∥
2

and the Dini derivative D+w(x) is defined in (2.2).

Remark 3.3 Let us make the choice of b (size of the triangulation) and K (fineness
of the triangulation) more precise: In the proof we first fix the size b of the cube,
which only depends on the linearisation of f(x) = Jx + ψ(x), in particular J and
ψ, cf. Step 2 (3.5). Then we choose K and thus the fineness ρ = 2−Kb in Step 4.

Proof: We split the proof into several steps.
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Step 1: Constants
For the positive definite matrix Q from Proposition 2.1 we set

q := min
∥x∥∞=1

∥Qx∥∞ = min
∥x∥∞=1

max
i=1,...,n

∣∣eTi Qx
∣∣ > 0. (3.4)

Define the following constants, which only depend on q, n and Q:

C1 :=
(n− 1)(2

√
n+ 1)∥Q∥2
2

∥Q− 1
2 ∥2 + ∥Q

1
2 ∥2

√
n,

C2 :=
√
n∥Q

1
2 ∥2
(
1

4
(n− 1)2(2

√
n+ 1)∥Q∥22∥Q− 1

2 ∥22
√
n

+
1

2
∥Q

1
2 ∥2

√
n∥Q− 1

2 ∥2(n− 1)∥Q∥2
)
,

C3 := (n− 1)!Cn−2
1 C2,

C4 :=
2C3

q∥Q− 1
2 ∥3−n2

,

Cc := ∥Q∥2
√
n+ (n− 1)C4,

Cγ :=
1

2∥Q− 1
2 ∥22

√
n∥Q

1
2 ∥2

,

C̃ :=
Cc
Cγ

,

C0 := max

[
∥Q− 1

2 ∥2(n− 1)C4

(
C̃∥Q− 1

2 ∥2 + 1
)
, ∥Q− 1

2 ∥22(n− 1)C4C̃

+
2
√
n+ 1

2
(n− 1)∥Q∥2∥Q− 1

2 ∥32Cc + (n− 1)(C4 + ∥Q∥2)∥Q− 1
2 ∥2
]
.

Step 2: Choice of b
We consider the linearised system ẋ = Jx where J := Df(0). Because f is differen-

tiable we have f(x) = Jx+ ψ(x) with lim∥x∥2→0
∥ψ(x)∥2
∥x∥2 = 0. Fix b > 0 for the rest

of the proof so small that

∥ψ(x)∥2 ≤ c

C̃
∥x∥2 for all x ∈ R, (3.5)

where c := 1

8
∥∥∥Q 1

2

∥∥∥
2

and R := [−b, b]n.

Step 3: Description of a simplex
Let T ∈ TK,b be an arbitrary simplex. Denote its vertices by x0,x1, . . . ,xn, where
x0 = 0. Then x1, . . . ,xn ∈ ∂R and there is a k ∈ {1, . . . , n} such that both
|x1 · ek| = b and the vertices x2, . . . ,xn of the simplex are given by

xj = x1 + ρ

j−1∑
i=1

ui for j = 2, . . . , n,

11



where ρ = 2−Kb and u1,u2, . . . ,un−1,un is a suitable paraxial orthonormal basis
for Rn as in (2.4), i.e. there is a permutation σ ∈ Sn such that ui = ±eσ(i) for all
i ∈ {1, . . . , n} and especially un = ek, cf. (2.4) and Remark 2.5. The value of b > 0
was fixed in Step 2 and a suitable value for K ∈ N will be determined later.

We can then write

x1 =

n∑
i=1

aiui

with the same orthonormal basis ui. We have |an| = |x1 ·un| = b and, since x1 ∈ ∂R,
|ai| ≤ b for all i = 1, . . . , n. Since xj ∈ ∂R for j = 1, . . . , n we have b ≤ ∥xj∥2 ≤ b

√
n.

For the ∥ · ∥Q norm we thus obtain

∥xj∥Q = ∥Q
1
2xj∥2 ≤ ∥Q

1
2 ∥2 · ∥xj∥2 ≤ ∥Q

1
2 ∥2b

√
n, (3.6)

and
∥xj∥2 = ∥Q− 1

2Q
1
2xj∥2 ≤ ∥Q− 1

2 ∥2∥Q
1
2xj∥2 = ∥Q− 1

2 ∥2∥xj∥Q,

from which

∥xj∥Q ≥ 1

∥Q− 1
2 ∥2

∥xj∥2 ≥ 1

∥Q− 1
2 ∥2

b (3.7)

follows. We define

αi := uTi Qx1 for i = 1, . . . , n

and we have ai = uTi x1 for i = 1, . . . , n.

Moreover, the following estimates hold

|ai| ≤ b, (3.8)

|αi| ≤ ∥ui∥2∥Qx1∥2 ≤ ∥Q∥2b
√
n, (3.9)(

j∑
i=1

ui

)T
Q

(
j∑
i=1

ui

)
=

∥∥∥∥∥Q 1
2

(
j∑
i=1

ui

)∥∥∥∥∥
2

2

≤ ∥Q
1
2 ∥22

∥∥∥∥∥
j∑
i=1

ui

∥∥∥∥∥
2

2

= j∥Q∥2 (3.10)

for all j ∈ {1, . . . , n}.
Using the constant q > 0 from Step 1, we can conclude that there is an index

i∗ = i∗(x1) ∈ {1, . . . , n} such that

|αi∗ | ≥ bq (3.11)

holds true. Indeed, define x := 1
bx1 which satisfies ∥x∥∞ = 1. Note that for q

defined in Step 1 there is an index j∗ = j∗(x) such that |eTj∗Qx| = ∥Qx∥∞ ≥ q.

Since the ui are a permutation of the ei, there is an index i∗ = σ−1(j∗) such that

ui∗ = ±ej∗ . Thus, |αi∗ | =
∣∣uTi∗Qx1

∣∣ = b
∣∣∣±eTj∗Qx

∣∣∣ ≥ bq holds, which shows (3.11).

