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Abstract

Lyapunov functions are an important tool to determine the basin of attrac-
tion of exponentially stable equilibria in dynamical systems. In Marinosson
(2002), a method to construct Lyapunov functions was presented, using finite
differences on finite elements and thus transforming the construction problem
into a linear programming problem. In Hafstein (2004), it was shown that
this method always succeeds in constructing a Lyapunov function, except for a
small, given neighbourhood of the equilibrium.

For two-dimensional systems, this local problem was overcome by choosing a
fan-like triangulation around the equilibrium. In Giesl/Hafstein (2010) the exis-
tence of a piecewise linear Lyapunov function was shown, and in Giesl/Hafstein
(subm.) it was shown that the above method with a fan-like triangulation
always succeeds in constructing a Lyapunov function, without any local excep-
tion. However, the previous papers only considered two-dimensional systems.
This paper generalises the existence of piecewise linear Lyapunov functions to
arbitrary dimensions.

1 Introduction

In this paper we study the autonomous system of differential equations x = f(x),
f € CYR"™ R"), and assume that the origin is an exponentially stable equilibrium
with basin of attraction denoted by A. A Lyapunov function w: R® — R is a
function which decreases along solutions of the differential equation. This can be
expressed by a negative orbital derivative w'(x) < 0, where the orbital derivative
is the derivative along solutions and is given by w'(x) = Vw(x) - f(x). Lyapunov
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functions can be used to determine subsets of the basin of attraction A through
their sublevel sets.

The standard method to obtain a local Lyapunov function and thus a subset
of the basin of attraction is to solve the Lyapunov equation, i.e. to find a positive
definite matrix @ € R™ ™ which is the solution to JTQ + QJ = —P, where J :=
Df(0) is the Jacobian of f at the origin and P € R™*" is an arbitrary positive definite
matrix. Then the quadratic function x — x? Qx is a local Lyapunov function for the
system X = f(x), i.e. it is a Lyapunov function for the system in some neighborhood
of the origin. The size of this neighborhood is a priori not known and is, except for
linear f, in general a poor estimate of A (see, for example, [8] for more details).
This method to compute local Lyapunov functions is constructive because there is
an algorithm to solve the Lyapunov equation that succeeds whenever it possesses a
solution, cf. Bartels and Stewart [2].

In the last decades there have been several proposals to construct Lyapunov func-
tions numerically. To name a few, Johansson and Rantzer proposed a construction
method in [12] for piecewise quadratic Lyapunov functions for piecewise affine au-
tonomous systems. Julian, Guivant, and Desages in [14] and Julian in [13] presented
a linear programming problem to construct piecewise affine Lyapunov functions for
autonomous piecewise affine systems. This method can be used for autonomous,
nonlinear systems if some a posteriori analysis of the generated Lyapunov function
is done. Garcia and Agamennoni [4] recently published a paper based on similar
ideas. In [11], Johansen uses linear programming to parameterise Lyapunov func-
tions for autonomous nonlinear systems, but does not give error estimates. Parrilo in
[19] and Papachristodoulou and Prajna in [18] consider the numerical construction
of Lyapunov functions that are presentable as sums of squares for autonomous poly-
nomial systems under polynomial constraints. These ideas have been taken further
by a recent publications of Peet [20], where he proves the existence of a polynomial
Lyapunov function on bounded regions for exponentially stable systems.

Giesl proposed in [5] a method to construct Lyapunov functions for autonomous
systems with an exponentially stable equilibrium by solving numerically a gener-
alised Zubov equation, cf. [21],

VV(x)- f(x) = —p(x), (1.1)

where usually p(x) = ||x||2 for the equilibrium at the origin. A solution to the partial
differential equation (1.1) is a Lyapunov function for the system. He uses radial basis
functions to find a numerical solution to (1.1) and there are error estimates given.
In [17], Hafstein (alias Marinosson) presented a method to compute piecewise
affine Lyapunov function. In this method one first triangulates a compact neigh-
borhood C C A of the origin and then constructs a linear programming problem
with the property, that a continuous Lyapunov function V', affine on each triangle
of the triangulation, can be constructed from any feasible solution to it. In [8] it
was proved that for exponentially stable equilibria this method is always capable
of generating a Lyapunov function V : C\ N' — R, where N' C C is an arbitrary



small, apriori determined neighborhood of the origin. In [9] these results were gen-
eralised to asymptotically stable systems, in [10] to asymptotically stable, arbitrary
switched, non-autonomous systems, and in [1] to asymptotically stable differential
inclusions.

In [6], we have shown that the triangulation scheme used in [17, 8, 9, 10] in
general does not allow for piecewise affine Lyapunov functions near the equilibrium.
However, in the same paper we have proposed a new, fan-like triangulation around
the equilibrium, and we have proved that a piecewise affine Lyapunov function with
respect to this new triangulation always exists. In the above mentioned paper,
however, we have only dealt with the two-dimensional case.

In this paper, we obtain a similar result for arbitrary dimensions, but using a
different approach. In particular, we show that for any system with an exponentially
stable equilibrium, there exists a local, piecewise linear Lyapunov function. We give
a constructive proof of this fact by first describing the triangulation. The piecewise
linear Lyapunov function w is then constructed by the values of the function v(x) :=
vxTQx on all vertices, where @ satisfies the Lyapunov equation J' Q + QJ = —1I,
J := Df(0). For all other points the function w is uniquely defined by the fact that
it is linear on all simplices.

The main part of this paper is the proof of the existence of this piecewise linear
Lyapunov function w(x). The main step is the characterisation of Vw(x) as a
multiple of the vector ¢, which satisfies a system of (n — 1) linear equations. We
then estimate the difference of Vw(x) to Vu(x) and show that it tends to zero as
the triangulation becomes finer. Hence, we show that a piecewise linear Lyapunov
function exists if the triangulation is fine enough.

In the two-dimensional case, the existence of a piecewise affine Lyapunov func-
tion led to an improvement of the algorithm in [17, 8, 9, 10]: using the advanced
triangulation scheme with a fan-like triangulation around the equilibrium, one can
construct and compute a piecewise affine Lyapunov function V' : C — R for any sys-
tem with an exponentially stable equilibrium, cf. [7]. We are confident that, based
on the results of this paper, a similar construction method for arbitrary dimensions
will be possible.

Notations

For vectors x,y € R™ we denote the Euclidean scalar product by x -y = Y"1 | z;y;
and the Euclidean norm by ||x|l2 = v/x-x. We further use the maximum norm
|x|lcc = max|z;|. The induced matrix norm for a matrix A € R"*" is given by
| All2 = maxy|,—1 [[Ax[|2. The convex hull of the vectors xg, ..., x; € R" is denoted
by

k k
co{xg,..., X} = {Z)‘ixi : Z)‘izl’ Og)\iglfori:O,...,k:}.
=0

i=0
Note that if the vectors xq, . . ., xx € R” are affinely independent, i.e. x; —xq, . . ., X —
xo are linearly independent, then co{xy,...,xx} is polyhedron with a positive k-



dimensional volume, i.e. a k-simplex. A vector x € R" is assumed to be a column
vector and x” is the corresponding row vector.