12



Note that we also have

∥xj∥2Q = ∥x1∥2Q + 2ρ

(
j−1∑
i=1

ui

)T
Qx1 + ρ2

(
j−1∑
i=1

ui

)T
Q

(
j−1∑
i=1

ui

)

= ∥x1∥2Q + 2ρ

j−1∑
i=1

αi + ρ2

(
j−1∑
i=1

ui

)T
Q

(
j−1∑
i=1

ui

)
. (3.12)

Step 4: Choice of K
We start by showing that:

For every ε > 0 there is a Kε ∈ N, such that K ≥ Kε implies, that for
any simplex T ∈ TK,b and any fixed vertex x1 ̸= 0 of T we have∣∣∣∣∣∥xj∥Q − ∥x1∥Q

ρ
− 1

∥x1∥Q

j−1∑
i=1

αi

∣∣∣∣∣ < ε, (3.13)

where the non-zero vertices x2, . . . ,xn of T and the numbers α1, . . . , αn
are defined as above in Step 3.

Indeed, for any j = 1, . . . , n and the vectors u1, . . . ,un defined as above, we have
by (3.12)

∥xj∥Q − ∥x1∥Q
ρ

=
∥xj∥2Q − ∥x1∥2Q
ρ(∥xj∥Q + ∥x1∥Q)

=
2ρ
∑j−1

i=1 αi + ρ2
(∑j−1

i=1 ui

)T
Q
(∑j−1

i=1 ui

)
ρ(∥xj∥Q + ∥x1∥Q)

=
2
∑j−1

i=1 αi + ρ
(∑j−1

i=1 ui

)T
Q
(∑j−1

i=1 ui

)
∥xj∥Q + ∥x1∥Q

. (3.14)

Since ρ = 2−Kb and b is fixed, we have

|∥xj∥Q − ∥x1∥Q| ≤ ∥xj − x1∥Q ≤ ∥Q
1
2 ∥2ρ

√
j − 1

and the proposition (3.13) follows.
Now, for a T ∈ TK,b let i∗ be defined as in (3.11) and consider the matrix

A ∈ R(n−1)×(n−1) defined for the simplex T by

Aji = ai
∥xj+1∥Q − ∥x1∥Q

ρ
− ∥x1∥Qχ{1,...,j}(i) (3.15)

for i ∈ {1, . . . , n} \ {i∗} and j = 1, . . . , n − 1, where χ{1,...,j}(i) ={
1 if i ∈ {1, . . . , j}
0 otherwise

. In other words, the matrix A is given by

13




a1

∥x2∥Q−∥x1∥Q
ρ

− ∥x1∥Q a2
∥x2∥Q−∥x1∥Q

ρ
. . . an−1

∥x2∥Q−∥x1∥Q
ρ

an
∥x2∥Q−∥x1∥Q

ρ

a1
∥x3∥Q−∥x1∥Q

ρ
− ∥x1∥Q a2

∥x3∥Q−∥x1∥Q
ρ

− ∥x1∥Q . . . an−1
∥x3∥Q−∥x1∥Q

ρ
an

∥x3∥Q−∥x1∥Q
ρ

.

.

.

.

.

.
.
.
.

.

.

.

a1
∥xn∥Q−∥x1∥Q

ρ
− ∥x1∥Q a2

∥xn∥Q−∥x1∥Q
ρ

− ∥x1∥Q . . . an−1
∥xn∥Q−∥x1∥Q

ρ
− ∥x1∥Q an

∥xn∥Q−∥x1∥Q
ρ


where the i∗-th column is missing.

We now show that

| detA| ≥ 1

2
∥Q− 1

2 ∥3−n2 bn−1q (3.16)

for all large enough K independent of the particular T ∈ TK,b. To see this consider
the matrix A0 ∈ R(n−1)×(n−1), defined by

(A0)ji = ai

∑j
l=1 αl

∥x1∥Q
− ∥x1∥Qχ{1,...,j}(i).

In other words, A0 is given by

a1
∥x1∥Q

∑1
i=1 αi − ∥x1∥Q

a2
∥x1∥Q

∑1
i=1 αi . . .

an−1
∥x1∥Q

∑1
i=1 αi

an
∥x1∥Q

∑1
i=1 αi

a1
∥x1∥Q

∑2
i=1 αi − ∥x1∥Q

a2
∥x1∥Q

∑2
i=1 αi − ∥x1∥Q . . .

an−1
∥x1∥Q

∑2
i=1 αi

an
∥x1∥Q

∑2
i=1 αi

a1
∥x1∥Q

∑3
i=1 αi − ∥x1∥Q

a2
∥x1∥Q

∑3
i=1 αi − ∥x1∥Q . . .

an−1
∥x1∥Q

∑3
i=1 αi

an
∥x1∥Q

∑3
i=1 αi

.

.

.

.

.

.
.
.
.

.

.

.

a1
∥x1∥Q

∑n−1
i=1 αi − ∥x1∥Q

a2
∥x1∥Q

∑n−1
i=1 αi − ∥x1∥Q . . .

an−1
∥x1∥Q

∑n−1
i=1 αi − ∥x1∥Q

an
∥x1∥Q

∑n−1
i=1 αi

 ,

where the i∗-th column is missing. If i∗ ̸= n we use Lemma A.2, and if i∗ = n we use
Lemma A.1, both with a = (a1, . . . , an−1, an), where |an| = b, and N =

∑n
i=1 aiαi =

(
∑n

i=1 aiui)
T Q = ∥x1∥2Q. The lemmata show that A0 satisfies in both cases

| detA0| =
1

∥x1∥n−1
Q

∥x1∥2(n−2)
Q b|αi∗ |

≥ ∥x1∥n−3
Q b2q by (3.11)

≥ ∥Q− 1
2 ∥3−n2 bn−1q by (3.7).

Because the determinant of a matrix is a continuous function of its entities and by
(3.13), it follows that for every ε∗ > 0 there is a Kε∗ ∈ N, such that

|detA− detA0| < ε∗ (3.17)

for all K ≥ Kε∗ , and because (3.13) is independent of the particular choice of
T ∈ TK,b then so is (3.17). Hence, there is a K̃ ∈ N such that whenever K ≥ K̃ we
have

| detA| ≥ 1

2
| detA0|,

i.e. the inequality (3.16) holds true.
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We fix K ∈ N for the rest of the proof, such that both K ≥ K̃ and

K ≥ 1

ln 2
max

[
ln
(
2C4(n− 1)∥Q− 1

2 ∥22
)
, ln
(
4C0∥J∥2∥Q

1
2 ∥2
)]
. (3.18)

With ρ := 2−Kb this implies that

0 < ρ ≤ min

(
b

2C4(n− 1)∥Q− 1
2 ∥22

,
b

4C0∥J∥2∥Q
1
2 ∥2

)
. (3.19)

Step 5: The central equations Ak = d
The function w is linear on the simplex T ∈ TK,b and its restriction to T can thus
be written as w(x) = wTx, where ∇w(x) = w holds for all x ∈ T . Moreover, we
have

wTxj = w(xj) = v(xj) = ∥xj∥Q
for all vertices xj of the simplex T . For j = 2, . . . , n this implies

wT

(
x1 −

∥x1∥Q
∥xj∥Q

xj

)
= ∥x1∥Q −

∥x1∥Q
∥xj∥Q

∥xj∥Q = 0.

Hence, w is characterised as the vector which is perpendicular to the (n−1) vectors

x1 −
∥x1∥Q
∥xj∥Qxj , j = 2, . . . , n and satisfies wTx1 = ∥x1∥Q.

We now characterise a vector c through the conditions that it is perpendicular

to the (n − 1) vectors x1 − ∥x1∥Q
∥xj∥Qxj , j = 2, . . . , n, just as w, and, instead of a

norm condition, to satisfy (c−Qx1)
Tui∗ = 0, where i∗ was defined earlier satisfying

|αi∗ | ≥ bq.
We now show that a vector c satisfying these properties exists and is uniquely

determined, and then clearly c = γw for some γ ∈ R. In Step 6 we assign a proper
value to γ and thus determine w.
Definition of c and k as solution of a linear equation
Let T ∈ TK,b be arbitrary but fixed, where K and b are as chosen above. We show

that there exists one and only one vector k = (k1, . . . , k̂i∗ , . . . , kn) ∈ Rn−1, where
k̂i∗ denotes that this entry is missing, such that

c = Qx1 +
n∑

i=1,i̸=i∗

kiui, (3.20)

cT
(
x1 −

∥x1∥Q
∥xj∥Q

xj

)
= 0 for all j = 2, . . . , n. (3.21)

15



To prove this, we characterise k as the solution of a system of linear equations.
Plugging (3.20) into the (n− 1) equations (3.21) for j = 2, . . . , n gives

0 =

Qx1 +

n∑
i=1,i ̸=i∗

kiui

T (
x1 −

∥x1∥Q
∥xj∥Q

xj

)

=

Qx1 +

n∑
i=1,i ̸=i∗

kiui

T (
x1

(
1−

∥x1∥Q
∥xj∥Q

)
−

∥x1∥Q
∥xj∥Q

ρ

j−1∑
i=1

ui

)

= ∥x1∥2Q
(
1−

∥x1∥Q
∥xj∥Q

)
−

∥x1∥Q
∥xj∥Q

ρ

j−1∑
i=1

αi

+
n∑

i=1,i̸=i∗

ki

[
ai

(
1−

∥x1∥Q
∥xj∥Q

)
−

∥x1∥Q
∥xj∥Q

ρχ{1,...,j−1}(i)

]

where χ{1,...,j−1}(i) = 1 if i ∈ {1, . . . , j − 1} and 0 otherwise.

By multiplying the equation by
∥xj∥Q
ρ we obtain

0 = ∥x1∥2Q
∥xj∥Q − ∥x1∥Q

ρ
− ∥x1∥Q

j−1∑
i=1

αi

+

n∑
i=1,i ̸=i∗

ki

[
ai
∥xj∥Q − ∥x1∥Q

ρ
− ∥x1∥Q χ{1,...,j−1}(i)

]
.

Hence, the vector k = (k1, . . . , k̂i∗ , . . . , kn)
T is the solution of the linear equation

Ak = d, (3.22)

where A ∈ R(n−1)×(n−1) is defined for the simplex T by (3.15) in Step 4 and the
vector d ∈ Rn−1 is given by

d = ∥x1∥Q



∑1
i=1 αi −

∥x2∥Q−∥x1∥Q
ρ ∥x1∥Q∑2

i=1 αi −
∥x3∥Q−∥x1∥Q

ρ ∥x1∥Q∑3
i=1 αi −

∥x4∥Q−∥x1∥Q
ρ ∥x1∥Q

...∑n−1
i=1 αi −

∥xn∥Q−∥x1∥Q
ρ ∥x1∥Q


.

Because of (3.16) A is non-singular and (3.22) has a unique solution k.
By Cramer’s rule the solution is given by

kj =
detAj
detA

,
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where Aj denotes the (n−1)×(n−1) matrix that is built by taking A and replacing
the j-th column by d.

The matrix A
Now we obtain the following estimate for the matrix entities Ajl of A, cf. (3.15)

|Ajl| ≤ |al|
∣∣∣∣∥xj+1∥Q − ∥x1∥Q

ρ

∣∣∣∣+ ∥x1∥Q

≤ |al|
2
∑j

i=1 |αi|+ ρ(n− 1)∥Q∥2
∥xj+1∥Q + ∥x1∥Q

+ ∥x1∥Q by (3.14) and (3.10)

≤ b

(
2b(n− 1)

√
n∥Q∥2 + b(n− 1)∥Q∥2

2b

)
∥Q− 1

2 ∥2 + ∥Q
1
2 ∥2b

√
n

by ρ ≤ b, (3.9), (3.7) and (3.6)

= b

(
(n− 1)(2

√
n+ 1)∥Q∥2
2

∥Q− 1
2 ∥2 + ∥Q

1
2 ∥2

√
n

)
= bC1 (3.23)

due to the definition of C1.
The vector d
We calculate the j-th component of the vector d.