2 Preliminaries

2.1 A Lyapunov function v

We consider the differential equation

x = f(x), (2.1)

where f € C1(R™, R"). We denote the solution x(t) of x = f(x) at time ¢ with initial
condition x(0) = & by ¢(t,&).

Furthermore, we assume that xg = 0 is an exponentially stable equilibrium,
i.e. that the rate of convergence of solutions to it is exponential. An equilibrium
is exponentially stable if and only if it is linearly asymptotically stable, i.e. the
linearised system x = Df(0)x is asymptotically stable, which is also equivalent to
the linearised system being exponentially asymptotically stable [15, Theorem 4.15].
This is again equivalent to the condition that all eigenvalues of Df(0) have strictly
negative real part [15, Corollary 4.3].

We consider n > 3, since the two-dimensional case has already been solved in
[6]. The Lyapunov equation

JTQ + QJ = —I, where J := Df(0),

has a unique solut}on @ € R™"™ which is symmetric and positive definite. Hence,
the square root Q2 exists and is also symmetric and positive definite. Define the

norm )
Ixllq = [Q2x[l2 = vVxTOx.

Note that we also have ||Q% |2 = ||Q]|2 since @ is symmetric and positive definite.

A (strict) Lyapunov function V for the equilibrium 0 of (2.1) is a positive definite
function of the state space which is decreasing along the solution trajectories of the
system. More precisely, V' is a continuous function V : C — R, where C # () is an
open neighborhood of the origin, the closure of which is compact, fulfilling V(0) = 0
and V(x) > 0 for all x € C\ {0}, as well as

DTV (x) := limsup V($(h,x)) = V(x)
h—0+ h
where DT denotes the Dini derivative, cf. e.g. [16, Part I]. Note that if V is con-

tinuously differentiable, then the Dini derivative is equal to the orbital derivative,
i.e.

<0 forall x € C\ {0}, (2.2)

DIV(x) = S V($(1,%) =V 09 = V),



The following proposition is taken from [6, Proposition 4.1] with » = 1 and a
slightly different set B;(0). The proposition shows that the function v(x) := ||x||g
is a Lyapunov function in a neighborhood of the equilibrium. This function will be
interpolated at the vertices of each simplex of a certain triangulation, and thus we
will construct a piecewise linear Lyapunov function w in the next section.

Proposition 2.1 Consider x = f(x), where f € C1(R",R") and assume that xo =
0 is an exponentially stable equilibrium. Let the positive definite matriz @ € R™*"
be the unique solution of the Lyapunov equation JTQ + QJ = —I, J := Df(0).

Then there is a number § > 0, such that the function v € C*(R" \ {0},R) N
CO(R™, R), given by

v(x) = xllg = vVXTQx, (2.3)
satisfies
v(x) > C|x|2 for all x € Bs(0) and
v'(x) = Vo(x) - f(x) < —2c|x][|2 for all x € B5(0) \ {0},
where
cim — o= L und By(0) = {x € R | |x]2 < 6}
sletl, et

2.2 Triangulation

To construct a piecewise linear Lyapunov function from the Lyapunov function in
Proposition 2.1 we need to fix our triangulation, i.e. a subdivision of R™ into n-
simplices, such that the intersection of two different simplices in the subdivision is
either empty or a k-simplex, 0 < k < n, and its vertices are the common vertices
of the two different n-simplices. Such a structure is often referred to as a simplicial
n-complex.

We do this by modifying the simplicial n-complex used in [10] locally at the
origin in a similar way as we did in [6], adapted to n and not only two dimensions.
The main idea is to take the intersection of the boundary of a box [—b,b]", b > 0,
with the simplices in a simplicial n-complex as in [10], such that the boundary
is subdivided into a simplicial (n — 1)-complex. To all the simplices in this new
simplicial (n — 1)-complex we then add the origin as a vertex to get a new simplicial
n-complex locally at the origin, cf. Figure 1, where this is depicted for n = 3, and
Figure 2, where four exemplary simplices of such a triangulation are shown.

For the construction we use the set S, of all permutations of the numbers
1,2,...,n, the characteristic functions x7(7) equal to one if i € J and equal to
zero if i ¢ J, and the standard orthonormal basis ey, es, ..., e, of R”. Further, we
use the functions RY : R® — R”, defined for every J C {1,2,...,n} by

n

R7(x) =Y (-1 e,

i=1
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(a) The triangulation 71 for n = 3. (b) The triangulation 73 for n = 3.

Figure 1: Schematic pictures of the local triangulations for n = 3. Note that for
n = 3 the elements of Tk, K € N, are tetrahedra with the origin as a vertex. The
intersection of the boundary of a box [—b,b]? with a suitable simplicial 3-complex
from [10] delivers a simplicial 2-complex (triangles). By adding the origin as a
vertex to all the simplices in the simplicial 2-complex, we get a simplicial 3-complex
(tetrahedra) locally at the origin.

Figure 2: A few exemplary simplices from the triangulation 77 for n = 3. The
simplices depicted are, from left to right, co{(0,0,0), (=b/2,b,0), (0,b,0), (0,b,b/2)},
c0{(0,0,0),(0,b,0), (0,b,b/2), (b/2,b,0)}, co{(0,0,0), (b/2,b/2,b),(b/2,b,b), (b,b,)},
and c0{(0,0,0), (b/2,b/2,b),(b,b/2,b), (b, b,b)}.

Thus RY (x) puts a minus in front of the coordinate z; of x if i € J.
Note that the two parameters b and K of the triangulation 7Tg j refer to the size
of the box [—b,b]™ covered by it and to the fineness, respectively.

Definition 2.2 To construct the triangulation Tk, we first define the triangula-
tions T and Tx as intermediate steps.



1. The triangulation T consists of the simplices

J
T, 7.0 = co {RJ (z—i—ZeU(i)) :j:0,1,2,...,n}

i=1
forallz € Z%,, all 7 C {1,2,...,n}, and all o € Sy,.

2. Choose a positive integer K and consider the (n — 1)-simplices obtained by
taking the intersection of the n-simplices T, 7, in T and the boundary of the
cube [—25 2K1" A new triangulation Ty, local at the origin, is now obtained
by taking every such (n — 1)-simplex and adding the origin as a vertex to it.

3. The final step is now to choose a constant b > 0 and scale the triangulation
Tx, such that the vertices of the n-simplices in Ty, with the exception of the
origin, are in the boundary of the cube [—b,b]™. Thus, transform every simplex
T € Tx with the mapping x — px, where p := 275b. The set of the resulting
simplices is denoted by Tk p.