dj
∥x1∥Q

=

j∑
i=1

αi −
∥xj+1∥Q − ∥x1∥Q

ρ
∥x1∥Q

=

(
1−

2∥x1∥Q
∥xj+1∥Q + ∥x1∥Q

) j∑
i=1

αi

−
∥x1∥Q

∥xj+1∥Q + ∥x1∥Q
ρ

(
j∑
i=1

ui

)T
Q

(
j∑
i=1

ui

)
by (3.14)

=
∥xj+1∥2Q − ∥x1∥2Q

(∥xj+1∥Q + ∥x1∥Q)2
j∑
i=1

αi

−
∥x1∥Q

∥xj+1∥Q + ∥x1∥Q
ρ

(
j∑
i=1

ui

)T
Q

(
j∑
i=1

ui

)

= ρ

[
2
∑j

i=1 αi + ρ
(∑j

i=1 ui

)T
Q
(∑j

i=1 ui

)
(∥xj+1∥Q + ∥x1∥Q)2

j∑
i=1

αi

−
∥x1∥Q

∥xj+1∥Q + ∥x1∥Q

(
j∑
i=1

ui

)T
Q

(
j∑
i=1

ui

)]
by (3.12).
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Thus, we have by (3.6), (3.7), (3.9) and (3.10)

|dj | ≤ ρb
√
n∥Q

1
2 ∥2
(
(n− 1)∥Q∥2(2b

√
n+ ρ)

4b2
∥Q− 1

2 ∥22(n− 1)∥Q∥2b
√
n

+
∥Q

1
2 ∥2b

√
n

2b
∥Q− 1

2 ∥2(n− 1)∥Q∥2
)

≤ ρbC2. (3.24)

The vector c
By the Leibniz formula for the determinant, namely detA =∑

π∈Sn−1
sign(π)

∏n−1
i=1 Ai,π(i) we obtain with (3.23) and (3.24)

|detAj | ≤ (n− 1)!bn−2Cn−2
1 ρbC2 = ρbn−1C3.

Hence, by (3.16) we have

|kj | =
| detAj |
|detA|

≤ ρbn−1C3

bn−1

2

q∥Q− 1
2 ∥3−n2

= C4ρ. (3.25)

Using (3.25) we obtain

∥c∥2 =

∥∥∥∥∥∥Qx1 +

n∑
i=1,i̸=i∗

kiui

∥∥∥∥∥∥
2

≤ ∥Q∥2b
√
n+ (n− 1)C4ρ

≤ bCc. (3.26)

Step 6: c = γw
We showed in the last step that there is a vector k = (k1, . . . , k̂i∗ , . . . , kn) ∈ Rn−1

such that

c = Qx1 +
n∑

i=1,i̸=i∗

kiui

fulfills cT
(
x1 −

∥x1∥Q
∥xj∥Qxj

)
= 0 for all j = 2, . . . , n. Defining

γ :=
1

∥x1∥Q

∥x1∥2Q +
n∑

i=1,i ̸=i∗
aiki



18



we obtain with (3.25) that

γ ≥ 1

∥x1∥Q
(
∥x1∥2Q − C4(n− 1)ρb

)
≥ 1

∥x1∥Q

(
b2

∥Q− 1
2 ∥22

− b2

2∥Q− 1
2 ∥22

)
by (3.7) and (3.19)

≥ b2

2∥Q− 1
2 ∥22b

√
n∥Q

1
2 ∥2

by (3.6)

= bCγ > 0. (3.27)

Moreover, we have with (3.25) and (3.7) that

|γ − ∥x1∥Q| ≤ 1

∥x1∥Q

n∑
i=1,i ̸=i∗

|aiki| ≤ ∥Q− 1
2 ∥2
b

(n− 1)bC4ρ. (3.28)

Now we prove that 1
γc = w by showing

(
1
γc
)T

xj = ∥xj∥Q for all j = 1, . . . , n,

cf. the beginning of Step 5.
We start with j = 1. By definition of γ and (3.20) we have

1

γ
cTx1 =

1

γ

∥x1∥2Q +

n∑
i=1,i ̸=i∗

aiki

 = ∥x1∥Q

Now let j ∈ {2, . . . , n}. Since cT
(
x1 −

∥x1∥Q
∥xj∥Qxj

)
= 0 by (3.21), we have

1

γ
cTxj =

1

γ

∥xj∥Q
∥x1∥Q

cTx1 = ∥xj∥Q.

This shows

w =
1

γ
c.

We also derive a bound on w. Using (3.26) and (3.27) we obtain

∥w∥2 =
1

γ
∥c∥2 ≤ bCc

bCγ
= C̃. (3.29)
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Step 7: Difference between w and ∇v
Note that v(x) = ∥x∥Q so that ∇v(x) = Qx

∥x∥Q . We estimate the difference between

∇w and ∇v at x1, we later consider the other vertices. We have

∥∇w(x1)−∇v(x1)∥2
= ∥w −∇v(x1)∥2

=

∥∥∥∥1γ c− Qx1

∥x1∥Q

∥∥∥∥
2

≤
∥∥∥∥1γ c− c

∥x1∥Q

∥∥∥∥
2

+

∥∥∥∥ c

∥x1∥Q
− Qx1

∥x1∥Q

∥∥∥∥
2

= |∥x1∥Q − γ| ∥c∥2
γ∥x1∥Q

+
1

∥x1∥Q
∥c−Qx1∥2

≤ ∥c∥2
γ∥x1∥Q

∥Q− 1
2 ∥2(n− 1)C4ρ+

1

∥x1∥Q

n∑
i=1,i ̸=i∗

|ki| by (3.28) and (3.20)

≤ ∥Q− 1
2 ∥2
b

(
C̃∥Q− 1

2 ∥2(n− 1)C4ρ+ (n− 1)C4ρ
)

by (3.29) and (3.25)

≤ ρ

b
C0, using the definition of C0.

Now we consider a vertex xj , j ≥ 2. We estimate

∥∇w(xj)−∇v(xj)∥2
= ∥w −∇v(xj)∥2

=

∥∥∥∥1γ c− Qxj
∥xj∥Q

∥∥∥∥
2

≤
∥∥∥∥1γ c− c

∥x1∥Q

∥∥∥∥
2

+

∥∥∥∥ c

∥x1∥Q
− c

∥xj∥Q

∥∥∥∥
2

+

∥∥∥∥ c

∥xj∥Q
− Qxj

∥xj∥Q

∥∥∥∥
2

.

The first term has already been estimated above by ρ
b∥Q

− 1
2 ∥22(n − 1)C4C̃. For the

second term note that we have∣∣∣∣ 1

∥x1∥Q
− 1

∥xj∥Q

∣∣∣∣ =
|∥xj∥Q − ∥x1∥Q|
∥xj∥Q∥x1∥Q

≤
2
∑j−1

i=1 |αi|+
(∑j−1

i=1 ui

)T
Q
(∑j−1

i=1 ui

)
ρ

∥xj∥Q∥x1∥Q(∥xj∥Q + ∥x1∥Q)
ρ by (3.14)

≤ 2b
√
n∥Q∥2 + ρ∥Q∥2

2b3
(n− 1)ρ∥Q− 1

2 ∥32 by (3.9) and (3.10)

≤ 2
√
n+ 1

2b2
(n− 1)∥Q∥2ρ∥Q− 1

2 ∥32

so that by (3.26) the second term is bounded by 2
√
n+1
2b (n− 1)∥Q∥2ρ∥Q− 1

2 ∥32Cc.

20



For the third term we obtain

∥c−Qxj∥2 =

∥∥∥∥∥∥Qx1 +
n∑

i=1,i ̸=i∗
kiui −

(
Qx1 + ρ

j−1∑
i=1

Qui

)∥∥∥∥∥∥
2

≤ (n− 1)(C4ρ+ ρ∥Q∥2), using (3.25).

Hence, by (3.7), the third term is bounded by (n− 1)(C4 + ∥Q∥2)ρb∥Q
− 1

2 ∥2.
Thus, altogether we obtain by definition of C0

∥∇w(xj)−∇v(xj)∥2 ≤
ρ

b
C0 (3.30)

for all j ∈ {1, . . . , n}.

Step 8: Negative orbital derivative with respect to linearised system
Recall that ∇w(x) = w = 1

γc for all points x in the simplex T , since w is linear in
the simplex. We now show that w(x) has negative orbital derivative with respect to
the linearised system, cf. Step 2, at each vertex. The orbital derivative at the vertex

xj is, using (3.30), i.e.
∥∥∥w − Qxj

∥xj∥Q

∥∥∥
2
≤ ρ

bC0, given by

wTJxj =
1

∥xj∥Q
xTj QJxj +

(
w − Qxj

∥xj∥Q

)T
Jxj

≤ 1

∥xj∥Q
xTj QJxj +

∥∥∥∥w − Qxj
∥xj∥Q

∥∥∥∥
2

∥J∥2∥xj∥2

≤ 1

2∥xj∥Q
xTj (J

TQ+QJ)xj +
ρ

b
C0∥J∥2∥xj∥2

≤ − 1

2∥xj∥Q
∥xj∥22 +

1

4
∥∥∥Q 1

2

∥∥∥
2

∥xj∥2 by (3.19)

≤ − 1

4
∥∥∥Q 1

2

∥∥∥
2

∥xj∥2,

where we have used (3.6) and JTQ+QJ = −I.

Step 9: w(x) has negative orbital derivative
In Step 8 we have shown that

wTJxj ≤ −2c∥xj∥2 (3.31)

where c is defined by c = 1

8
∥∥∥Q 1

2

∥∥∥
2

.

Now choose an arbitrary x ∈ R = [−b, b]n. We show that there is a simplex
T ∈ TK,b with vertices x0 = 0,x1, . . . ,xn and λ0, λ1, . . . , λn ∈ [0, 1] with

∑n
j=0 λj = 1

such that

x =

n∑
j=0

λjxj =

n∑
j=1

λjxj . (3.32)
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To show this, we project x to the boundary of the hypercube: let j̄ ∈ {1, . . . , n}
such that |xj̄ | = maxi∈{1,...,n} |xi| ≤ b. Then define µ := b

|xj̄ |
≥ 1. Obviously,

µx ∈ ∂R so that we can find a (n − 1)-simplex with vertices x1, . . . ,xn such that
µx =

∑n
j=1 µjxj with 0 ≤ µj ≤ 1 for all j = 1, . . . , n and

∑n
j=1 µj = 1. Then

x =

n∑
j=1

µj
µ
xj +

(
1− 1

µ

)
x0

where x0 = 0, λj :=
µj
µ ∈ [0, 1], λ0 := 1 − 1

µ ∈ [0, 1] and
∑n

j=0 λj = 1. This shows
(3.32).

We have with x =
∑n

j=1 λjxj

∥x∥2 =

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥
2

≤
n∑
j=1

λj∥xj∥2 (3.33)

and also ∥x∥Q =

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥
Q

≤
n∑
j=1

λj∥xj∥Q

=

n∑
j=1

λjw(xj) = w

 n∑
j=1

λjxj

 = w(x). (3.34)

Note that (3.34), together with

∥x∥2 = ∥Q− 1
2Q

1
2x∥2 ≤ ∥Q− 1

2 ∥2∥x∥Q

shows w(x) ≥ 1∥∥∥Q− 1
2

∥∥∥
2

∥x∥2, which proves the first inequality of the theorem.

Choose an arbitrary simplex T ∈ TK,b. Within T , the function w is smooth and
thus the orbital derivative with respect to the nonlinear system in the simplex T is
given by

w′(x) = ∇w(x)T f(x)
= wT (Jx+ ψ(x))

=

n∑
j=1

λjw
TJxj +wTψ(x)

≤ −2c
n∑
j=1

λj∥xj∥2 + ∥w∥2 · ∥ψ(x)∥2 by (3.31)

≤ −2c ∥x∥2 + C̃ · ∥ψ(x)∥2

for x ∈ T , using (3.33) and (3.29). By (3.5), ∥ψ(x)∥2 ≤ c

C̃
∥x∥2 holds for all x ∈ R.