We will refer to Ty as the standard triangulation of [—b, b with fineness p = 27 Kb.
We have four remarks on this triangulation:

Remark 2.3 The triangulation T is studied in more detail in [16, Sections
4.1 and 4.2]. A sometimes more intuitive description of T, 7, is the simplex
{x:0< To) < oo S Tp(n) < 1} translated by x — x + z and then a minus-sign is
put in front of the i-th entry of the resulting vector whenever i € J.

Remark 2.4 For dimension n = 2, this construction is the same as the one in [6].
While the construction above only defines the local part of the triangulation around
0, it can be expanded to a global triangulation of R™ by using the simplices from T
scaled with p outside of [—b,b]™. This will be needed in a subsequent paper to derive
an algorithm for the construction of a local and global piecewise affine Lyapunov
function.

Remark 2.5 For every T' € Tk, and every vertex x # 0 of T we have ||X[|sc = b,
i.e. there is at least one k € {1,...,n} such that |xy| = b. Further, if T € Tk and
x #£ 0 is an arbitrary vertex of T, then the other nonzero vertices of T are given by

j—1
x—i—pZui, ji=2,...,n, (2.4)
i=1
where Ui, Uo,...,U,_1 i a suitable parazial orthonormal basis of the hyperplane

{z € R" : z;, = 0}, where k is such that |xx| = b. By defining u, := ey, there



is a permutation o € Sy, such that u; = +e, ) for every i = 1,2,...,n, where
e1,€,...,e, is the standard orthonormal basis for R™. In particular o(n) = k and
|x-u,| = |x- e =0.

Remark 2.6 Tx is indeed a simplicial n-complex as shown in Lemma 2.7.

Lemma 2.7 Consider the set of simplices Tk from Definition 2.2 and let Ty =
co{0,x1,...,xXp} and Ty = co{0,y1,...,yn} be two of its simplices. Then

"N T="T;5:= CO{O,Zl, e ,Zm},
where z1, . ..,z are the vertices # 0 that are common to Ty and Ty, i.e. z; = Xa(i) =

ya@) for a,B € Sy andi=1,...,m.

PrROOF: The inclusion “2” is obvious so we only show the inclusion “C”. Let
x € T1NTy. If x = 0 then clearly x € T3 so we assume that x # 0. By the definition
of a convex hull we can write x as a convex combination of the vertices of T and as
a convex combination of the vertices of Tb, i.e., with xg = yg =0,

n n
X = Z AiX; = Zuiyz‘,
=1 =1

where the numbers \; and p; are all non-negative and Y ;" (A; = >0 p; = 1.
Consider the vector X := (b/||x]|s) x. We claim that

X € co{X1,...,Xp} Nco{y1,...,yn}

By construction

1% + Xjllo0 = |Xilloo + [1Xjlloc =20 i,5 =1,...,n,
SO
n n n
Ixlloo = | 22| =3 Aillxilloo =D A
i=1 oo =1 i=1
Hence,
o=/ b >
X = Xi,
,; <HXHoo '
where

< Aib >:1 and 0 < Aib <lfort=1,...,n,
=1

1%l [1%[loo

7

ie. X € co{xy,...,X,}. By symmetry X € co{yi,...,yn} follows. This proves the
claim.



Hence
x/p € co{x1/p,...,xn/p} N co{y1/p,....yn/p},

where both simplices on the right are in 7. By Theorem 4.11 in [16] X/p can be
written as a convex combination of the vertices common to these simplices

X/p € co{z1/p, .. Zm/P}, Zi = Xa(i) = YA(3)

and it follows that X has a unique representation as a convex sum of the vertices

Z1,-.-52m,
m
X = E V;Z;.
=1
But then

_ Ixllo %[l o Vil |%[ o
X—TX— 1_T Z —i—;bzi
=0 -

so x can be represented as a convex combination of vertices common to 77 and 75,
i.e. x € T3 which proves the lemma. O

3 Main result

We prove the existence of a piecewise linear Lyapunov function w : [—b,b]" — R
for any C' system with an exponentially stable equilibrium at the origin. This is
achieved by defining w through the properties: for every T € Tk,

w is linear on T" and for every vertex x of T' we have w(x) = v(x), (3.1)

where v is the Lyapunov function from Proposition 2.1. The function w is continuous
but not differentiable, however, it is C* except for the intersections of simplices in
T € Tkp.

Remark 3.1 Denote by Vr, be the set of all nonzero vertices of all the simplices in
Trp. A main part of the proof is to show, with Vw appropriately interpreted, that

max ||[Vw(x) — Vu(x)|l2 = 0 (3.2)

x€VK b

as K — oo. With b > 0 fized this is equivalent to p = 27 5b — 0. We quantify this
convergence in (3.30) as

max [|[Vw(x) — Vo(x)|2 < %00 = 27 K¢y, (3.3)

XEVK’b

To convince the reader that this is a nontrivial problem, let us consider two examples.



1. The limit b — 0 does in general not imply the limit (3.2). For example, in
R? we consider the cube [—b,b]> and the simplex (triangle) with the vertices
xo = (0,0), x; = (0,b) and x2 = (b,b). Then for v(x) = ||x|| we have w(x) =
wlix with w = (vV2 — 1,1)T as then v(x;) = w(x;) for all i = 0,1,2. Since
Vou(x) = ﬁ, we have Vu(x1) = (0,1)T, whereas Vw(x;) = w = (v2—1,1)T.
Thus, |Vw(x;) — Vo(x;)|l2 = V2 — 1, independent of b.

2. If we define the fineness of a simplex to be the maximal distance between two
vertices, not including the origin, then the fineness may tend to zero without
Vw converging to Vv as in (3.2).

As a counterezample consider the three-dimensional simplex in [—b,b]> given
by xo = (0,0,0)7, x; = (r,0,b)7, xo = (rcosa,rsina,b)’ and x3 =
(rcosa, —rsina, b)T where 0 < r < b is fized and o > 0. The mazimal
distance between two vertices excluding the origin is r|sina|v/2 for small o,

and tends to 0 if & — 0. For v(x) = ||x|| we have w(x) = ¥Y=+2(0,0,1) x.

b
Thus at x; we have Vvu(xy) = ﬁ(r,O, b7 and Vw(x;) = 7”"2;{’2(0,0, nT,

which is independent of a.. Note that
r
IVo(x1) = Vw(xi)ll2 = o

does not tend to 0 as a« — 0. Thus, we have to ensure a certain regqularity of
the simplices as the fineness tends to zero, which is done by the definition of
Tk b in Section 2.2.

Theorem 3.2 Consider x = f(x), f € CL(R",R"), n > 3 and assume that xg = 0
is an ezponentially stable equilibrium. Let v(x) := |[x[|o be the Lyapunov function
from Proposition 2.1.

Then for the standard triangulation Trp, of [—b,b]™ with fineness p := 275b, the
function w : R™ — R defined as in (3.1) is a continuous Lyapunov function for the
system, whenever b > 0 is small enough and K € N is large enough. In particular,
we have for every x €] — b, b[" that

w(x) > C|x|lz and DTw(x) < —c|x]|2,

where ¢ 1= ——, C = ‘Q*ll H and the Dini derivative DV w(x) is defined in (2.2).
2

2 ‘ 2

Remark 3.3 Let us make the choice of b (size of the triangulation) and K (fineness
of the triangulation) more precise: In the proof we first fiz the size b of the cube,
which only depends on the linearisation of f(x) = Jx + ¢(x), in particular J and
Y, cf. Step 2 (3.5). Then we choose K and thus the fineness p = 2~ Kb in Step 4.

PRrROOF: We split the proof into several steps.

10



Step 1: Constants
For the positive definite matrix @ from Proposition 2.1 we set

¢:= min [|QX||cc = min max }GZTQX{>O. (3.4)
[Ix[|co=1 [|x]|co=1%=1,...,n

Define the following constants, which only depend on ¢, n and Q:

o = BN g, 1 02 v

1

Cy \/ﬁ||Q§|yg<4(n—1)2(2\/ﬁ +1QIBIQ 2 3v/n

1 1 1
+31QHvalQ a1l

C3 = (n—1)ICT2Cy,
2C:
Ci =~
Q2|5
Ce = [Qll2vn+ (n—1)Cy,
C, = !

1 1.0
2|Q™215v/nllQ2 |2
Ce

)

)

Co = max||Q 3|2t — 1)Cs (CIQ3]l2 +1) , 1@ [3(n ~ 1)CuC

2/ + 1 s 1
S QI R IEC + (0~ D+ QI ).

Step 2: Choice of b
We consider the linearised system x = Jx where J := Df(0). Because f is differen-

tiable we have f(x) = Jx + ¢ (x) with limx|,—0 % = 0. Fix b > 0 for the rest
of the proof so small that

c
|v(x)]]2 < EHXHQ for all x € R, (3.5)
where ¢ := ——r— and R := [~b,b]".
o3,
Step 3: Description of a simplex
Let T' € Tk be an arbitrary simplex. Denote its vertices by x¢,x1,..., Xy, where
xp = 0. Then xi,...,%, € OR and there is a k € {1,...,n} such that both
|x1 - ex| = b and the vertices xa, ..., %, of the simplex are given by
j—1
xj:xl—i—pZui for j=2,...,n,
i=1

11



where p = 27Kp and ui,ug,...,u,_1,u, is a suitable paraxial orthonormal basis
for R™ as in (2.4), i.e. there is a permutation o € S, such that u; = +e,; for all
1 €{1,...,n} and especially u,, = e, cf. (2.4) and Remark 2.5. The value of b > 0
was fixed in Step 2 and a suitable value for K € N will be determined later.

We can then write .

X1 = E a;u;

i=1
with the same orthonormal basis u;. We have |a,| = |x1-u,| = b and, since x; € OR,
la;] < bforalli=1,...,n. Sincex; € ORfor j =1,...,n we have b < ||x;]|2 < by/n.
For the || - ||¢g norm we thus obtain

1 1 1
IxjllQ = 1Q2x)ll2 < |Q2]l2- [[x)ll2 < |Q2[[2bv/n, (3.6)

and
_1 1 _1 1 _1
Ixill2 = 1Q2Q2x;]l2 < |Q2|2|Q2x;l2 = [|Q™ 2 |l2]|x;lg;

from which

1 1
Ixille 2 ———lIxjlla =2 ———b (3.7)
1Q™ 2|2 1Q722
follows. We define
Q; = uiTQxlfori:L...,n
and we have a; = u?xl fori=1,...,n.
Moreover, the following estimates hold
la;| < b, (3.8)
il < lwill2l|@xall2 < [[Ql26v/n, (3.9)
j T j (I 2 N 2
duw] QD w) = (@ (D w| <lezF|D w| =jlQl (3.10)
=1 i=1 1=1 2 =1 2

for all j € {1,...,n}.
Using the constant ¢ > 0 from Step 1, we can conclude that there is an index
i* =1i"(x1) € {1,...,n} such that

lai«| > bg (3.11)

holds true. Indeed, define x := 3x; which satisfies |x[lcc = 1. Note that for ¢
defined in Step 1 there is an index j* = j*(x) such that ]e}lQX\ = |Qx|lec > g.
Since the u; are a permutation of the e;, there is an index i* = o~!(j*) such that
u;- = tej«. Thus, |a;+| = ‘uZ; Qxl‘ =b ‘ieﬁ@x > bq holds, which shows (3.11).

12



Note that we also have

-1 T -1
1%l = lxild+2p (Z uz’) Qx1 + p? (Z “2) Q (Z “i>
i=1 =1
Jj—1 Jj—
= |xilg +20> i+ p? (Z uz> Q ( uz> (3.12)
i=1 =

Step 4: Choice of K
We start by showing that:

For every € > 0 there is a K. € N, such that K > K. implies, that for
any simplex T' € T and any fixed vertex x; # 0 of T" we have

Ixille = IIxille
a;| < g, (3.13)
p Ix 1”@ Z '
where the non-zero vertices X, ...,x, of T and the numbers o, ..., a,
are defined as above in Step 3.
Indeed, for any j = 1,...,n and the vectors uy, ..., u, defined as above, we have
by (3.12)
Ixjlle = lxlle Il — Ixallg
p r(lxjllq + lIxille)

2p 25;11 o + p? (Zz 1 uz) (Zz 1 u1>
p(lIxjllq + [1x1llQ)

_ 221 10‘z+P<Zz 1“@) (Zz 1ul> 314
- TiTle + Tillo - B

Since p = 275b and b is fixed, we have

1 .
lxjllo — lIx1llol < 1% — xillg < Q2 [l2py/5 — 1

and the proposition (3.13) follows.
Now, for a T € Tip let i* be defined as in (3.11) and consider the matrix
A e R(=Dx(=1) defined for the simplex T' by

[%j+1llQ — [1xal] ,
A = PSR o, () (3.15)
for ¢ € {1,...,n} \ {i*} and j = 1,...,n — 1, where xg,  ;(i) =
{1 ifie{l,...,5}

0 otherwise - In other words, the matrix A is given by
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%21l —lI*x1llg . Ix2llg—lixillg an HxQHQ IIX1IIQ

12l [E3]
al M [Ix1llq ag——<————=< n—1

o nxauQ I1lQ o aplele ||x1||Q il o uxaquuxluQ o, Ixsllg” ||X1||Q
Pl g ey g, Pl Ly o Il 0, nlig-inlig
where the i*-th column is missing.
We now show that .
13 nyn—
|det A > Z[lQ2[37"0" g (3.16)

for all large enough K independent of the particular 7' € Tk . To see this consider
the matrix Ay € RO~D*(=1) " defined by

_1 O .
(Ao)ji = ai=—=— — [Ixilloxq,...;3 ()