Thus, we have

w′(x) ≤ −c∥x∥2 for all x ∈ T . (3.35)
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Now we show that
D+w(x) ≤ −c∥x∥2

holds for all x ∈ ]− b, b[n. Let x ∈ ]− b, b[n be arbitrary. By [16, Theorem 1.17] we
have

D+w(x) = lim sup
h→0+

w(x+ hf(x))− w(x)

h

since for all h > 0 small enough there is a T ∈ TK,b such that co{x,x+hf(x)} ⊂ T ,
cf. the argumentation at the beginning of Section 6.7 in [10].

Restricting w to this simplex T , w is linear and thus smooth and satisfies w(x) =
wTx. Hence, we have

D+w(x) = lim sup
h→0+

w(x+ hf(x))− w(x)

h
= lim sup

h→0+

w · (x+ hf(x))−w · x
h

= lim sup
h→0+

hw · f(x)
h

= ∇w(x) · f(x) = w′(x).

Thus, together with (3.35), we have proved the theorem. �

Remark 3.4 An alternative path to prove D+w(x) = lim suph→0+
w(x+hf(x))−w(x)

h
is to consider multivalued functions and Clarke’s subdifferential, cf. [3].

4 Conclusions

In this paper we have shown that for any system ẋ = f(x), f ∈ C1(Rn,Rn), n ≥ 3
with exponentially stable equilibrium, there exists a (local) piecewise linear Lya-
punov function w(x). Our result generalises a previous result for dimension n = 2,
using a different approach.

To construct the Lyapunov function, we first consider a triangulation TK,b of
[−b, b]n with fineness ρ = 2−Kb. Then we define w by the values of the function
v(x) =

√
xTQx on the vertices of the triangulation, and linear interpolation on each

simplex. We have derived a lower bound on w(x) and an upper bound on the Dini
derivative D+w(x).

The significance of this result is that we have given a constructive existence proof
for a piecewise linear (local) Lyapunov function. Expanding the triangulation, we
can extend this function to a piecewise affine (global) Lyapunov function, which
can be constructed by linear programming. We have thus provided the basis for a
construction method of a global piecewise Lyapunov function.
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A Lemmata on determinants

We prove two lemmata, corresponding to the cases i∗ = n and i∗ ̸= n in the proof
of the main theorem. The matrix under consideration in both lemmata is different,
the proof, however, is similar.

Lemma A.1 Let a ∈ Rn with an ̸= 0, and α ∈ Rn with αn ̸= 0. Denote N :=∑n
i=1 aiαi. Define the matrix A ∈ R(n−1)×(n−1) by

a1
∑1

i=1 αi −N a2
∑1

i=1 αi . . . an−2

∑1
i=1 αi an−1

∑1
i=1 αi

a1
∑2

i=1 αi −N a2
∑2

i=1 αi −N . . . an−2

∑2
i=1 αi an−1

∑2
i=1 αi

a1
∑3

i=1 αi −N a2
∑3

i=1 ai −N
. . . an−2

∑3
i=1 ai an−1

∑3
i=1 ai

...
...

...
...

a1
∑n−2

i=1 αi −N a2
∑n−2

i=1 αi −N . . . an−2

∑n−2
i=1 αi −N an−1

∑n−2
i=1 αi

a1
∑n−1

i=1 αi −N a2
∑n−1

i=1 αi −N . . . an−2

∑n−1
i=1 αi −N an−1

∑n−1
i=1 αi −N


Then |detA| = Nn−2|an||αn|.

Proof: We modify the matrix A by replacing the second row by second row minus
first row, then the third row by third row minus second row minus first row, etc.
The determinant is the same and the matrix becomes

a1α1 −N a2α1 a3α1 . . . an−2α1 an−1α1

a1α2 a2α2 −N a3α2 . . . an−2α2 an−1α2

...
...

...
...

a1αn−2 a2αn−2 a3αn−2 . . . an−2αn−2 −N an−1αn−2

a1αn−1 a2αn−1 a3αn−1 . . . an−2αn−1 an−1αn−1 −N


Now assume without loss of generality that a1, . . . , ak ̸= 0 and ak+1, . . . , an−1 = 0

with a k ∈ {0, . . . , n − 1}. Note that we can change the order of a1, . . . , an−1 by
exchanging the i-th and j-th row and then also the i-th and j-th column.

If k = 0, then | detA| = Nn−1 = Nn−2|an| · |αn|, since in this case N =∑n
i=1 aiαi = anαn, which shows the lemma.
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Now assume that k ≥ 1. Using ak+1 = . . . = an−1 = 0 the matrix becomes

a1α1 −N a2α1 . . . ak−1α1 akα1 0 . . . 0
a1α2 a2α2 −N . . . ak−1α2 akα2 0 . . . 0
...

...
...

...
...

...
a1αk−1 a2αk−1 . . . ak−1αk−1 −N akαk−1 0 . . . 0
a1αk a2αk . . . ak−1αk akαk −N 0 . . . 0

a1αk+1 a2αk+1 . . . ak−1αk+1 akαk+1 −N 0...
...

...
...

. . .

a1αn−1 a2αn−1 . . . ak−1αn−1 akαn−1 0 −N


The determinant of this matrix satisfies

| detA| = Nn−k−1| det Ãk|, (A.1)

where Ãk denotes the left upper k × k matrix.
If k = 1, then we have shown the lemma since in this case we have N = a1α1 +

anαn and thus |detA| = |a1α1 −N |Nn−2 = |anαn|Nn−2.
Now we assume k ≥ 2 and calculate | det Ãk|, where a1, . . . , ak ̸= 0. We show by

induction that for 2 ≤ j ≤ k we have

| det Ãk| = | det Ãj |Nk−j , (A.2)

where Ãj , j = 2, . . . , k denotes the j × j matrix

Ãj :=



a1α1 −N a2α1 . . . aj−1α1 ajα1

a1α2 a2α2 −N . . . aj−1α2 ajα2

...
...