1x1ll@

In other words, Ag is given by

a1 51 o 92 1 ) In—1 1 ) _an 1 .
Teilg =1 ~ Ixalle Teilg 2i=1% Teillg 2i=1% Teilig 2i=1
a1 2 o a2 2 o In—1 2 ) __ap 2 )
E3) HQ 21 1 X HXIHQ “xl HQ ZZ 1 Qg HXIHQ [ESNI) 2»5:1 13 HxlT\L\Q Zi 1
An—1 3 )
HleQ 21 1% — Hxan “xl HQ EI 1% — HXIHQ [ESH) Di—1 HleQ 21 1 ,
s Tt e —lxille o Tigtei—lxille - s Tiot i — lxall it e
x1lq —~i=1 * Q x1llq —~i=1 * Q Tx1g ~i=1 7 Q Hx1 HQ ¢

where the i*-th column is missing. If i* # n we use Lemma A.2, and if i* = n we use
Lemma A.1, both with a = (a1, ..., an—1,a,), where |a,| =b,and N =Y " | a;jo; =
> au)’ Q= ||x1||g2 The lemmata show that Ay satisfies in both cases

|det Ag| = x H"lH il
> il 2 by (311)
13 min—
> Q237" g by (3.7).

Because the determinant of a matrix is a continuous function of its entities and by
(3.13), it follows that for every e* > 0 there is a K.« € N, such that

|det A — det Ag| < &* (3.17)

for all K > K.+, and because (3.13) is independent of the particular choice of
T € Tk then so is (3.17). Hence, there is a K € N such that whenever K > K we

have 1
|det A| > 5] det Ay,

i.e. the inequality (3.16) holds true.

14



We fix K € N for the rest of the proof, such that both K > K and

K> max [In (204 - DIQ 2 3) In (ol TIQ% )| - (319)

With p := 27Kb this implies that

0<p§min( b —, b - ) (3.19)
2C4(n — Q7213 4Co|lJ[|2[1Q%[l2

Step 5: The central equations Ak = d
The function w is linear on the simplex T' € T and its restriction to 1" can thus

be written as w(x) = w!x, where Vw(x) = w holds for all x € T. Moreover, we
have
T
wix; = w(xy) = v(x;) = [Ixjlq
for all vertices x; of the simplex T'. For j = 2,...,n this implies
||X1||Q xalle
W (31— 219 =l Ix;llg
xillg 1%5ll@

Hence, w is characterised as the vector which is perpendicular to the (n — 1) vectors
Ix1lle T

“loXiJ = 2,...,n and satisfies w' x1 = ||x1]|g-
We now characterise a vector ¢ through the conditions that it is perpendicular
to the (n — 1) vectors x; — Hi%”ng, j = 2,...,n, just as w, and, instead of a
J

norm condition, to satisfy (¢ —Qx1)Tus = 0, where i* was defined earlier satisfying

We now show that a vector c¢ satisfying these properties exists and is uniquely
determined, and then clearly ¢ = yw for some v € R. In Step 6 we assign a proper
value to v and thus determine w.

Definition of ¢ and k as solution of a linear equation

Let T' € Tk be arbitrary but fixed, where K and b are as chosen above. We show
that there exists one and only one vector k = (k, ... e, . kn) € R"1 where
k;+ denotes that this entry is missing, such that

c = Q@Qx1+ Z k;u;, (320)
i=1,i*
ct <x1 ”xl”Qx ) = Oforall j=2,...,n. (3.21)
el
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To prove this, we characterise k as the solution of a system of linear equations.
Plugging (3.20) into the (n — 1) equations (3.21) for j = 2,...,n gives

T
n
X
0 = QX1+ Z kiui <X1— Hxl‘HQXj)
i=1,i#i* e
T
- il Ille <
= |@x1+ Z kia; X1 <1 — > Zuz
e i)~ Tl 2
Ix1ll@ ||X1||Q
— Il (1- o
9 Ixille/  lIxjlle z} '
- Ixille  lxille
1 1 .
I = v B e )
i=1,ii* J1Q JllQ
where xi,. j—13(1) = 1ifi € {1,...,5 — 1} and 0 otherwise.
By multiplying the equation by lx ” lo we obtain
X X
0 = HX H2 H JHQ H 1HQ HX HQZQZ

Ixillo — IIx1]l '
+ Z ki [ 7T xallg xq,...j-1y (1)
i=1,iF£i* ’

Hence, the vector k = (kq, ... g, ,kn)T is the solution of the linear equation
Ak =d, (3.22)

where A € R(*=Dx("=1) i5 defined for the simplex 7" by (3.15) in Step 4 and the
vector d € R"~! is given by

1 X2||Q X1[lQ
2 X3|Q X1]lQ

3 —

d=lallg | 0 xlexloy
-1 _

i o — elabele g

Because of (3.16) A is non-singular and (3.22) has a unique solution k.
By Cramer’s rule the solution is given by

o detAj
7 det A
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where A; denotes the (n—1) x (n—1) matrix that is built by taking A and replacing
the j-th column by d.

The matrix A
Now we obtain the following estimate for the matrix entities A;; of A, cf. (3.15)

Al < a

+ xillo

xj41llQ — ”X1||Q‘
p

0l 2574 Jail + p(n — 1)[|Q])2
xj+1llQ + Ix1llQ

. <2b(n = 1)v/nl|Qll2 + b(n — 1>||czr2> Q72 2 + [|Q2 [l2bv/n

IN

+ ||x1]|@ by (3.14) and (3.10)

2b
by p <b, (3.9), (3.7) and (3.6)

= o (ORI g4y, 4 10t
— b0y (3.23)

due to the definition of C;.
The vector d
We calculate the j-th component of the vector d.

J
i _ N~ Ixivlle = xille
D= Ixille

ale ~ &

2|1l d
- (-5 )3
=1

Ixj+1llQ + [Ixille

T

Ix1lle p<2u1> Q(Zm) by (3.14)

Ixj1llo + [xille™ \ = s

x4l = x1l3 <
= 22

(Ixj+1lle + [Ix1llQ)

T

11l d ’
— P u; Q u;
Ixj+1llo + lIxillo 2 ' 2 '

p[QZZ 1041+P(Zz luZ>TQ< g:l“i) J

(+1llg + xall)? 2

0%

T
[x1lQ " N
xjzlle + x1llo (Z > (Z >] by (3.12).