...
...

a1αj−2 a2αj−2 . . . aj−1αj−2 ajαj−2

a1αj−1 a2αj−1 . . . aj−1αj−1 −N ajαj−1

a1

aj

∑k
i=j aiαi

a2

aj

∑k
i=j aiαi . . .

aj−1

aj

∑k
i=j aiαi

∑k
i=j aiαi −N


Note that for j = k this definition coincides with the previous definition. We show
the formula (A.2) by induction. For j = k the formula holds. We now assume that
it holds for j ∈ {3, . . . , k} and show it for j − 1. Indeed, replacing the j-th column
by

aj
aj−1

· (j − 1)-st column−j-th column gives

det Ãj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1α1 −N a2α1 . . . aj−1α1 0
a1α2 a2α2 −N . . . aj−1α2 0
...

...
...

...
a1αj−2 a2αj−2 . . . aj−1αj−2 0

a1αj−1 a2αj−1 . . . aj−1αj−1 −N −N aj
aj−1

a1
aj

∑k
i=j aiαi

a2
aj

∑k
i=j aiαi . . .

aj−1

aj

∑k
i=j aiαi N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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We expand along the last column, which gives, using linearity in the last row

det Ãj

= N

∣∣∣∣∣∣∣∣∣∣∣∣

a1α1 −N a2α1 . . . aj−1α1

a1α2 a2α2 −N . . . aj−1α2
...

...
...

a1αj−2 a2αj−2 . . . aj−1αj−2

a1αj−1 a2αj−1 . . . aj−1αj−1 −N

∣∣∣∣∣∣∣∣∣∣∣∣

+
aj
aj−1

N

∣∣∣∣∣∣∣∣∣∣∣∣

a1α1 −N a2α1 . . . aj−1α1

a1α2 a2α2 −N . . . aj−1α2
...

...
...

a1αj−2 a2αj−2 . . . aj−1αj−2

a1
aj

∑k
i=j aiαi

a2
aj

∑k
i=j aiαi . . .

aj−1

aj

∑k
i=j aiαi

∣∣∣∣∣∣∣∣∣∣∣∣

=
N

aj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1α1 −N a2α1 . . . aj−1α1

a1α2 a2α2 −N . . . aj−1α2
...

...
...

a1αj−2 a2αj−2 . . . aj−1αj−2

a1
∑k

i=j−1 aiαi a2
∑k

i=j−1 aiαi . . . aj−1

(∑k
i=j−1 aiαi −N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
This shows

| det Ãj | = N

∣∣∣∣∣∣∣∣∣∣∣∣

a1α1 −N a2α1 . . . aj−1α1

a1α2 a2α2 −N . . . aj−1α2
...

...
...

a1αj−2 a2αj−2 . . . aj−1αj−2

a1
aj−1

∑k
i=j−1 aiαi

a2
aj−1

∑k
i=j−1 aiαi . . .

∑k
i=j−1 aiαi −N

∣∣∣∣∣∣∣∣∣∣∣∣
= N | det Ãj−1|

By the induction hypothesis we have | det Ãk| = | det Ãj |Nk−j =

N | det Ãj−1|Nk−j = | det Ãj−1|Nk−(j−1). This shows (A.2).
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Now we use (A.2) for j = 2. First, we calculate det Ã2 giving

det Ã2 =

∣∣∣∣∣ a1α1 −N a2α1

a1
a2

∑k
i=2 aiαi

∑k
i=2 aiαi −N

∣∣∣∣∣
= (a1α1 −N)

(
k∑
i=2

aiαi −N

)
− a1α1

k∑
i=2

aiαi

= −Na1α1 −N

k∑
i=2

aiαi +N2

= N

(
N −

n−1∑
i=1

aiαi

)
= Nanαn

since ak+1 = . . . = an−1 = 0. Finally, using (A.1) and (A.2) we obtain

| detA| = Nn−k−1Nk−2N |an| · |αn| = Nn−2|an| · |αn|.

This shows the lemma. �

Lemma A.2 Let a ∈ Rn with an ̸= 0, and α ∈ Rn with αi∗ ̸= 0 where i∗ ∈
{1, . . . , n− 1}. Denote N :=

∑n
i=1 aiαi. Define the matrix A ∈ R(n−1)×(n−1) by

a1
∑1

i=1 αi −N a2
∑1

i=1 αi . . . an−1

∑1
i=1 αi an

∑1
i=1 αi

a1
∑2

i=1 αi −N a2
∑2

i=1 αi −N . . . an−1

∑2
i=1 αi an

∑2
i=1 αi

a1
∑3

i=1 αi −N a2
∑3

i=1 ai −N . . . an−1

∑3
i=1 ai an

∑3
i=1 ai

...
...

...
...

a1
∑n−2

i=1 αi −N a2
∑n−2

i=1 αi −N . . . an−1

∑n−2
i=1 αi an

∑n−2
i=1 αi

a1
∑n−1

i=1 αi −N a2
∑n−1

i=1 αi −N . . . an−1

∑n−1
i=1 αi −N an

∑n−1
i=1 αi


where the i∗-th column is missing.

Then | detA| = Nn−2|an||αi∗ |.

Proof: We modify the matrix A by replacing the second row by second row minus
first row, then the third row by third minus second row minus first row, etc. The
determinant is the same and the matrix becomes

a1α1 −N a2α1 a3α1 . . . an−2α1 an−1α1 anα1

a1α2 a2α2 −N a3α2 . . . an−2α2 an−1α2 anα2

...
...

. . .
...

...
...

a1αn−2 a2αn−2 a3αn−2 . . . an−2αn−2 −N an−1αn−2 anαn−2

a1αn−1 a2αn−1 a3αn−1 . . . an−2αn−1 an−1αn−1 −N anαn−1


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Now we move the last column to the place of the (missing) i∗-th column, which
results possibly in a minus sign. In the next step, we change the order of a1, . . . , an−1

by exchanging the i-th and j-th row and then also the i-th and j-th column. We
can thus move the i∗-th column in front of the first column to obtain the matrix

anαi∗ a1αi∗ a2αi∗ a3αi∗ . . . an−2αi∗ an−1αi∗

anα1 a1α1 −N a2α1 a3α1 . . . an−2α1 an−1α1

anα2 a1α2 a2α2 −N a3α2 . . . an−2α2 an−1α2

...
...