17



Thus, we have by (3.6), (3.7), (3.9) and (3.10)

(n = D[IQ2(2bv/n + p)
4h2

4| < pbmrcﬁru( 1Q~2[3(n — 1)[|Qll2bv/n

2||9b !
MCHEN RSN

< phCh. (3.24)

The vector c
By the Leibniz formula for the determinant, namely detA =
> res,, sign(m) [T A; »(;) we obtain with (3.23) and (3.24)

|det A;] < (n—1)W"2CT2pbCy = pb"1C3.
Hence, by (3.16) we have

| det Aj‘ pbnilcg 2
kil = <  —Cw. (3.25)
[det A| = 0" Q2|3

Using (3.25) we obtain

Il = @+ > ki
i=1,iti )
Qllabi + (n — 1)Cap
bC.. (3.26)

Step 6: ¢c =yw
We showed in the last step that there is a vector k = (ki1,...,ki,..., k,) € R*71
such that .

c=0Qx; + Z kiu;

i=1,i#*

fulfills ¢’ <x1 — H;:”ng> =0 for all j = 2,...,n. Defining

18



we obtain with (3.25) that

1
> _
T2 HXIH (HleQ C4(7’L l)pb)
2 2

> ! b — — b - by (3.7) and (3.19)

el \ Q=213 2@~ =13

b2

> : — Dy (3.6)

2Q7230v/n[|Qz 2
= bC, >0. (3.27)

Moreover, we have with (3.25) and (3.7) that

L5 1Q~2 12
v = lIxillel < il Do laiki] < S (n - 1)bCap. (3.28)
i=1,ii*

T
Now we prove that %c = w by showing (%c) x; = ||xjllg for all j =1,...,n,

cf. the beginning of Step 5.
We start with j = 1. By definition of v and (3.20) we have

n

1 1
—c'x1 = —|Ixlg+ Y. aki] = Ixle
v v i=1,ii*

Now let j € {2,...,n}. Since ¢ (xl - H’:”gx]) =0 by (3.21), we have
J

T, _ l”XjHQCT

1
= x1 = [xjllq-
7T Alxlle e
This shows ]
W= —c.
Y
We also derive a bound on w. Using (3.26) and (3.27) we obtain
1 bC, ~
= —_ < = C. .2
w2 Sllellz < o, (3.29)
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Step 7: Difference between w and Vv
Note that v(x) = ||x[|g so that Vu(x) = |IXH
Vw and Vv at x1, we later consider the other vertices. We have

. We estimate the difference between

IVw(x1) = Vo(xi)]l2
= lw =Vl

H 1 Qx1
7c J—

||X1||Q 2
B O

|X1||Q Ixille  [xallQlly
HCH2 1
= |lxllg =~ e — Q12
O M xalle " lxle

el -1 1 -

< 1Q™ #[la(n — 1)Cap + —— k| by (3.28) and (3.20)
SEAE Ml 2=,

< ”Q 2 (CUQ % la(n — 1)Cap + (0~ 1)Cip) by (3.20) and (3.25)

< ECO’ using the definition of Cj.

Now we consider a vertex x;, j > 2. We estimate

IVw(x;) = Vo(x;)ll2

= |w- W(Xj 2

i

!X;HQ

< il il I~
||X1||Q Ixille  lixjllelly  lHixille  lxjllell,

The first term has already been estimated above by £{]Q~ 2 13(n — 1)C4C. For the
second term note that we have

11 ’: %l = [x1llol

lle Tl Ixsllelixillo

25 ol + (Th ) @ (T u) s
Ixslelxille(xlle + Ixilie)

- 2b\/ﬁlngg3+ AUl 1, _ 101318 by (3.9) and (3.10)

2y/n+1 _1
< T(”‘UHQHW”Q 2”3

p by (3.14)

so that by (3.26) the second term is bounded by Q‘FH( - 1)HQ||2,0||Q_%H%C’C
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For the third term we obtain

n 7—1
le—Qx;ll, = [[@x+ Y kwi— (Qxl +pZQuz‘>
i=1

=11
< (n—1)(Cap+plQl2), using (3.25).

Hence, by (3.7), the third term is bounded by (n — 1)(Cy + HQH2)%HQ_é [|2-
Thus, altogether we obtain by definition of C

2

[Vw(x;) = Volxj)l2 < £Co (3.30)

for all j € {1,...,n}.

Step 8: Negative orbital derivative with respect to linearised system

Recall that Vw(x) = w = %c for all points x in the simplex T, since w is linear in
the simplex. We now show that w(x) has negative orbital derivative with respect to
the linearised system, cf. Step 2, at each vertex. The orbital derivative at the vertex

x; is, using (3.30), i.e. Hw - ”gj‘j@ ‘2 < £Cy, given by
1 A\
wTij = XJTQJXJ- + <w — @x; ) Jx;
1%l HXjIIQ
o TR == WA
xjllg™ Ix ]” ’
< x; (JTQ + QJ)x; + COHJH 112
2[Ixjlle
1 , 1
_Qf||xj"2 + —— 7 [I%jll2 by (3.19)
Tl !
2
1
< ——rr Xl
]|
2
where we have used (3.6) and JTQ + QJ = —1I.
Step 9: w(x) has negative orbital derivative
In Step 8 we have shown that
wTij < —2c||x4]l2 (3.31)
where c is defined by ¢ = H H
8|Q
Now choose an arbitrary x € R = [—b,b]". We show that there is a simplex

T € Tk p with vertices xg = 0,X1,...,X, and Ao, A1,..., A, € [0, 1] with E?:o Aj=1
such that

X = Z )\ij = Z )\jX]’. (332)
7=0 7j=1
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To show this, we project x to the boundary of the hypercube: let j € {1,...,n}
such that |x;| = maxeq, ) [%i| < b. Then define p := % > 1. Obviously,
pux € OR so that we can find a (n — 1)-simplex with vertices xi,...,x, such that
px =% puyx; with 0 < py < 1forall j=1,...,nand 37, u; = 1. Then

n
j 1
x_zﬂij+(1_>xo
7

where xg = 0, \; := % € [0,1], o :=1— i € [0,1] and 7% o A; = 1. This shows
(3.32).
We have with x = >, \jx;

Ixllz = DA%l < D Al (3.33)
j=1 j=1

n n
and also ||x|lg = Z)\jxj < ZA1||XJ‘|Q
j=1 j=1

= > Nw(x) =w | Y Nx; | = w(x). (3.34)
i=1 j=1

Note that (3.34), together with

11 _1
Ix[ls = lQ™2Q2x([2 < [[Q>l2/Ix[lq
shows w(x) > WHXHQ, which proves the first inequality of the theorem.
2
2

Choose an arbitrary simplex T" € Tg . Within 7', the function w is smooth and
thus the orbital derivative with respect to the nonlinear system in the simplex T is
given by

w'(x) = Vwx)'f(x)
— Wl (Ix + ()

= Z AwlJIx; + wlep(x)
j=1

< =2¢> NjlIxglla + [Iwlly - [l (x)[l2 by (3.31)
j=1

< —2¢|xllz + C- ¢

for x € T', using (3.33) and (3.29). By (3.5), [[¢(x)|l2 < %”XHQ holds for all x € R.
Thus, we have

w'(x) < —c||x]|2 for all x € T'. (3.35)
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Now we show that
D w(x) < —cf|x]l2

holds for all x €] — b,b[". Let x €] — b,b[" be arbitrary. By [16, Theorem 1.17] we

have h
DT w(x) = limsup wix + hf(x)) = wix)
h—0+ h
since for all A > 0 small enough there is a T' € Tk such that co{x,x+hf(x)} C T,
cf. the argumentation at the beginning of Section 6.7 in [10].
Restricting w to this simplex T, w is linear and thus smooth and satisfies w(x) =

w’!x. Hence, we have

wx+hf(x) - wx) w-(x+hf(x)-w-x

Dtw(x) = limsup = limsup
h—0+ h h—0+ h
hw -
= limsupo(X) = Vw(x) - f(x) = ' (x).
h—s0+ h
Thus, together with (3.35), we have proved the theorem. O

Remark 3.4 An alternative path to prove DT w(x) = limsupj,_,o,
is to consider multivalued functions and Clarke’s subdifferential, cf. [3].

w(x+hf(x))—w(x)
h

4 Conclusions

In this paper we have shown that for any system x = f(x), f € C}(R",R"), n >3
with exponentially stable equilibrium, there exists a (local) piecewise linear Lya-
punov function w(x). Our result generalises a previous result for dimension n = 2,
using a different approach.