. . .
...

...
...

...
. . .

...
...

anαn−2 a1αn−2 a2αn−2 a3αn−2 . . . an−2αn−2 −N an−1αn−2

anαn−1 a1αn−1 a2αn−1 a3αn−1 . . . an−2αn−1 an−1αn−1 −N


where the i∗-th column and row are missing.

Now assume without loss of generality that a1, . . . , ak ̸= 0 and ak+1 = . . . =
an−1 = 0 with a k ∈ {0, . . . , n−1}. Note that we can change the order of a1, . . . , an−1

by exchanging the i-th and j-th row and then also the i-th and j-th column.
If k = 0, then | detA| = |an| · |αi∗ |Nn−2, which shows the lemma.
Now assume that k ≥ 1. Using ak+1 = . . . = an−1 = 0 the matrix becomes

anαi∗ a1αi∗ a2αi∗ . . . ak−1αi∗ akαi∗ 0 . . . 0
anα1 a1α1 −N a2α1 . . . ak−1α1 akα1 0 . . . 0
anα2 a1α2 a2α2 −N . . . ak−1α2 akα2 0 . . . 0
...

...
. . .

...
...

...
...

anαk−1 a1αk−1 a2αk−1 . . . ak−1αk−1 −N akαk−1 0 . . . 0
anαk a1αk a2αk . . . ak−1αk akαk −N 0 . . . 0

anαk+1 a1αk+1 a2αk+1 . . . ak−1αk+1 akαk+1 −N 0
...

...
...

...
...

. . .

anαn−1 a1αn−1 a2αn−1 . . . ak−1αn−1 akαn−1 0 −N


We assume without loss of generality that k < i∗. Then the determinant of this
matrix satisfies

| detA| = Nn−k−2| det Ãk|, (A.3)

where Ãk denotes the left upper (k + 1)× (k + 1) matrix.
Now we calculate | det Ãk|, where a1, . . . , ak ̸= 0. We show by induction that for

1 ≤ j ≤ k we have

| det Ãk| = | det Ãj |Nk−j , (A.4)
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where Ãj , j = 1, . . . , k denotes the (j + 1)× (j + 1) matrix

anαi∗ a1αi∗ a2αi∗ . . . aj−1αi∗ ajαi∗

anα1 a1α1 −N a2α1 . . . aj−1α1 ajα1

anα2 a1α2 a2α2 −N . . . aj−1α2 ajα2

...
...

...
...

...
anαj−2 a1αj−2 a2αj−2 . . . aj−1αj−2 ajαj−2

anαj−1 a1αj−1 a2αj−1 . . . aj−1αj−1 −N ajαj−1

an

aj

∑k
i=j aiαi

a1

aj

∑k
i=j aiαi

a2

aj

∑k
i=j aiαi . . .

aj−1

aj

∑k
i=j aiαi

∑k
i=j aiαi −N


Note that for j = k this definition coincides with the previous definition. We show
the formula (A.4) by induction. For j = k the formula holds. We now assume that
it holds for j ∈ {2, . . . , k} and show it for j − 1. Indeed, replacing the j-th column
by

aj
aj−1

· (j − 1)-st column minus the j-th column gives the following expression for

det Ãj∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

anαi∗ a1αi∗ a2αi∗ . . . aj−1αi∗ 0
anα1 a1α1 −N a2α1 . . . aj−1α1 0
anα2 a1α2 a2α2 −N . . . aj−1α2 0
...

...
...

...
...

anαj−2 a1αj−2 a2αj−2 . . . aj−1αj−2 0

anαj−1 a1αj−1 a2αj−1 . . . aj−1αj−1 −N −N aj
aj−1

an
aj

∑k
i=j aiαi

a1
aj

∑k
i=j aiαi

a2
aj

∑k
i=j aiαi . . .

aj−1

aj

∑k
i=j aiαi N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We expand along the last column, which gives, using linearity in the last row

det Ãj

= N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

anαi∗ a1αi∗ a2αi∗ . . . aj−1αi∗

anα1 a1α1 −N a2α1 . . . aj−1α1

anα2 a1α2 a2α2 −N . . . aj−1α2
...

...
...

...
anαj−2 a1αj−2 a2αj−2 . . . aj−1αj−2

anαj−1 a1αj−1 a2αj−1 . . . aj−1αj−1 −N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
aj
aj−1

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

anαi∗ a1αi∗ a2αi∗ . . . aj−1αi∗

anα1 a1α1 −N a2α1 . . . aj−1α1

anα2 a1α2 a2α2 −N . . . aj−1α2
...

...
...

...
anαj−2 a1αj−2 a2αj−2 . . . aj−1αj−2

an
aj

∑k
i=j aiαi

a1
aj

∑k
i=j aiαi

a2
aj

∑k
i=j aiαi . . .

aj−1

aj

∑k
i=j aiαi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
N

aj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

anαi∗ a1αi∗ . . . aj−1αi∗

anα1 a1α1 −N . . . aj−1α1

anα2 a1α2 . . . aj−1α2
...

...
...

anαj−2 a1αj−2 . . . aj−1αj−2

an
∑k

i=j−1 aiαi a1
∑k

i=j−1 aiαi . . . aj−1

(∑k
i=j−1 aiαi −N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This shows

| det Ãj | = N | det Ãj−1|.

By the induction hypothesis we have | det Ãk| = | det Ãj |Nk−j =

N | det Ãj−1|Nk−j = | det Ãj−1|Nk−(j−1). This shows (A.4).

Now we use (A.4) for j = 1. First, we calculate det Ã1 giving

det Ã1 =

∣∣∣∣∣ anαi∗ a1αi∗

an
a1

∑k
i=1 aiαi

∑k
i=1 aiαi −N

∣∣∣∣∣
= anαi∗

k∑
i=1

aiαi −Nanαi∗ − a1αi∗
an
a1

k∑
i=1

aiαi

= −Nanαi∗ .

Finally, using (A.3) and (A.4) we obtain

| detA| = Nn−k−2Nk−1N |an| · |αi∗ | = Nn−2|an| · |αi∗ |.

This shows the lemma. �
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