To construct the Lyapunov function, we first consider a triangulation 7Tx of
[~b,b]" with fineness p = 27%b. Then we define w by the values of the function
v(x) = /xTQx on the vertices of the triangulation, and linear interpolation on each
simplex. We have derived a lower bound on w(x) and an upper bound on the Dini
derivative DT w(x).

The significance of this result is that we have given a constructive existence proof
for a piecewise linear (local) Lyapunov function. Expanding the triangulation, we
can extend this function to a piecewise affine (global) Lyapunov function, which
can be constructed by linear programming. We have thus provided the basis for a
construction method of a global piecewise Lyapunov function.
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A Lemmata on determinants

We prove two lemmata, corresponding to the cases i* = n and i* # n in the proof
of the main theorem. The matrix under consideration in both lemmata is different,

the proof, however, is similar.

Lemma A.1 Let a € R" with a, # 0, and o« € R"™ with o, # 0. Denote N :=
S aiy. Define the matriz A € R=Dx(n=1) gy

ay Z 1 — as 23:1 o e Gp—2 Zizl o Anp—1 23:1 o
ax Zi:l a; — N as 25:1 a;— N ... Gp_2 Z?zl oy (n_1 23:1 @y
a1 Z?:l @ =N a Z?:l a;—N . (n—2 Zf:l @i (n-1 E?:l @
Yl Pai-N oY lei-N . oanaYilei—-N e Y
a Zi;1 a;— N as Zi; ai—N ... an_o Z?;ll oa;— N ap_1 Z?;ll a;— N

Then |det A] = N"2|ay,||an|.

PrOOF: We modify the matrix A by replacing the second row by second row minus
first row, then the third row by third row minus second row minus first row, etc.
The determinant is the same and the matrix becomes

a1 — N a0 asy e Ap—2001 Ap—1001
a1 0 a0y — N agzQo e QAp—2009 Ap—1009
a10pm—2 A20p—2  A3Qp_2 ... Gp_30np_o— N Op—10p—2
a10n 1 a20p_1  A30p_1 ... (p—20n 1 p_10p_1 — N
Now assume without loss of generality that a1,...,ax # 0and agy1,...,0,—1 =0

with a k£ € {0,...,n — 1}. Note that we can change the order of aq,...,a,-1 by
exchanging the ¢-th and j-th row and then also the i-th and j-th column.

If Kk = 0, then |det A] = N""! = N"2|a,| - |an|, since in this case N =
Yoy ai; = apay,, which shows the lemma.
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Now assume that £ > 1. Using ag41 =... =ap—1 =01t

he matrix becomes

aiog — N aso - ap_101 apoq 0 0
aioo asas — N ... Ap—102 apQo 0 0
a10L—1 A0 —1 cer Qp_10p_1— N  apap_q 0 0
a0 a0 . Af—10 A — N 0 0
10041 2041 .- Ap—10h41 apapy1 | —N 0
a10, 1 201 ... 10,1 a0y 1 0 -N

The determinant of this matrix satisfies
|det A] = N"F=1det Ay,

where ﬁk denotes the left upper k& x k matrix.

(A1)

If £ =1, then we have shown the lemma since in this case we have N = ajaq +

anov, and thus |det A| = [aya; — NIN""2 = |ana,|[N" 2.
Now we assume k > 2 and calculate | det Ag|, where aq,
induction that for 2 < j < k we have

|det A| = |det A;|NF77,

where Avj, j=2,...,k denotes the j x j matrix

... ar # 0. We show by

(A.2)

ayioy — N a0 e aj—101 a0
a0 ag g — N N aj—102 (e71e%)
A_] = 1052 2052 e aj; 1052 a;0j_2
1051 20051 cee G510 - N a0 1
k k aj_ k k
a1 o 22 O Gi-1 Ol O —
a; Zi:j @i o Zi:j a; ;.. a; Zi:j ;O Zi:j a;o; — N

Note that for j = k this definition coincides with the previous definition. We show
the formula (A.2) by induction. For j = k the formula holds. We now assume that
it holds for j € {3,...,k} and show it for 7 — 1. Indeed, replacing the j-th column

by a;lil- (7 — 1)-st column—j-th column gives
artop — N asqq N aj_loq 0
ajg as0ig — N ce aj—-10 0
det Aj = ajoj_o ag0j_2 e Aj—105—2 0
a
alaj_l agOéj_l e aj_lozj_l — N _Najil

a ko a2 Nk o aj-1 5~k o

a Zi:j aje; g2 Zi:j aio .. Zi:j a; 0 N
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We expand along the last column, which gives, using linearity in the last row
det Aj
a1 — N as vy aj_loq
a1y agsxg — N (%;10(2
= N
alozj_g agaj_g aj_lozj_g
alozj_l agaj_l aj_laj_l - N
a1 — N ags 1 aj_loq
a1y asg — N aj; 102
Qi
+—L-N
a;_—
J—1 a10—2 ag0tj—2 Aj—1005—2
ar NNk a2 NNk aj-1 ko
aj Zi:j a; 0 a; Zi:j a; oy .. a; Zi:j a; 0
artop — N as aj_qu
alon asoy — N aj_100
N
aj—1 alozj,Q ag()éjfg ajflozjfg
k k k N
ai Zi:j—l a;0 Az Zi:j—l ;0 aj—1 Zi:j—l a;Q —
This shows
a1 — N as aj,1a1
a1ty asg — N aj_1a2
\det Aj’ = N
alaj,g agOéj,Q ajfl()éjfg
a1 5k aioy 22 °F Wil SOk aic — N
aj_1 i=j—1 %% Gy i=j—1 %t i=j—1 %t
= N| det Ajfl‘
By the induction hypothesis we have |detAy| = |[detA;|N*7J

N|det A; 1|N¥=7 = |det A;_1|N¥=G=1). This shows (A.2).
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Now we use (A.2) for j = 2. First, we calculate det A, giving

-~ a1 — N asq
det A2 = k k
% i=2 ;0 Zi:Q a; 0 — N
k k
= (aja1 — N) (Z a;0; — N) —ajoq Zaiai
i=2 i=2
k
— —Nalal—NZQiOéi+N2
=2
n—1
= N (N — Zaiai>
i=1
= Napon
since ag41 = ... = ap—1 = 0. Finally, using (A.1) and (A.2) we obtain
|det A|] = N"fk*lNk*2N]an| an| = N"72|an| <.
This shows the lemma. O

Lemma A.2 Let a € R" with a, # 0, and a € R™ with o= # 0 where i* €
{1,...,n—1}. Denote N := 3" | a;c;. Define the matriz A € R(=1)x(n=1) py

alz; 1aifN QQZ;»[ 1 an_lzg 10 anzg 19
alz 0 — QQZ 1 — Gy 12 e anz 1
ay Ei:l a;— N as Ei:l a;— N ... ap—1 Zi:l a; an, E?Zl a;
ay Z?:f =N aYilai-N . e Yia a i
ax Zz 1~ G2 Z?;f a =N ... ap Z?;11 a;—N ap Z?;ll @i

where the i*-th column is missing.
Then |det A| =

PrOOF: We modify the matrix A by replacing the second row by second row minus
first row, then the third row by third minus second row minus first row, etc. The
determinant is the same and the matrix becomes

aioqg — N asoy asoq - Ap—200] Ap—101 a0

aioo asas — N asas - Ap—200o Ap—1002 Ay Ol
10t —2 20p_3  A30p_2 ... Gp_20p_2— N Op—10p_2 AnOip_2
10, —_1 A20p—1  A30p_1 ... (p—20n_1 Ap—10n—1 — N apap_1
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Now we move the last column to the place of the (missing) ¢*-th column, which
results possibly in a minus sign. In the next step, we change the order of ay,...,a,_1
by exchanging the i-th and j-th row and then also the i-th and j-th column. We
can thus move the ¢*-th column in front of the first column to obtain the matrix

QA O+ [e5Re 78] A0 az ;= RPN Ap 20+ Ay 100+

a, o aiog — N aso asoq ... Ap—20t] Ap—1001

A0l aion asas — N asas ... Ap—20in Ap—_1002
ApnQp_2 Q105 2 2Qp 2 A3Qp—2 ... Gp 20p 2— N Op—10n_2
AnQin_1 Q1051 201  A3Qp_1 ... (p—2Qn_1 p_10p—1 — N

where the i*-th column and row are missing.

Now assume without loss of generality that ai,...,a;r # 0 and a4 = ... =
an—1 =0withak € {0,...,n—1}. Note that we can change the order of ay, ..., a,_1
by exchanging the i-th and j-th row and then also the i-th and j-th column.

If k = 0, then | det A| = |ay| - || N2, which shows the lemma.

Now assume that £ > 1. Using agy+1 = ... = ap—1 = 0 the matrix becomes
A Oj* a1 Ao CLj . Qf—1 Ol QO 0 e 0
an o aio; — N as 01 - Ap_1001 arpoq 0 0
(M) a0 asas — N ... ap_100 apoo 0 e 0

ApQp_1 Q101 aoQp_1 ... Qp_10_1— N  apop_1 o ... 0
Ay Ok aiog as Qi . ap—10k agar — N | 0 .. 0

Qg1 A1Qk41 agQpy1 .- ap—10k 41 apagr1 | —N 0

ApQp—1  A10p_1 a0p_1 ... Ak—10pn—1 a0y —1 0 -N

We assume without loss of generality that & < ¢*. Then the determinant of this
matrix satisfies

|det A] = N"%2|det Ay, (A.3)

where A, denotes the left upper (k +1) x (k+ 1) matrix.
Now we calculate | det Ag|, where aq,...,a # 0. We show by induction that for
1 <j <k we have

|det Ap| = |det A;|NF77, (A.4)
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where ﬁj, j=1,...,k denotes the (j + 1) x (j + 1) matrix

Ay O a0+ [e5Y0 743 A5 105 a0+
Ay Q1 a1y — N a0 aj;—10 a;0og
ap 0 aion asag — N aj_100 ajoe
ApQlj_2 a10 2 a0 2 Aj—105_2 a0 _o
AnQj—1 aro;—q a0 1 a; 101 — N ;0051
k k k a;_ k k
On o AL oy 42 Vs J—1 Vs v —
a; Zi:j @i o 2=y G Zi:j ;0 a Zi:j ;0 Zi:j ajo; — N

Note that for j = k this definition coincides with the previous definition. We show
the formula (A.4) by induction. For j = k the formula holds. We now assume that
it holds for j € {2,...,k} and show it for j — 1. Indeed, replacing the j-th column

a; . . . . . .
by .- (j —1)-st column minus the j-th column gives the following expression for
i
det Aj
Ay Ol a o a9 0u;* aj 10 0
anQ1 artop — N ag0q aj_loq 0
Ap 02 a0 asaig — N aj_102 0
AnQij—2 1052 2052 Aj—105-2 0
a
anozj,l alozj,1 azozj,l ajflajfl - N - U«jil
an Nk o aNk o ek aj-1 5~k
a? Zi:j ;v a; Zi:j (G167 a; Zi:j Qa0 a; i=j B N

We expand along the last column, which gives, using linearity in the last row

det Aj
Ay Olg* a1 Qg ag ;= aj,lai*
Qp O a1 — N astvq aj_loq
(07X e%) a1y asxg — N aj,1a2
= N
nOlj—2 1052 2052 Aj—105-2
anaj_l alaj_l CLQOéj_l aj_locj_l - N
QA Clij* a1 Qujx a2 Qtyx Q5105+
anQq a1 — N ags Xy aj,1a1
Ay O a1 asig — N aj_locg
s
+—L-N
aj—1
Ap ;2 1052 a0 2 aj—105—-2
an NNk Nk 0 ek aj-1 Nk
a; Ei:j a; 0 a; Zi:j a; a; Zi:j a; a; i=j G
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Ay Olg* a1 0 e Q51005
anoq aioqg — N . aj_10q
ano aioo .. a;i_1009
N J
aj—1
nQlj—2 a105-2 NN Aj—105-2
k k k N
Qn, Zi:j—l a;;  ay Zi:j—l a0 ... Q51 Zi:j—l a0 —
This shows
]detAj] = N‘detAj_ll.
By the induction hypothesis we have |detAy| = [detA;|[N*7 =

N|det jj_l\Nk’j = | det gj_l\Nk’(j’l). This shows (A.4).
Now we use (A.4) for j = 1. First, we calculate det A; giving

-~ An O+ a10*
det Al = k k
a
ar Doic1 @it Y i @i — N
k k
G,
= an0u* E a;o; — Napoux — a0« — g a;oy
a
i—1 Lz
= —Nayoy*.

Finally, using (A.3) and (A.4) we obtain

|det A] = N 2NF*INa,| - || = N 2ay]| - oz

This shows the lemma. ]
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